rust/src/libcore/dlist.rs

660 lines
23 KiB
Rust

/**
* A doubly-linked list. Supports O(1) head, tail, count, push, pop, etc.
*
* Do not use ==, !=, <, etc on doubly-linked lists -- it may not terminate.
*/
import dlist_iter::extensions;
export dlist, dlist_node;
export create, from_elt, from_vec, extensions;
type dlist_link<T> = option<dlist_node<T>>;
enum dlist_node<T> = @{
data: T,
mut root: option<dlist<T>>,
mut prev: dlist_link<T>,
mut next: dlist_link<T>
};
// Needs to be an @-box so nodes can back-reference it.
enum dlist<T> = @{
mut size: uint,
mut hd: dlist_link<T>,
mut tl: dlist_link<T>
};
impl private_methods<T> for dlist_node<T> {
pure fn assert_links() {
alt self.next {
some(neighbour) {
alt neighbour.prev {
some(me) {
if !box::ptr_eq(*self, *me) {
fail "Asymmetric next-link in dlist node."
}
}
none { fail "One-way next-link in dlist node." }
}
}
none { }
}
alt self.prev {
some(neighbour) {
alt neighbour.next {
some(me) {
if !box::ptr_eq(*me, *self) {
fail "Asymmetric prev-link in dlist node."
}
}
none { fail "One-way prev-link in dlist node." }
}
}
none { }
}
}
}
impl extensions<T> for dlist_node<T> {
/// Get the next node in the list, if there is one.
pure fn next_link() -> option<dlist_node<T>> {
self.assert_links();
self.next
}
/// Get the next node in the list, failing if there isn't one.
pure fn next_node() -> dlist_node<T> {
alt self.next_link() {
some(nobe) { nobe }
none { fail "This dlist node has no next neighbour." }
}
}
/// Get the previous node in the list, if there is one.
pure fn prev_link() -> option<dlist_node<T>> {
self.assert_links();
self.prev
}
/// Get the previous node in the list, failing if there isn't one.
pure fn prev_node() -> dlist_node<T> {
alt self.prev_link() {
some(nobe) { nobe }
none { fail "This dlist node has no previous neighbour." }
}
}
/// Remove a node from whatever dlist it's on (failing if none).
fn remove() {
if option::is_some(self.root) {
option::get(self.root).remove(self);
} else {
fail "Removing an orphaned dlist node - what do I remove from?"
}
}
}
/// Creates a new dlist node with the given data.
pure fn create_node<T>(+data: T) -> dlist_node<T> {
dlist_node(@{data: data, mut root: none, mut prev: none, mut next: none})
}
/// Creates a new, empty dlist.
pure fn create<T>() -> dlist<T> {
dlist(@{mut size: 0, mut hd: none, mut tl: none})
}
/// Creates a new dlist with a single element
fn from_elt<T>(+data: T) -> dlist<T> {
let list = create();
list.push(data);
list
}
fn from_vec<T: copy>(+vec: &[T]) -> dlist<T> {
do vec::foldl(create(), vec) |list,data| {
list.push(data); // Iterating left-to-right -- add newly to the tail.
list
}
}
impl private_methods<T> for dlist<T> {
pure fn new_link(-data: T) -> dlist_link<T> {
some(dlist_node(@{data: data, mut root: some(self),
mut prev: none, mut next: none}))
}
pure fn assert_mine(nobe: dlist_node<T>) {
alt nobe.root {
some(me) { assert box::ptr_eq(*self, *me); }
none { fail "This node isn't on this dlist." }
}
}
fn make_mine(nobe: dlist_node<T>) {
if option::is_some(nobe.root) {
fail "Cannot insert node that's already on a dlist!"
}
nobe.root = some(self);
}
// Link two nodes together. If either of them are 'none', also sets
// the head and/or tail pointers appropriately.
#[inline(always)]
fn link(+before: dlist_link<T>, +after: dlist_link<T>) {
alt before {
some(neighbour) { neighbour.next = after; }
none { self.hd = after; }
}
alt after {
some(neighbour) { neighbour.prev = before; }
none { self.tl = before; }
}
}
// Remove a node from the list.
fn unlink(nobe: dlist_node<T>) {
self.assert_mine(nobe);
assert self.size > 0;
self.link(nobe.prev, nobe.next);
nobe.prev = none; // Release extraneous references.
nobe.next = none;
nobe.root = none;
self.size -= 1;
}
fn add_head(+nobe: dlist_link<T>) {
self.link(nobe, self.hd); // Might set tail too.
self.hd = nobe;
self.size += 1;
}
fn add_tail(+nobe: dlist_link<T>) {
self.link(self.tl, nobe); // Might set head too.
