510 lines
18 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use back::link::{mangle_internal_name_by_path_and_seq};
use lib::llvm::ValueRef;
use middle::moves;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::common::*;
use middle::trans::datum::{Datum, INIT};
use middle::trans::debuginfo;
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::type_of::*;
use middle::ty;
use util::ppaux::ty_to_str;
use std::vec;
use syntax::ast;
use syntax::ast_map::path_name;
use syntax::ast_util;
use syntax::parse::token::special_idents;
// ___Good to know (tm)__________________________________________________
//
// The layout of a closure environment in memory is
// roughly as follows:
//
// struct rust_opaque_box { // see rust_internal.h
// unsigned ref_count; // only used for @fn()
// type_desc *tydesc; // describes closure_data struct
// rust_opaque_box *prev; // (used internally by memory alloc)
// rust_opaque_box *next; // (used internally by memory alloc)
// struct closure_data {
// type_desc *bound_tdescs[]; // bound descriptors
// struct {
// upvar1_t upvar1;
// ...
// upvarN_t upvarN;
// } bound_data;
// }
// };
//
// Note that the closure is itself a rust_opaque_box. This is true
// even for ~fn and ||, because we wish to keep binary compatibility
// between all kinds of closures. The allocation strategy for this
// closure depends on the closure type. For a sendfn, the closure
// (and the referenced type descriptors) will be allocated in the
// exchange heap. For a fn, the closure is allocated in the task heap
// and is reference counted. For a block, the closure is allocated on
// the stack.
//
// ## Opaque closures and the embedded type descriptor ##
//
// One interesting part of closures is that they encapsulate the data
// that they close over. So when I have a ptr to a closure, I do not
// know how many type descriptors it contains nor what upvars are
// captured within. That means I do not know precisely how big it is
// nor where its fields are located. This is called an "opaque
// closure".
//
// Typically an opaque closure suffices because we only manipulate it
// by ptr. The routine Type::opaque_box().ptr_to() returns an
// appropriate type for such an opaque closure; it allows access to
// the box fields, but not the closure_data itself.
//
// But sometimes, such as when cloning or freeing a closure, we need
// to know the full information. That is where the type descriptor
// that defines the closure comes in handy. We can use its take and
// drop glue functions to allocate/free data as needed.
//
// ## Subtleties concerning alignment ##
//
// It is important that we be able to locate the closure data *without
// knowing the kind of data that is being bound*. This can be tricky
// because the alignment requirements of the bound data affects the
// alignment requires of the closure_data struct as a whole. However,
// right now this is a non-issue in any case, because the size of the
// rust_opaque_box header is always a mutiple of 16-bytes, which is
// the maximum alignment requirement we ever have to worry about.
//
// The only reason alignment matters is that, in order to learn what data
// is bound, we would normally first load the type descriptors: but their
// location is ultimately depend on their content! There is, however, a
// workaround. We can load the tydesc from the rust_opaque_box, which
// describes the closure_data struct and has self-contained derived type
// descriptors, and read the alignment from there. It's just annoying to
// do. Hopefully should this ever become an issue we'll have monomorphized
// and type descriptors will all be a bad dream.
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pub enum EnvAction {
/// Copy the value from this llvm ValueRef into the environment.
EnvCopy,
/// Move the value from this llvm ValueRef into the environment.
EnvMove,
/// Access by reference (used for stack closures).
EnvRef
}
pub struct EnvValue {
action: EnvAction,
datum: Datum
}
impl EnvAction {
pub fn to_str(&self) -> ~str {
match *self {
EnvCopy => ~"EnvCopy",
EnvMove => ~"EnvMove",
EnvRef => ~"EnvRef"
}
}
}
impl EnvValue {
pub fn to_str(&self, ccx: &CrateContext) -> ~str {
format!("{}({})", self.action.to_str(), self.datum.to_str(ccx))
}
}
pub fn mk_tuplified_uniq_cbox_ty(tcx: ty::ctxt, cdata_ty: ty::t) -> ty::t {
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
return ty::mk_imm_uniq(tcx, cbox_ty);
}
// Given a closure ty, emits a corresponding tuple ty
pub fn mk_closure_tys(tcx: ty::ctxt,
bound_values: &[EnvValue])
-> ty::t {
// determine the types of the values in the env. Note that this
// is the actual types that will be stored in the map, not the
// logical types as the user sees them, so by-ref upvars must be
// converted to ptrs.
