rust/src/librustc/middle/trans/tvec.rs
Nick Cameron 37306c1d25 Refactor ty_vec represent &[T] as &([T])
Refactores all uses of ty_vec and associated things to remove the vstore abstraction (still used for strings, for now). Pointers to vectors are stored as ty_rptr or ty_uniq wrapped around a ty_vec. There are no user-facing changes. Existing behaviour is preserved by special-casing many instances of pointers containing vectors. Hopefully with DST most of these hacks will go away. For now it is useful to leave them hanging around rather than abstracting them into a method or something.

Closes #13554.
2014-04-20 12:41:53 +12:00

644 lines
23 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
use back::abi;
use lib;
use lib::llvm::{llvm, ValueRef};
use middle::lang_items::StrDupUniqFnLangItem;
use middle::trans::base::*;
use middle::trans::base;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::expr::{Dest, Ignore, SaveIn};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::machine::{llsize_of, nonzero_llsize_of, llsize_of_alloc};
use middle::trans::type_::Type;
use middle::trans::type_of;
use middle::ty;
use util::ppaux::ty_to_str;
use syntax::ast;
use syntax::parse::token::InternedString;
pub fn get_fill(bcx: &Block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_fill");
Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_fill]))
}
pub fn get_dataptr(bcx: &Block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_dataptr");
GEPi(bcx, vptr, [0u, abi::vec_elt_elems, 0u])
}
pub fn pointer_add_byte(bcx: &Block, ptr: ValueRef, bytes: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::pointer_add_byte");
let old_ty = val_ty(ptr);
let bptr = PointerCast(bcx, ptr, Type::i8p(bcx.ccx()));
return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty);
}
pub fn make_drop_glue_unboxed<'a>(
bcx: &'a Block<'a>,
vptr: ValueRef,
unit_ty: ty::t)
-> &'a Block<'a> {
let _icx = push_ctxt("tvec::make_drop_glue_unboxed");
let tcx = bcx.tcx();
if ty::type_needs_drop(tcx, unit_ty) {
let fill = get_fill(bcx, vptr);
let dataptr = get_dataptr(bcx, vptr);
iter_vec_raw(bcx, dataptr, unit_ty, fill, glue::drop_ty)
} else { bcx }
}
pub struct VecTypes {
pub unit_ty: ty::t,
pub llunit_ty: Type,
pub llunit_size: ValueRef,
pub llunit_alloc_size: u64
}
impl VecTypes {
pub fn to_str(&self, ccx: &CrateContext) -> ~str {
format!("VecTypes \\{unit_ty={}, llunit_ty={}, llunit_size={}, \
llunit_alloc_size={}\\}",
ty_to_str(ccx.tcx(), self.unit_ty),
ccx.tn.type_to_str(self.llunit_ty),
ccx.tn.val_to_str(self.llunit_size),
self.llunit_alloc_size)
}
}
pub fn trans_fixed_vstore<'a>(
bcx: &'a Block<'a>,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: expr::Dest)
-> &'a Block<'a> {
//!
//
// [...] allocates a fixed-size array and moves it around "by value".
// In this case, it means that the caller has already given us a location
// to store the array of the suitable size, so all we have to do is
// generate the content.
debug!("trans_fixed_vstore(vstore_expr={}, dest={:?})",
bcx.expr_to_str(vstore_expr), dest.to_str(bcx.ccx()));
let vt = vec_types_from_expr(bcx, vstore_expr);
return match dest {
Ignore => write_content(bcx, &vt, vstore_expr, content_expr, dest),
SaveIn(lldest) => {
// lldest will have type *[T x N], but we want the type *T,
// so use GEP to convert:
let lldest = GEPi(bcx, lldest, [0, 0]);
write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(lldest))
}
};
}
pub fn trans_slice_vstore<'a>(
bcx: &'a Block<'a>,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: expr::Dest)
-> &'a Block<'a> {
/*!
