rust/src/libsyntax/ast.rs

1919 lines
58 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
pub use self::BindingMode::*;
pub use self::BinOp_::*;
pub use self::BlockCheckMode::*;
pub use self::CaptureClause::*;
pub use self::Decl_::*;
pub use self::ExplicitSelf_::*;
pub use self::Expr_::*;
pub use self::FloatTy::*;
pub use self::FunctionRetTy::*;
pub use self::ForeignItem_::*;
pub use self::IntTy::*;
pub use self::Item_::*;
pub use self::KleeneOp::*;
pub use self::Lit_::*;
pub use self::LitIntType::*;
pub use self::MacStmtStyle::*;
pub use self::MetaItem_::*;
pub use self::Mutability::*;
pub use self::Pat_::*;
pub use self::PathListItem_::*;
pub use self::PrimTy::*;
pub use self::Sign::*;
pub use self::Stmt_::*;
pub use self::StrStyle::*;
pub use self::StructFieldKind::*;
pub use self::TraitItem_::*;
pub use self::Ty_::*;
pub use self::TyParamBound::*;
pub use self::UintTy::*;
pub use self::UnOp::*;
pub use self::UnsafeSource::*;
pub use self::ViewPath_::*;
pub use self::Visibility::*;
pub use self::PathParameters::*;
use codemap::{Span, Spanned, DUMMY_SP, ExpnId};
use abi::Abi;
use ast_util;
use ext::base;
use ext::tt::macro_parser;
use owned_slice::OwnedSlice;
use parse::token::{InternedString, str_to_ident};
use parse::token;
use parse::lexer;
use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration};
use print::pprust;
use ptr::P;
use std::fmt;
use std::rc::Rc;
use std::borrow::Cow;
use std::hash::{Hash, Hasher};
use serialize::{Encodable, Decodable, Encoder, Decoder};
/// A name is a part of an identifier, representing a string or gensym. It's
/// the result of interning.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Name(pub u32);
/// A SyntaxContext represents a chain of macro-expandings
/// and renamings. Each macro expansion corresponds to
/// a fresh u32. This u32 is a reference to a table stored
// in thread-local storage.
// The special value EMPTY_CTXT is used to indicate an empty
// syntax context.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct SyntaxContext(pub u32);
/// An identifier contains a Name (index into the interner
/// table) and a SyntaxContext to track renaming and
/// macro expansion per Flatt et al., "Macros That Work Together"
#[derive(Clone, Copy, Eq)]
pub struct Ident {
pub name: Name,
pub ctxt: SyntaxContext
}
impl Name {
pub fn as_str(self) -> token::InternedString {
token::InternedString::new_from_name(self)
}
}
impl fmt::Debug for Name {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}({})", self, self.0)
}
}
impl fmt::Display for Name {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.as_str(), f)
}
}
impl Encodable for Name {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_str(&self.as_str())
}
}
impl Decodable for Name {
fn decode<D: Decoder>(d: &mut D) -> Result<Name, D::Error> {
Ok(token::intern(&try!(d.read_str())[..]))
}
}
pub const EMPTY_CTXT : SyntaxContext = SyntaxContext(0);
impl Ident {
pub fn new(name: Name, ctxt: SyntaxContext) -> Ident {
Ident {name: name, ctxt: ctxt}
}
pub fn with_empty_ctxt(name: Name) -> Ident {
Ident {name: name, ctxt: EMPTY_CTXT}
}
}
impl PartialEq for Ident {
fn eq(&self, other: &Ident) -> bool {
if self.ctxt != other.ctxt {
// There's no one true way to compare Idents. They can be compared
// non-hygienically `id1.name == id2.name`, hygienically
// `mtwt::resolve(id1) == mtwt::resolve(id2)`, or even member-wise
// `(id1.name, id1.ctxt) == (id2.name, id2.ctxt)` depending on the situation.
// Ideally, PartialEq should not be implemented for Ident at all, but that
// would be too impractical, because many larger structures (Token, in particular)
// including Idents as their parts derive PartialEq and use it for non-hygienic
// comparisons. That's why PartialEq is implemented and defaults to non-hygienic
// comparison. Hash is implemented too and is consistent with PartialEq, i.e. only
// the name of Ident is hashed. Still try to avoid comparing idents in your code
// (especially as keys in hash maps), use one of the three methods listed above
// explicitly.
