rust/src/libstd/io/timer.rs
2014-05-07 08:17:32 -07:00

296 lines
8.4 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Synchronous Timers
This module exposes the functionality to create timers, block the current task,
and create receivers which will receive notifications after a period of time.
*/
use comm::Receiver;
use io::IoResult;
use kinds::Send;
use owned::Box;
use option::Expect;
use rt::rtio::{IoFactory, LocalIo, RtioTimer};
/// A synchronous timer object
///
/// Values of this type can be used to put the current task to sleep for a
/// period of time. Handles to this timer can also be created in the form of
/// receivers which will receive notifications over time.
///
/// # Example
///
/// ```
/// # fn main() {}
/// # fn foo() {
/// use std::io::Timer;
///
/// let mut timer = Timer::new().unwrap();
/// timer.sleep(10); // block the task for awhile
///
/// let timeout = timer.oneshot(10);
/// // do some work
/// timeout.recv(); // wait for the timeout to expire
///
/// let periodic = timer.periodic(10);
/// loop {
/// periodic.recv();
/// // this loop is only executed once every 10ms
/// }
/// # }
/// ```
///
/// If only sleeping is necessary, then a convenience api is provided through
/// the `io::timer` module.
///
/// ```
/// # fn main() {}
/// # fn foo() {
/// use std::io::timer;
///
/// // Put this task to sleep for 5 seconds
/// timer::sleep(5000);
/// # }
/// ```
pub struct Timer {
obj: Box<RtioTimer:Send>,
}
/// Sleep the current task for `msecs` milliseconds.
pub fn sleep(msecs: u64) {
let timer = Timer::new();
let mut timer = timer.ok().expect("timer::sleep: could not create a Timer");
timer.sleep(msecs)
}
impl Timer {
/// Creates a new timer which can be used to put the current task to sleep
/// for a number of milliseconds, or to possibly create channels which will
/// get notified after an amount of time has passed.
pub fn new() -> IoResult<Timer> {
LocalIo::maybe_raise(|io| io.timer_init().map(|t| Timer { obj: t }))
}
/// Blocks the current task for `msecs` milliseconds.
///
/// Note that this function will cause any other receivers for this timer to
/// be invalidated (the other end will be closed).
pub fn sleep(&mut self, msecs: u64) {
self.obj.sleep(msecs);
}
/// Creates a oneshot receiver which will have a notification sent when
/// `msecs` milliseconds has elapsed. This does *not* block the current
/// task, but instead returns immediately.
///
/// Note that this invalidates any previous receiver which has been created
/// by this timer, and that the returned receiver will be invalidated once
/// the timer is destroyed (when it falls out of scope).
pub fn oneshot(&mut self, msecs: u64) -> Receiver<()> {
self.obj.oneshot(msecs)
}
/// Creates a receiver which will have a continuous stream of notifications
/// being sent every `msecs` milliseconds. This does *not* block the
/// current task, but instead returns immediately. The first notification
/// will not be received immediately, but rather after `msec` milliseconds
/// have passed.
///
/// Note that this invalidates any previous receiver which has been created
/// by this timer, and that the returned receiver will be invalidated once
/// the timer is destroyed (when it falls out of scope).
pub fn periodic(&mut self, msecs: u64) -> Receiver<()> {
self.obj.period(msecs)
}
}
#[cfg(test)]
mod test {
iotest!(fn test_io_timer_sleep_simple() {
let mut timer = Timer::new().unwrap();
timer.sleep(1);
})
iotest!(fn test_io_timer_sleep_oneshot() {
let mut timer = Timer::new().unwrap();
timer.oneshot(1).recv();
})
iotest!(fn test_io_timer_sleep_oneshot_forget() {
let mut timer = Timer::new().unwrap();
timer.oneshot(100000000000);
})
iotest!(fn oneshot_twice() {
let mut timer = Timer::new().unwrap();
let rx1 = timer.oneshot(10000);
let rx = timer.oneshot(1);
rx.recv();
assert_eq!(rx1.recv_opt(), Err(()));
})
iotest!(fn test_io_timer_oneshot_then_sleep() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(100000000000);
timer.sleep(1); // this should inalidate rx
assert_eq!(rx.recv_opt(), Err(()));
})
iotest!(fn test_io_timer_sleep_periodic() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(1);
rx.recv();
rx.recv();
rx.recv();
})
iotest!(fn test_io_timer_sleep_periodic_forget() {
let mut timer = Timer::new().unwrap();
timer.periodic(100000000000);
})
iotest!(fn test_io_timer_sleep_standalone() {
sleep(1)
})
iotest!(fn oneshot() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(1);
rx.recv();
assert!(rx.recv_opt().is_err());
let rx = timer.oneshot(1);
rx.recv();
assert!(rx.recv_opt().is_err());
})
iotest!(fn override() {
let mut timer = Timer::new().unwrap();
let orx = timer.oneshot(100);
let prx = timer.periodic(100);
timer.sleep(1);
assert_eq!(orx.recv_opt(), Err(()));
assert_eq!(prx.recv_opt(), Err(()));
timer.oneshot(1).recv();
})
iotest!(fn period() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(1);
rx.recv();
rx.recv();
let rx2 = timer.periodic(1);
rx2.recv();
rx2.recv();
})
iotest!(fn sleep() {
let mut timer = Timer::new().unwrap();
timer.sleep(1);
timer.sleep(1);
})
iotest!(fn oneshot_fail() {
let mut timer = Timer::new().unwrap();
let _rx = timer.oneshot(1);
fail!();
} #[should_fail])
iotest!(fn period_fail() {
let mut timer = Timer::new().unwrap();
let _rx = timer.periodic(1);
fail!();
} #[should_fail])
iotest!(fn normal_fail() {
let _timer = Timer::new().unwrap();
fail!();
} #[should_fail])
iotest!(fn closing_channel_during_drop_doesnt_kill_everything() {
// see issue #10375
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(1000);
spawn(proc() {
let _ = timer_rx.recv_opt();
});
// when we drop the TimerWatcher we're going to destroy the channel,
// which must wake up the task on the other end
})
iotest!(fn reset_doesnt_switch_tasks() {
// similar test to the one above.
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(1000);
spawn(proc() {
let _ = timer_rx.recv_opt();
});
timer.oneshot(1);
})
iotest!(fn reset_doesnt_switch_tasks2() {
// similar test to the one above.
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(1000);
spawn(proc() {
let _ = timer_rx.recv_opt();
});
timer.sleep(1);
})
iotest!(fn sender_goes_away_oneshot() {
let rx = {
let mut timer = Timer::new().unwrap();
timer.oneshot(1000)
};
assert_eq!(rx.recv_opt(), Err(()));
})
iotest!(fn sender_goes_away_period() {
let rx = {
let mut timer = Timer::new().unwrap();
timer.periodic(1000)
};
assert_eq!(rx.recv_opt(), Err(()));
})
iotest!(fn receiver_goes_away_oneshot() {
let mut timer1 = Timer::new().unwrap();
timer1.oneshot(1);
let mut timer2 = Timer::new().unwrap();
// while sleeping, the prevous timer should fire and not have its
// callback do something terrible.
timer2.sleep(2);
})
iotest!(fn receiver_goes_away_period() {
let mut timer1 = Timer::new().unwrap();
timer1.periodic(1);
let mut timer2 = Timer::new().unwrap();
// while sleeping, the prevous timer should fire and not have its
// callback do something terrible.
timer2.sleep(2);
})
}