* &[...] allocates memory on the stack and writes the values into it,
* returning a slice (pair of ptr, len). &"..." is similar except that
* the memory can be statically allocated.
*/
let fcx = bcx.fcx;
let ccx = fcx.ccx;
let mut bcx = bcx;
debug!("trans_slice_vstore(vstore_expr={}, dest={})",
bcx.expr_to_str(vstore_expr), dest.to_str(ccx));
// Handle the &"..." case:
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(ref s, _) => {
return trans_lit_str(bcx,
content_expr,
s.clone(),
dest)
}
_ => {}
}
}
_ => {}
}
// Handle the &[...] case:
let vt = vec_types_from_expr(bcx, vstore_expr);
let count = elements_required(bcx, content_expr);
debug!("vt={}, count={:?}", vt.to_str(ccx), count);
let llcount = C_uint(ccx, count);
let llfixed;
if count == 0 {
// Zero-length array: just use NULL as the data pointer
llfixed = C_null(vt.llunit_ty.ptr_to());
} else {
// Make a fixed-length backing array and allocate it on the stack.
llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount);
// Arrange for the backing array to be cleaned up.
let fixed_ty = ty::mk_vec(bcx.tcx(),
ty::mt {ty: vt.unit_ty,
mutbl: ast::MutMutable},
Some(count));
let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to();
let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty);
let cleanup_scope = cleanup::temporary_scope(bcx.tcx(), content_expr.id);
fcx.schedule_drop_mem(cleanup_scope, llfixed_casted, fixed_ty);
// Generate the content into the backing array.
bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(llfixed));
}
// Finally, create the slice pair itself.
match dest {
Ignore => {}
SaveIn(lldest) => {
Store(bcx, llfixed, GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
Store(bcx, llcount, GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
}
}
return bcx;
}
pub fn trans_lit_str<'a>(
bcx: &'a Block<'a>,
lit_expr: &ast::Expr,
str_lit: InternedString,
dest: Dest)
-> &'a Block<'a> {
/*!
* Literal strings translate to slices into static memory. This is
* different from trans_slice_vstore() above because it does need to copy
* the content anywhere.
*/
debug!("trans_lit_str(lit_expr={}, dest={})",
bcx.expr_to_str(lit_expr),
dest.to_str(bcx.ccx()));
match dest {
Ignore => bcx,
SaveIn(lldest) => {
unsafe {
let bytes = str_lit.get().len();
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), str_lit, false);
let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p(bcx.ccx()).to_ref());
Store(bcx, llcstr,
GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
Store(bcx, llbytes,
GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
bcx
}
}
}
}
pub fn trans_uniq_vstore<'a>(bcx: &'a Block<'a>,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr)
-> DatumBlock<'a, Expr> {
/*!
* ~[...] and "...".to_owned() allocate boxes in the exchange heap and write
* the array elements into them.
*/
debug!("trans_uniq_vstore(vstore_expr={})", bcx.expr_to_str(vstore_expr));
let fcx = bcx.fcx;
let ccx = fcx.ccx;
// Handle "".to_owned().
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(ref s, _) => {
let llptrval = C_cstr(ccx, (*s).clone(), false);
let llptrval = PointerCast(bcx, llptrval, Type::i8p(ccx));
let llsizeval = C_uint(ccx, s.get().len());
let typ = ty::mk_str(bcx.tcx(), ty::VstoreUniq);
let lldestval = rvalue_scratch_datum(bcx,
typ,
"");
let alloc_fn = langcall(bcx,
Some(lit.span),
"",
StrDupUniqFnLangItem);
let bcx = callee::trans_lang_call(
bcx,
alloc_fn,
[ llptrval, llsizeval ],
Some(expr::SaveIn(lldestval.val))).bcx;
return DatumBlock(bcx, lldestval).to_expr_datumblock();
}
_ => {}
}
}
_ => {}
}
let vec_ty = node_id_type(bcx, vstore_expr.id);
let vt = vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty));
let count = elements_required(bcx, content_expr);
let llunitty = type_of::type_of(ccx, vt.unit_ty);
let unit_sz = nonzero_llsize_of(ccx, llunitty);
let fill = Mul(bcx, C_uint(ccx, count), unit_sz);
let alloc = if count < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) }
else { fill };
let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type));
let Result { bcx: bcx, val: val } = malloc_raw_dyn(bcx, vec_ty, vecsize);
Store(bcx, fill, GEPi(bcx, val, [0u, abi::vec_elt_fill]));
Store(bcx, alloc, GEPi(bcx, val, [0u, abi::vec_elt_alloc]));
// Create a temporary scope lest execution should fail while
// constructing the vector.