//
// If you see this panic, then some idents from different contexts were compared
// non-hygienically. It's likely a bug. Use one of the three comparison methods
// listed above explicitly.
panic!("idents with different contexts are compared with operator `==`: \
{:?}, {:?}.", self, other);
}
self.name == other.name
}
}
impl Hash for Ident {
fn hash<H: Hasher>(&self, state: &mut H) {
self.name.hash(state)
}
}
impl fmt::Debug for Ident {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}#{}", self.name, self.ctxt.0)
}
}
impl fmt::Display for Ident {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.name, f)
}
}
impl Encodable for Ident {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
self.name.encode(s)
}
}
impl Decodable for Ident {
fn decode<D: Decoder>(d: &mut D) -> Result<Ident, D::Error> {
Ok(Ident::with_empty_ctxt(try!(Name::decode(d))))
}
}
/// A mark represents a unique id associated with a macro expansion
pub type Mrk = u32;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
pub name: Name
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "lifetime({}: {})", self.id, pprust::lifetime_to_string(self))
}
}
/// A lifetime definition, eg `'a: 'b+'c+'d`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct LifetimeDef {
pub lifetime: Lifetime,
pub bounds: Vec<Lifetime>
}
/// A "Path" is essentially Rust's notion of a name; for instance:
/// std::cmp::PartialEq . It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Path {
pub span: Span,
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
pub global: bool,
/// The segments in the path: the things separated by `::`.
pub segments: Vec<PathSegment>,
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", pprust::path_to_string(self))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", pprust::path_to_string(self))
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub identifier: Ident,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub parameters: PathParameters,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PathParameters {
/// The `<'a, A,B,C>` in `foo::bar::baz::<'a, A,B,C>`
AngleBracketedParameters(AngleBracketedParameterData),
/// The `(A,B)` and `C` in `Foo(A,B) -> C`
ParenthesizedParameters(ParenthesizedParameterData),
}
impl PathParameters {
pub fn none() -> PathParameters {
AngleBracketedParameters(AngleBracketedParameterData {
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
bindings: OwnedSlice::empty(),
})
}
pub fn is_empty(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => data.is_empty(),
// Even if the user supplied no types, something like
// `X()` is equivalent to `X<(),()>`.
ParenthesizedParameters(..) => false,
}
}
pub fn has_lifetimes(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => !data.lifetimes.is_empty(),
ParenthesizedParameters(_) => false,
}
}
pub fn has_types(&self) -> bool {
match *self {
AngleBracketedParameters(ref data) => !data.types.is_empty(),
ParenthesizedParameters(..) => true,
}
}
/// Returns the types that the user wrote. Note that these do not necessarily map to the type
/// parameters in the parenthesized case.
pub fn types(&self) -> Vec<&P<Ty>> {
match *self {
AngleBracketedParameters(ref data) => {
data.types.iter().collect()
}
ParenthesizedParameters(ref data) => {
data.inputs.iter()
.chain(data.output.iter())
.collect()
}
}
}
pub fn lifetimes(&self) -> Vec<&Lifetime> {
match *self {
AngleBracketedParameters(ref data) => {
data.lifetimes.iter().collect()
}
ParenthesizedParameters(_) => {
Vec::new()
}
}
}
pub fn bindings(&self) -> Vec<&P<TypeBinding>> {
match *self {
AngleBracketedParameters(ref data) => {
data.bindings.iter().collect()
}
ParenthesizedParameters(_) => {
Vec::new()
}
}
}
}
/// A path like `Foo<'a, T>`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct AngleBracketedParameterData {
/// The lifetime parameters for this path segment.
pub lifetimes: Vec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: OwnedSlice<P<Ty>>,
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A=Bar>`.
pub bindings: OwnedSlice<P<TypeBinding>>,
}
impl AngleBracketedParameterData {
fn is_empty(&self) -> bool {
self.lifetimes.is_empty() && self.types.is_empty() && self.bindings.is_empty()
}
}
/// A path like `Foo(A,B) -> C`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ParenthesizedParameterData {
/// Overall span
pub span: Span,
/// `(A,B)`
pub inputs: Vec<P<Ty>>,
/// `C`
pub output: Option<P<Ty>>,
}
pub type CrateNum = u32;
pub type NodeId = u32;
/// Node id used to represent the root of the crate.
pub const CRATE_NODE_ID: NodeId = 0;
/// When parsing and doing expansions, we initially give all AST nodes this AST
/// node value. Then later, in the renumber pass, we renumber them to have
/// small, positive ids.