let bound_tys = bound_values.map(|bv| {
match bv.action {
EnvCopy | EnvMove => bv.datum.ty,
EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty)
}
});
let cdata_ty = ty::mk_tup(tcx, bound_tys);
debug!("cdata_ty={}", ty_to_str(tcx, cdata_ty));
return cdata_ty;
}
fn heap_for_unique_closure(bcx: @Block, t: ty::t) -> heap {
if ty::type_contents(bcx.tcx(), t).owns_managed() {
heap_managed_unique
} else {
heap_exchange_closure
}
}
pub fn allocate_cbox(bcx: @Block, sigil: ast::Sigil, cdata_ty: ty::t)
-> Result {
let _icx = push_ctxt("closure::allocate_cbox");
let ccx = bcx.ccx();
let tcx = ccx.tcx;
// Allocate and initialize the box:
match sigil {
ast::ManagedSigil => {
tcx.sess.bug("trying to trans allocation of @fn")
}
ast::OwnedSigil => {
malloc_raw(bcx, cdata_ty, heap_for_unique_closure(bcx, cdata_ty))
}
ast::BorrowedSigil => {
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let llbox = alloc_ty(bcx, cbox_ty, "__closure");
rslt(bcx, llbox)
}
}
}
pub struct ClosureResult {
llbox: ValueRef, // llvalue of ptr to closure
cdata_ty: ty::t, // type of the closure data
bcx: @Block // final bcx
}
// Given a block context and a list of tydescs and values to bind
// construct a closure out of them. If copying is true, it is a
// heap allocated closure that copies the upvars into environment.
// Otherwise, it is stack allocated and copies pointers to the upvars.
pub fn store_environment(bcx: @Block,
bound_values: ~[EnvValue],
sigil: ast::Sigil)
-> ClosureResult {
let _icx = push_ctxt("closure::store_environment");
let ccx = bcx.ccx();
let tcx = ccx.tcx;
// compute the type of the closure
let cdata_ty = mk_closure_tys(tcx, bound_values);
// cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a
// tuple. This could be a ptr in uniq or a box or on stack,
// whatever.
let cbox_ty = tuplify_box_ty(tcx, cdata_ty);
let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable});
let llboxptr_ty = type_of(ccx, cboxptr_ty);
// If there are no bound values, no point in allocating anything.
if bound_values.is_empty() {
return ClosureResult {llbox: C_null(llboxptr_ty),
cdata_ty: cdata_ty,
bcx: bcx};
}
// allocate closure in the heap
let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, sigil, cdata_ty);
let llbox = PointerCast(bcx, llbox, llboxptr_ty);
debug!("tuplify_box_ty = {}", ty_to_str(tcx, cbox_ty));
// Copy expr values into boxed bindings.
let mut bcx = bcx;
for (i, bv) in bound_values.iter().enumerate() {
debug!("Copy {} into closure", bv.to_str(ccx));
if ccx.sess.asm_comments() {
add_comment(bcx, format!("Copy {} into closure",
bv.to_str(ccx)));
}
let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]);
match bv.action {
EnvCopy => {
bcx = bv.datum.copy_to(bcx, INIT, bound_data);
}
EnvMove => {
bcx = bv.datum.move_to(bcx, INIT, bound_data);
}
EnvRef => {
Store(bcx, bv.datum.to_ref_llval(bcx), bound_data);
}
}
}
ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx }
}
// Given a context and a list of upvars, build a closure. This just
// collects the upvars and packages them up for store_environment.