let temp_scope = fcx.push_custom_cleanup_scope();
fcx.schedule_free_value(cleanup::CustomScope(temp_scope),
val, cleanup::HeapExchange);
let dataptr = get_dataptr(bcx, val);
debug!("alloc_uniq_vec() returned val={}, dataptr={}",
bcx.val_to_str(val), bcx.val_to_str(dataptr));
let bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(dataptr));
fcx.pop_custom_cleanup_scope(temp_scope);
immediate_rvalue_bcx(bcx, val, vec_ty).to_expr_datumblock()
}
pub fn write_content<'a>(
bcx: &'a Block<'a>,
vt: &VecTypes,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("tvec::write_content");
let fcx = bcx.fcx;
let mut bcx = bcx;
debug!("write_content(vt={}, dest={}, vstore_expr={:?})",
vt.to_str(bcx.ccx()),
dest.to_str(bcx.ccx()),
bcx.expr_to_str(vstore_expr));
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(ref s, _) => {
match dest {
Ignore => return bcx,
SaveIn(lldest) => {
let bytes = s.get().len();
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), (*s).clone(), false);
base::call_memcpy(bcx,
lldest,
llcstr,
llbytes,
1);
return bcx;
}
}
}
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"unexpected evec content");
}
}
}
ast::ExprVec(ref elements) => {
match dest {
Ignore => {
for element in elements.iter() {
bcx = expr::trans_into(bcx, *element, Ignore);
}
}
SaveIn(lldest) => {
let temp_scope = fcx.push_custom_cleanup_scope();
for (i, element) in elements.iter().enumerate() {
let lleltptr = GEPi(bcx, lldest, [i]);
debug!("writing index {:?} with lleltptr={:?}",
i, bcx.val_to_str(lleltptr));
bcx = expr::trans_into(bcx, *element,
SaveIn(lleltptr));
fcx.schedule_drop_mem(
cleanup::CustomScope(temp_scope),
lleltptr,
vt.unit_ty);
}
fcx.pop_custom_cleanup_scope(temp_scope);
}
}
return bcx;
}
ast::ExprRepeat(element, count_expr) => {
match dest {
Ignore => {
return expr::trans_into(bcx, element, Ignore);
}
SaveIn(lldest) => {
let count = ty::eval_repeat_count(bcx.tcx(), count_expr);
if count == 0 {
return bcx;
}
// Some cleanup would be required in the case in which failure happens
// during a copy. But given that copy constructors are not overridable,
// this can only happen as a result of OOM. So we just skip out on the
// cleanup since things would *probably* be broken at that point anyways.