pub const DUMMY_NODE_ID: NodeId = !0;
pub trait NodeIdAssigner {
fn next_node_id(&self) -> NodeId;
fn peek_node_id(&self) -> NodeId;
}
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyParamBound {
TraitTyParamBound(PolyTraitRef, TraitBoundModifier),
RegionTyParamBound(Lifetime)
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
pub type TyParamBounds = OwnedSlice<TyParamBound>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TyParam {
pub ident: Ident,
pub id: NodeId,
pub bounds: TyParamBounds,
pub default: Option<P<Ty>>,
pub span: Span
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Generics {
pub lifetimes: Vec<LifetimeDef>,
pub ty_params: OwnedSlice<TyParam>,
pub where_clause: WhereClause,
}
impl Generics {
pub fn is_lt_parameterized(&self) -> bool {
!self.lifetimes.is_empty()
}
pub fn is_type_parameterized(&self) -> bool {
!self.ty_params.is_empty()
}
pub fn is_parameterized(&self) -> bool {
self.is_lt_parameterized() || self.is_type_parameterized()
}
}
/// A `where` clause in a definition
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: Vec<WherePredicate>,
}
/// A single predicate in a `where` clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum WherePredicate {
/// A type binding, eg `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
/// A type bound, eg `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any lifetimes from a `for` binding
pub bound_lifetimes: Vec<LifetimeDef>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: OwnedSlice<TyParamBound>,
}
/// A lifetime predicate, e.g. `'a: 'b+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: Vec<Lifetime>,
}
/// An equality predicate (unsupported), e.g. `T=int`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub path: Path,
pub ty: P<Ty>,
}
/// The set of MetaItems that define the compilation environment of the crate,
/// used to drive conditional compilation
pub type CrateConfig = Vec<P<MetaItem>> ;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: Vec<Attribute>,
pub config: CrateConfig,
pub span: Span,
pub exported_macros: Vec<MacroDef>,
}
pub type MetaItem = Spanned<MetaItem_>;
#[derive(Clone, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum MetaItem_ {
MetaWord(InternedString),
MetaList(InternedString, Vec<P<MetaItem>>),
MetaNameValue(InternedString, Lit),
}
// can't be derived because the MetaList requires an unordered comparison
impl PartialEq for MetaItem_ {
fn eq(&self, other: &MetaItem_) -> bool {
match *self {
MetaWord(ref ns) => match *other {
MetaWord(ref no) => (*ns) == (*no),
_ => false
},
MetaNameValue(ref ns, ref vs) => match *other {
MetaNameValue(ref no, ref vo) => {
(*ns) == (*no) && vs.node == vo.node
}
_ => false
},
MetaList(ref ns, ref miss) => match *other {
MetaList(ref no, ref miso) => {
ns == no &&
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
}
_ => false
}
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: Vec<P<Stmt>>,
/// An expression at the end of the block
/// without a semicolon, if any
pub expr: Option<P<Expr>>,
pub id: NodeId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub node: Pat_,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id, pprust::pat_to_string(self))
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FieldPat {
/// The identifier for the field
pub ident: Ident,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Pat_ {
/// Represents a wildcard pattern (`_`)
PatWild,
/// A PatIdent may either be a new bound variable,
/// or a nullary enum (in which case the third field
/// is None).
///
/// In the nullary enum case, the parser can't determine
/// which it is. The resolver determines this, and
/// records this pattern's NodeId in an auxiliary
/// set (of "PatIdents that refer to nullary enums")
PatIdent(BindingMode, SpannedIdent, Option<P<Pat>>),
/// "None" means a `Variant(..)` pattern where we don't bind the fields to names.
PatEnum(Path, Option<Vec<P<Pat>>>),
/// An associated const named using the qualified path `<T>::CONST` or
/// `<T as Trait>::CONST`. Associated consts from inherent impls can be
/// referred to as simply `T::CONST`, in which case they will end up as
/// PatEnum, and the resolver will have to sort that out.