pub fn build_closure(bcx0: @Block,
cap_vars: &[moves::CaptureVar],
sigil: ast::Sigil) -> ClosureResult {
let _icx = push_ctxt("closure::build_closure");
// If we need to, package up the iterator body to call
let bcx = bcx0;
// Package up the captured upvars
let mut env_vals = ~[];
for cap_var in cap_vars.iter() {
debug!("Building closure: captured variable {:?}", *cap_var);
let datum = expr::trans_local_var(bcx, cap_var.def);
match cap_var.mode {
moves::CapRef => {
assert_eq!(sigil, ast::BorrowedSigil);
env_vals.push(EnvValue {action: EnvRef,
datum: datum});
}
moves::CapCopy => {
env_vals.push(EnvValue {action: EnvCopy,
datum: datum});
}
moves::CapMove => {
env_vals.push(EnvValue {action: EnvMove,
datum: datum});
}
}
}
return store_environment(bcx, env_vals, sigil);
}
// Given an enclosing block context, a new function context, a closure type,
// and a list of upvars, generate code to load and populate the environment
// with the upvars and type descriptors.
pub fn load_environment(fcx: @mut FunctionContext,
cdata_ty: ty::t,
cap_vars: &[moves::CaptureVar],
sigil: ast::Sigil) {
let _icx = push_ctxt("closure::load_environment");
// Don't bother to create the block if there's nothing to load
if cap_vars.len() == 0 {
return;
}
let bcx = fcx.entry_bcx.unwrap();
// Load a pointer to the closure data, skipping over the box header:
let llcdata = opaque_box_body(bcx, cdata_ty, fcx.llenv);
// Store the pointer to closure data in an alloca for debug info because that's what the
// llvm.dbg.declare intrinsic expects
let env_pointer_alloca = if fcx.ccx.sess.opts.extra_debuginfo {
let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr");
Store(bcx, llcdata, alloc);
Some(alloc)
} else {
None
};
// Populate the upvars from the environment
let mut i = 0u;
for cap_var in cap_vars.iter() {
let mut upvarptr = GEPi(bcx, llcdata, [0u, i]);
match sigil {
ast::BorrowedSigil => { upvarptr = Load(bcx, upvarptr); }
ast::ManagedSigil | ast::OwnedSigil => {}
}
let def_id = ast_util::def_id_of_def(cap_var.def);
{
let mut llupvars = fcx.llupvars.borrow_mut();
llupvars.get().insert(def_id.node, upvarptr);
}
for &env_pointer_alloca in env_pointer_alloca.iter() {
debuginfo::create_captured_var_metadata(
bcx,
def_id.node,
cdata_ty,
env_pointer_alloca,
i,
sigil,
cap_var.span);
}
i += 1u;
}
}
pub fn trans_expr_fn(bcx: @Block,
sigil: ast::Sigil,
decl: &ast::fn_decl,
body: &ast::Block,
outer_id: ast::NodeId,
user_id: ast::NodeId,
dest: expr::Dest) -> @Block {
/*!
*
* Translates the body of a closure expression.
*
* - `sigil`
* - `decl`
* - `body`
* - `outer_id`: The id of the closure expression with the correct
* type. This is usually the same as `user_id`, but in the
* case of a `for` loop, the `outer_id` will have the return
* type of boolean, and the `user_id` will have the return type
* of `nil`.
* - `user_id`: The id of the closure as the user expressed it.
Generally the same as `outer_id`
* - `cap_clause`: information about captured variables, if any.