let elem = unpack_datum!(bcx, expr::trans(bcx, element));
assert!(!ty::type_moves_by_default(bcx.tcx(), elem.ty));
let bcx = iter_vec_loop(bcx, lldest, vt,
C_uint(bcx.ccx(), count), |set_bcx, lleltptr, _| {
elem.shallow_copy_and_take(set_bcx, lleltptr)
});
elem.add_clean_if_rvalue(bcx, element.id);
bcx
}
}
}
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"unexpected vec content");
}
}
}
pub fn vec_types_from_expr(bcx: &Block, vec_expr: &ast::Expr) -> VecTypes {
let vec_ty = node_id_type(bcx, vec_expr.id);
vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty))
}
pub fn vec_types(bcx: &Block, unit_ty: ty::t) -> VecTypes {
let ccx = bcx.ccx();
let llunit_ty = type_of::type_of(ccx, unit_ty);
let llunit_size = nonzero_llsize_of(ccx, llunit_ty);
let llunit_alloc_size = llsize_of_alloc(ccx, llunit_ty);
VecTypes {
unit_ty: unit_ty,
llunit_ty: llunit_ty,
llunit_size: llunit_size,
llunit_alloc_size: llunit_alloc_size
}
}
pub fn elements_required(bcx: &Block, content_expr: &ast::Expr) -> uint {
//! Figure out the number of elements we need to store this content
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(ref s, _) => s.get().len(),
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"unexpected evec content")
}
}
},
ast::ExprVec(ref es) => es.len(),
ast::ExprRepeat(_, count_expr) => {
ty::eval_repeat_count(bcx.tcx(), count_expr)
}
_ => bcx.tcx().sess.span_bug(content_expr.span,
"unexpected vec content")
}
}
pub fn get_fixed_base_and_byte_len(bcx: &Block,
llval: ValueRef,
unit_ty: ty::t,
vec_length: uint)
-> (ValueRef, ValueRef) {
/*!
* Converts a fixed-length vector into the slice pair.
* The vector should be stored in `llval` which should be by ref.
*/
let ccx = bcx.ccx();
let vt = vec_types(bcx, unit_ty);
let base = GEPi(bcx, llval, [0u, 0u]);
let len = Mul(bcx, C_uint(ccx, vec_length), vt.llunit_size);
(base, len)
}
pub fn get_base_and_byte_len_for_vec(bcx: &Block,
llval: ValueRef,
vec_ty: ty::t)
-> (ValueRef, ValueRef) {
/*!
* Converts a vector into the slice pair. The vector should be
* stored in `llval` which should be by ref. If you have a datum,
* you would probably prefer to call
* `Datum::get_base_and_byte_len()`.
*/
let ccx = bcx.ccx();
let vt = vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty));
let size = match ty::get(vec_ty).sty {
ty::ty_vec(_, size) => size,
_ => ccx.sess().bug("non-vector in get_base_and_byte_len_for_vec"),
};
match size {
Some(n) => {
let base = GEPi(bcx, llval, [0u, 0u]);
let len = Mul(bcx, C_uint(ccx, n), vt.llunit_size);
(base, len)
}
None => ccx.sess().bug("unsized vector in get_base_and_byte_len_for_vec")
}
}
pub fn get_base_and_len(bcx: &Block,
llval: ValueRef,
vec_ty: ty::t)
-> (ValueRef, ValueRef) {
/*!
* Converts a vector into the slice pair. The vector should be
* stored in `llval` which should be by-reference. If you have a
* datum, you would probably prefer to call
* `Datum::get_base_and_len()` which will handle any conversions
* for you.