PatQPath(QSelf, Path),
/// Destructuring of a struct, e.g. `Foo {x, y, ..}`
/// The `bool` is `true` in the presence of a `..`
PatStruct(Path, Vec<Spanned<FieldPat>>, bool),
/// A tuple pattern `(a, b)`
PatTup(Vec<P<Pat>>),
/// A `box` pattern
PatBox(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
PatRegion(P<Pat>, Mutability),
/// A literal
PatLit(P<Expr>),
/// A range pattern, e.g. `1...2`
PatRange(P<Expr>, P<Expr>),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatVec(box [a, b], Some(i), box [y, z])`
PatVec(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>),
/// A macro pattern; pre-expansion
PatMac(Mac),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BinOp_ {
/// The `+` operator (addition)
BiAdd,
/// The `-` operator (subtraction)
BiSub,
/// The `*` operator (multiplication)
BiMul,
/// The `/` operator (division)
BiDiv,
/// The `%` operator (modulus)
BiRem,
/// The `&&` operator (logical and)
BiAnd,
/// The `||` operator (logical or)
BiOr,
/// The `^` operator (bitwise xor)
BiBitXor,
/// The `&` operator (bitwise and)
BiBitAnd,
/// The `|` operator (bitwise or)
BiBitOr,
/// The `<<` operator (shift left)
BiShl,
/// The `>>` operator (shift right)
BiShr,
/// The `==` operator (equality)
BiEq,
/// The `<` operator (less than)
BiLt,
/// The `<=` operator (less than or equal to)
BiLe,
/// The `!=` operator (not equal to)
BiNe,
/// The `>=` operator (greater than or equal to)
BiGe,
/// The `>` operator (greater than)
BiGt,
}
pub type BinOp = Spanned<BinOp_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnOp {
/// The `*` operator for dereferencing
UnDeref,
/// The `!` operator for logical inversion
UnNot,
/// The `-` operator for negation
UnNeg
}
/// A statement
pub type Stmt = Spanned<Stmt_>;
impl fmt::Debug for Stmt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "stmt({}: {})",
ast_util::stmt_id(self)
.map_or(Cow::Borrowed("<macro>"),|id|Cow::Owned(id.to_string())),
pprust::stmt_to_string(self))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum Stmt_ {
/// Could be an item or a local (let) binding:
StmtDecl(P<Decl>, NodeId),
/// Expr without trailing semi-colon (must have unit type):
StmtExpr(P<Expr>, NodeId),
/// Expr with trailing semi-colon (may have any type):
StmtSemi(P<Expr>, NodeId),
StmtMac(P<Mac>, MacStmtStyle),
}
#[derive(Clone, Copy, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum MacStmtStyle {
/// The macro statement had a trailing semicolon, e.g. `foo! { ... };`
/// `foo!(...);`, `foo![...];`
MacStmtWithSemicolon,
/// The macro statement had braces; e.g. foo! { ... }
MacStmtWithBraces,
/// The macro statement had parentheses or brackets and no semicolon; e.g.
/// `foo!(...)`. All of these will end up being converted into macro
/// expressions.
MacStmtWithoutBraces,
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Local {
pub pat: P<Pat>,
pub ty: Option<P<Ty>>,
/// Initializer expression to set the value, if any
pub init: Option<P<Expr>>,
pub id: NodeId,
pub span: Span,
}
pub type Decl = Spanned<Decl_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Decl_ {
/// A local (let) binding:
DeclLocal(P<Local>),
/// An item binding:
DeclItem(P<Item>),
}
/// represents one arm of a 'match'
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arm {
pub attrs: Vec<Attribute>,
pub pats: Vec<P<Pat>>,
pub guard: Option<P<Expr>>,
pub body: P<Expr>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Field {
pub ident: SpannedIdent,
pub expr: P<Expr>,
pub span: Span,
}
pub type SpannedIdent = Spanned<Ident>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
/// An expression
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash,)]
pub struct Expr {
pub id: NodeId,
pub node: Expr_,
pub span: Span,
}
impl fmt::Debug for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expr({}: {})", self.id, pprust::expr_to_string(self))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Expr_ {
/// A `box x` expression.
ExprBox(P<Expr>),
/// First expr is the place; second expr is the value.
ExprInPlace(P<Expr>, P<Expr>),
/// An array (`[a, b, c, d]`)
ExprVec(Vec<P<Expr>>),
/// A function call
///
/// The first field resolves to the function itself,
/// and the second field is the list of arguments
ExprCall(P<Expr>, Vec<P<Expr>>),
/// A method call (`x.foo::<Bar, Baz>(a, b, c, d)`)
///
/// The `SpannedIdent` is the identifier for the method name.
/// The vector of `Ty`s are the ascripted type parameters for the method
/// (within the angle brackets).
///
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
///
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprMethodCall(foo, [Bar, Baz], [x, a, b, c, d])`.
ExprMethodCall(SpannedIdent, Vec<P<Ty>>, Vec<P<Expr>>),
/// A tuple (`(a, b, c ,d)`)
ExprTup(Vec<P<Expr>>),
/// A binary operation (For example: `a + b`, `a * b`)
ExprBinary(BinOp, P<Expr>, P<Expr>),
/// A unary operation (For example: `!x`, `*x`)
ExprUnary(UnOp, P<Expr>),
/// A literal (For example: `1u8`, `"foo"`)
ExprLit(P<Lit>),
/// A cast (`foo as f64`)
ExprCast(P<Expr>, P<Ty>),
/// An `if` block, with an optional else block
///
/// `if expr { block } else { expr }`
ExprIf(P<Expr>, P<Block>, Option<P<Expr>>),
/// An `if let` expression with an optional else block
///
/// `if let pat = expr { block } else { expr }`
///
/// This is desugared to a `match` expression.