self.tl = nobe;
self.size += 1;
}
fn insert_left(nobe: dlist_link<T>, neighbour: dlist_node<T>) {
self.assert_mine(neighbour);
assert self.size > 0;
self.link(neighbour.prev, nobe);
self.link(nobe, some(neighbour));
self.size += 1;
}
fn insert_right(neighbour: dlist_node<T>, nobe: dlist_link<T>) {
self.assert_mine(neighbour);
assert self.size > 0;
self.link(nobe, neighbour.next);
self.link(some(neighbour), nobe);
self.size += 1;
}
}
impl extensions<T> for dlist<T> {
/// Get the size of the list. O(1).
pure fn len() -> uint { self.size }
/// Returns true if the list is empty. O(1).
pure fn is_empty() -> bool { self.len() == 0 }
/// Returns true if the list is not empty. O(1).
pure fn is_not_empty() -> bool { self.len() != 0 }
/// Add data to the head of the list. O(1).
fn push_head(+data: T) {
self.add_head(self.new_link(data));
}
/**
* Add data to the head of the list, and get the new containing
* node. O(1).
*/
fn push_head_n(+data: T) -> dlist_node<T> {
let mut nobe = self.new_link(data);
self.add_head(nobe);
option::get(nobe)
}
/// Add data to the tail of the list. O(1).
fn push(+data: T) {
self.add_tail(self.new_link(data));
}
/**
* Add data to the tail of the list, and get the new containing
* node. O(1).
*/
fn push_n(+data: T) -> dlist_node<T> {
let mut nobe = self.new_link(data);
self.add_tail(nobe);
option::get(nobe)
}
/**
* Insert data into the middle of the list, left of the given node.
* O(1).
*/
fn insert_before(+data: T, neighbour: dlist_node<T>) {
self.insert_left(self.new_link(data), neighbour);
}
/**
* Insert an existing node in the middle of the list, left of the
* given node. O(1).
*/
fn insert_n_before(nobe: dlist_node<T>, neighbour: dlist_node<T>) {
self.make_mine(nobe);
self.insert_left(some(nobe), neighbour);
}
/**
* Insert data in the middle of the list, left of the given node,
* and get its containing node. O(1).
*/
fn insert_before_n(+data: T, neighbour: dlist_node<T>) -> dlist_node<T> {
let mut nobe = self.new_link(data);
self.insert_left(nobe, neighbour);
option::get(nobe)
}
/**
* Insert data into the middle of the list, right of the given node.
* O(1).
*/
fn insert_after(+data: T, neighbour: dlist_node<T>) {
self.insert_right(neighbour, self.new_link(data));
}
/**
* Insert an existing node in the middle of the list, right of the
* given node. O(1).
*/
fn insert_n_after(nobe: dlist_node<T>, neighbour: dlist_node<T>) {
self.make_mine(nobe);
self.insert_right(neighbour, some(nobe));
}
/**
* Insert data in the middle of the list, right of the given node,
* and get its containing node. O(1).
*/
fn insert_after_n(+data: T, neighbour: dlist_node<T>) -> dlist_node<T> {
let mut nobe = self.new_link(data);
self.insert_right(neighbour, nobe);
option::get(nobe)
}
/// Remove a node from the head of the list. O(1).
fn pop_n() -> option<dlist_node<T>> {
let hd = self.peek_n();
hd.map(|nobe| self.unlink(nobe));
hd
}
/// Remove a node from the tail of the list. O(1).
fn pop_tail_n() -> option<dlist_node<T>> {
let tl = self.peek_tail_n();
tl.map(|nobe| self.unlink(nobe));
tl
}
/// Get the node at the list's head. O(1).
pure fn peek_n() -> option<dlist_node<T>> { self.hd }
/// Get the node at the list's tail. O(1).
pure fn peek_tail_n() -> option<dlist_node<T>> { self.tl }
/// Get the node at the list's head, failing if empty. O(1).
pure fn head_n() -> dlist_node<T> {
alt self.hd {
some(nobe) { nobe }
none { fail "Attempted to get the head of an empty dlist." }
}
}
/// Get the node at the list's tail, failing if empty. O(1).
pure fn tail_n() -> dlist_node<T> {
alt self.tl {
some(nobe) { nobe }
none { fail "Attempted to get the tail of an empty dlist." }
}
}
/// Remove a node from anywhere in the list. O(1).
fn remove(nobe: dlist_node<T>) { self.unlink(nobe); }
/// Check data structure integrity. O(n).
fn assert_consistent() {
if option::is_none(self.hd) || option::is_none(self.tl) {
assert option::is_none(self.hd) && option::is_none(self.tl);
}
// iterate forwards
let mut count = 0;
let mut link = self.peek_n();
let mut rabbit = link;
while option::is_some(link) {
let nobe = option::get(link);
// check self on this list
assert option::is_some(nobe.root) &&
box::ptr_eq(*option::get(nobe.root), *self);
// check cycle
if option::is_some(rabbit) { rabbit = option::get(rabbit).next; }
if option::is_some(rabbit) { rabbit = option::get(rabbit).next; }
if option::is_some(rabbit) {
assert !box::ptr_eq(*option::get(rabbit), *nobe);
}
// advance
link = nobe.next_link();
count += 1;
}
assert count == self.len();
// iterate backwards - some of this is probably redundant.