*/
let ccx = bcx.ccx();
let vt = vec_types(bcx, ty::sequence_element_type(bcx.tcx(), vec_ty));
let vstore = match ty::get(vec_ty).sty {
ty::ty_str(vst) => vst,
ty::ty_vec(_, Some(n)) => ty::VstoreFixed(n),
ty::ty_rptr(r, mt) => match ty::get(mt.ty).sty {
ty::ty_vec(_, None) => ty::VstoreSlice(r),
_ => ccx.sess().bug("unexpected type (ty_rptr) in get_base_and_len"),
},
ty::ty_uniq(t) => match ty::get(t).sty {
ty::ty_vec(_, None) => ty::VstoreUniq,
_ => ccx.sess().bug("unexpected type (ty_uniq) in get_base_and_len"),
},
_ => ccx.sess().bug("unexpected type in get_base_and_len"),
};
match vstore {
ty::VstoreFixed(n) => {
let base = GEPi(bcx, llval, [0u, 0u]);
(base, C_uint(ccx, n))
}
ty::VstoreSlice(..) => {
assert!(!type_is_immediate(bcx.ccx(), vec_ty));
let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base]));
let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len]));
(base, count)
}
ty::VstoreUniq => {
assert!(type_is_immediate(bcx.ccx(), vec_ty));
let body = Load(bcx, llval);
(get_dataptr(bcx, body), UDiv(bcx, get_fill(bcx, body), vt.llunit_size))
}
}
}
pub type iter_vec_block<'r,'b> =
|&'b Block<'b>, ValueRef, ty::t|: 'r -> &'b Block<'b>;
pub fn iter_vec_loop<'r,
'b>(
bcx: &'b Block<'b>,
data_ptr: ValueRef,
vt: &VecTypes,
count: ValueRef,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_loop");
let fcx = bcx.fcx;
let next_bcx = fcx.new_temp_block("expr_repeat: while next");
let loop_bcx = fcx.new_temp_block("expr_repeat");
let cond_bcx = fcx.new_temp_block("expr_repeat: loop cond");
let body_bcx = fcx.new_temp_block("expr_repeat: body: set");
let inc_bcx = fcx.new_temp_block("expr_repeat: body: inc");
Br(bcx, loop_bcx.llbb);
let loop_counter = {
// i = 0
let i = alloca(loop_bcx, bcx.ccx().int_type, "__i");
Store(loop_bcx, C_uint(bcx.ccx(), 0), i);
Br(loop_bcx, cond_bcx.llbb);
i
};
{ // i < count
let lhs = Load(cond_bcx, loop_counter);
let rhs = count;
let cond_val = ICmp(cond_bcx, lib::llvm::IntULT, lhs, rhs);
CondBr(cond_bcx, cond_val, body_bcx.llbb, next_bcx.llbb);
}
{ // loop body
let i = Load(body_bcx, loop_counter);
let lleltptr = if vt.llunit_alloc_size == 0 {
data_ptr
} else {
InBoundsGEP(body_bcx, data_ptr, [i])
};
let body_bcx = f(body_bcx, lleltptr, vt.unit_ty);
Br(body_bcx, inc_bcx.llbb);
}
{ // i += 1
let i = Load(inc_bcx, loop_counter);
let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1));
Store(inc_bcx, plusone, loop_counter);
Br(inc_bcx, cond_bcx.llbb);
}
next_bcx
}
pub fn iter_vec_raw<'r,
'b>(
bcx: &'b Block<'b>,
data_ptr: ValueRef,
unit_ty: ty::t,
fill: ValueRef,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_raw");
let fcx = bcx.fcx;
let vt = vec_types(bcx, unit_ty);
if vt.llunit_alloc_size == 0 {
// Special-case vectors with elements of size 0 so they don't go out of bounds (#9890)
iter_vec_loop(bcx, data_ptr, &vt, fill, f)
} else {
// Calculate the last pointer address we want to handle.
// FIXME (#3729): Optimize this when the size of the unit type is
// statically known to not use pointer casts, which tend to confuse
// LLVM.
let data_end_ptr = pointer_add_byte(bcx, data_ptr, fill);
// Now perform the iteration.
let header_bcx = fcx.new_temp_block("iter_vec_loop_header");
Br(bcx, header_bcx.llbb);
let data_ptr =
Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]);
let not_yet_at_end =
ICmp(header_bcx, lib::llvm::IntULT, data_ptr, data_end_ptr);
let body_bcx = fcx.new_temp_block("iter_vec_loop_body");
let next_bcx = fcx.new_temp_block("iter_vec_next");
CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb);
let body_bcx = f(body_bcx, data_ptr, vt.unit_ty);
AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr,
[C_int(bcx.ccx(), 1)]),
body_bcx.llbb);
Br(body_bcx, header_bcx.llbb);
next_bcx
}
}