* - `dest`: where to write the closure value, which must be a
(fn ptr, env) pair
*/
let _icx = push_ctxt("closure::trans_expr_fn");
let dest_addr = match dest {
expr::SaveIn(p) => p,
expr::Ignore => {
return bcx; // closure construction is non-side-effecting
}
};
let ccx = bcx.ccx();
let fty = node_id_type(bcx, outer_id);
let f = match ty::get(fty).sty {
ty::ty_closure(ref f) => f,
_ => fail!("expected closure")
};
let sub_path = vec::append_one(bcx.fcx.path.clone(),
path_name(special_idents::anon));
// XXX: Bad copy.
let s = mangle_internal_name_by_path_and_seq(ccx,
sub_path.clone(),
"expr_fn");
let llfn = decl_internal_rust_fn(ccx, f.sig.inputs, f.sig.output, s);
// set an inline hint for all closures
set_inline_hint(llfn);
let Result {bcx: bcx, val: closure} = match sigil {
ast::BorrowedSigil | ast::ManagedSigil | ast::OwnedSigil => {
let cap_vars = {
let capture_map = ccx.maps.capture_map.borrow();
capture_map.get().get_copy(&user_id)
};
let ClosureResult {llbox, cdata_ty, bcx}
= build_closure(bcx, cap_vars, sigil);
trans_closure(ccx,
sub_path,
decl,
body,
llfn,
no_self,
bcx.fcx.param_substs,
user_id,
[],
ty::ty_fn_ret(fty),
|fcx| load_environment(fcx, cdata_ty, cap_vars, sigil));
rslt(bcx, llbox)
}
};
fill_fn_pair(bcx, dest_addr, llfn, closure);
return bcx;
}
pub fn make_closure_glue(cx: @Block,
v: ValueRef,
t: ty::t,
glue_fn: |@Block, v: ValueRef, t: ty::t|
-> @Block)
-> @Block {
let _icx = push_ctxt("closure::make_closure_glue");
let bcx = cx;
let tcx = cx.tcx();
let sigil = ty::ty_closure_sigil(t);
match sigil {
ast::BorrowedSigil => bcx,
ast::OwnedSigil | ast::ManagedSigil => {
let box_cell_v = GEPi(cx, v, [0u, abi::fn_field_box]);
let box_ptr_v = Load(cx, box_cell_v);
with_cond(cx, IsNotNull(cx, box_ptr_v), |bcx| {
let closure_ty = ty::mk_opaque_closure_ptr(tcx, sigil);
glue_fn(bcx, box_cell_v, closure_ty)
})
}
}
}
pub fn make_opaque_cbox_drop_glue(
bcx: @Block,
sigil: ast::Sigil,
cboxptr: ValueRef) // ptr to the opaque closure
-> @Block {
let _icx = push_ctxt("closure::make_opaque_cbox_drop_glue");
match sigil {
ast::BorrowedSigil => bcx,
ast::ManagedSigil => {
bcx.tcx().sess.bug("trying to trans drop glue of @fn")
}
ast::OwnedSigil => {
glue::free_ty(
bcx, cboxptr,
ty::mk_opaque_closure_ptr(bcx.tcx(), sigil))
}
}
}
/// `cbox` is a pointer to a pointer to an opaque closure.
pub fn make_opaque_cbox_free_glue(bcx: @Block,
sigil: ast::Sigil,
cbox: ValueRef)
-> @Block {
let _icx = push_ctxt("closure::make_opaque_cbox_free_glue");
match sigil {
ast::BorrowedSigil => {
return bcx;
}
ast::ManagedSigil | ast::OwnedSigil => {
/* hard cases: fallthrough to code below */
}
}
let ccx = bcx.ccx();
with_cond(bcx, IsNotNull(bcx, cbox), |bcx| {
// Load the type descr found in the cbox
let lltydescty = ccx.tydesc_type.ptr_to();
let cbox = Load(bcx, cbox);
let tydescptr = GEPi(bcx, cbox, [0u, abi::box_field_tydesc]);
let tydesc = Load(bcx, tydescptr);
let tydesc = PointerCast(bcx, tydesc, lltydescty);
// Drop the tuple data then free the descriptor
let cdata = GEPi(bcx, cbox, [0u, abi::box_field_body]);
glue::call_tydesc_glue_full(bcx, cdata, tydesc,
abi::tydesc_field_drop_glue, None);
// Free the ty descr (if necc) and the box itself
glue::trans_exchange_free(bcx, cbox);
bcx
})
}