link = self.peek_tail_n();
rabbit = link;
while option::is_some(link) {
let nobe = option::get(link);
// check self on this list
assert option::is_some(nobe.root) &&
box::ptr_eq(*option::get(nobe.root), *self);
// check cycle
if option::is_some(rabbit) { rabbit = option::get(rabbit).prev; }
if option::is_some(rabbit) { rabbit = option::get(rabbit).prev; }
if option::is_some(rabbit) {
assert !box::ptr_eq(*option::get(rabbit), *nobe);
}
// advance
link = nobe.prev_link();
count -= 1;
}
assert count == 0;
}
}
impl extensions<T: copy> for dlist<T> {
/// Remove data from the head of the list. O(1).
fn pop() -> option<T> { self.pop_n().map (|nobe| nobe.data) }
/// Remove data from the tail of the list. O(1).
fn pop_tail() -> option<T> { self.pop_tail_n().map (|nobe| nobe.data) }
/// Get data at the list's head. O(1).
fn peek() -> option<T> { self.peek_n().map (|nobe| nobe.data) }
/// Get data at the list's tail. O(1).
fn peek_tail() -> option<T> { self.peek_tail_n().map (|nobe| nobe.data) }
/// Get data at the list's head, failing if empty. O(1).
pure fn head() -> T { self.head_n().data }
/// Get data at the list's tail, failing if empty. O(1).
pure fn tail() -> T { self.tail_n().data }
}
#[cfg(test)]
mod tests {
#[test]
fn test_dlist_is_empty() {
let empty = create::<int>();
let full1 = from_vec(~[1,2,3]);
assert empty.is_empty();
assert !full1.is_empty();
assert !empty.is_not_empty();
assert full1.is_not_empty();
}
#[test]
fn test_dlist_head_tail() {
let l = from_vec(~[1,2,3]);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_pop() {
let l = from_vec(~[1,2,3]);
assert l.pop().get() == 1;
assert l.tail() == 3;
assert l.head() == 2;
assert l.pop().get() == 2;
assert l.tail() == 3;
assert l.head() == 3;
assert l.pop().get() == 3;
assert l.is_empty();
assert l.pop().is_none();
}
#[test]
fn test_dlist_pop_tail() {
let l = from_vec(~[1,2,3]);
assert l.pop_tail().get() == 3;
assert l.tail() == 2;
assert l.head() == 1;
assert l.pop_tail().get() == 2;
assert l.tail() == 1;
assert l.head() == 1;
assert l.pop_tail().get() == 1;
assert l.is_empty();
assert l.pop_tail().is_none();
}
#[test]
fn test_dlist_push() {
let l = create::<int>();
l.push(1);
assert l.head() == 1;
assert l.tail() == 1;
l.push(2);
assert l.head() == 1;
assert l.tail() == 2;
l.push(3);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_push_head() {
let l = create::<int>();
l.push_head(3);
assert l.head() == 3;
assert l.tail() == 3;
l.push_head(2);
assert l.head() == 2;
assert l.tail() == 3;
l.push_head(1);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_foldl() {
let l = from_vec(vec::from_fn(101, |x|x));
assert iter::foldl(l, 0, |accum,elem| accum+elem) == 5050;
}
#[test]
fn test_dlist_remove_head() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 2;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_mid() {
let l = create::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_tail() {
let l = create::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_one_two() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); l.remove(two);
// and through and through, the vorpal blade went snicker-snack
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 3;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_one_three() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 2;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_two_three() {
let l = create::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 1;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_all() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); l.remove(one); // Twenty-three is number one!
l.assert_consistent(); assert l.peek() == none;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_n_before() {
let l = create::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = create_node(3);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_n_before(three, two);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_n_after() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = create_node(3);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_n_after(three, one);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_before_head() {
let l = create::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_before(3, one);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 3;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_after_tail() {
let l = create::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_after(3, two);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_asymmetric_link() {
let l = create::<int>();
let _one = l.push_n(1);
let two = l.push_n(2);
two.prev = none;
l.assert_consistent();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_cyclic_list() {
let l = create::<int>();
let one = l.push_n(1);
let _two = l.push_n(2);
let three = l.push_n(3);
three.next = some(one);
one.prev = some(three);
l.assert_consistent();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_headless() {
create::<int>().head();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_insert_already_present_before() {
let l = create::<int>();
let one = l.push_n(1);
let two = l.push_n(2);
l.insert_n_before(two, one);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_insert_already_present_after() {
let l = create::<int>();
let one = l.push_n(1);
let two = l.push_n(2);
l.insert_n_after(one, two);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_insert_before_orphan() {
let l = create::<int>();
let one = create_node(1);
let two = create_node(2);
l.insert_n_before(one, two);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_insert_after_orphan() {
let l = create::<int>();
let one = create_node(1);
let two = create_node(2);
l.insert_n_after(two, one);
}
}