ExprIfLet(P<Pat>, P<Expr>, P<Block>, Option<P<Expr>>),
/// A while loop, with an optional label
///
/// `'label: while expr { block }`
ExprWhile(P<Expr>, P<Block>, Option<Ident>),
/// A while-let loop, with an optional label
///
/// `'label: while let pat = expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
ExprWhileLet(P<Pat>, P<Expr>, P<Block>, Option<Ident>),
/// A for loop, with an optional label
///
/// `'label: for pat in expr { block }`
///
/// This is desugared to a combination of `loop` and `match` expressions.
ExprForLoop(P<Pat>, P<Expr>, P<Block>, Option<Ident>),
/// Conditionless loop (can be exited with break, continue, or return)
///
/// `'label: loop { block }`
ExprLoop(P<Block>, Option<Ident>),
/// A `match` block.
ExprMatch(P<Expr>, Vec<Arm>),
/// A closure (for example, `move |a, b, c| {a + b + c}`)
ExprClosure(CaptureClause, P<FnDecl>, P<Block>),
/// A block (`{ ... }`)
ExprBlock(P<Block>),
/// An assignment (`a = foo()`)
ExprAssign(P<Expr>, P<Expr>),
/// An assignment with an operator
///
/// For example, `a += 1`.
ExprAssignOp(BinOp, P<Expr>, P<Expr>),
/// Access of a named struct field (`obj.foo`)
ExprField(P<Expr>, SpannedIdent),
/// Access of an unnamed field of a struct or tuple-struct
///
/// For example, `foo.0`.
ExprTupField(P<Expr>, Spanned<usize>),
/// An indexing operation (`foo[2]`)
ExprIndex(P<Expr>, P<Expr>),
/// A range (`1..2`, `1..`, or `..2`)
ExprRange(Option<P<Expr>>, Option<P<Expr>>),
/// Variable reference, possibly containing `::` and/or type
/// parameters, e.g. foo::bar::<baz>.
///
/// Optionally "qualified",
/// e.g. `<Vec<T> as SomeTrait>::SomeType`.
ExprPath(Option<QSelf>, Path),
/// A referencing operation (`&a` or `&mut a`)
ExprAddrOf(Mutability, P<Expr>),
/// A `break`, with an optional label to break
ExprBreak(Option<SpannedIdent>),
/// A `continue`, with an optional label
ExprAgain(Option<SpannedIdent>),
/// A `return`, with an optional value to be returned
ExprRet(Option<P<Expr>>),
/// Output of the `asm!()` macro
ExprInlineAsm(InlineAsm),
/// A macro invocation; pre-expansion
ExprMac(Mac),
/// A struct literal expression.
///
/// For example, `Foo {x: 1, y: 2}`, or
/// `Foo {x: 1, .. base}`, where `base` is the `Option<Expr>`.
ExprStruct(Path, Vec<Field>, Option<P<Expr>>),
/// An array literal constructed from one repeated element.
///
/// For example, `[1u8; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
ExprRepeat(P<Expr>, P<Expr>),
/// No-op: used solely so we can pretty-print faithfully
ExprParen(P<Expr>)
}
/// The explicit Self type in a "qualified path". The actual
/// path, including the trait and the associated item, is stored
/// separately. `position` represents the index of the associated
/// item qualified with this Self type.
///
/// ```ignore
/// <Vec<T> as a::b::Trait>::AssociatedItem
/// ^~~~~ ~~~~~~~~~~~~~~^
/// ty position = 3
///
/// <Vec<T>>::AssociatedItem
/// ^~~~~ ^
/// ty position = 0
/// ```
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct QSelf {
pub ty: P<Ty>,
pub position: usize
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum CaptureClause {
CaptureByValue,
CaptureByRef,
}
/// A delimited sequence of token trees
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Delimited {
/// The type of delimiter
pub delim: token::DelimToken,
/// The span covering the opening delimiter
pub open_span: Span,
/// The delimited sequence of token trees
pub tts: Vec<TokenTree>,
/// The span covering the closing delimiter
pub close_span: Span,
}
impl Delimited {
/// Returns the opening delimiter as a token.
pub fn open_token(&self) -> token::Token {
token::OpenDelim(self.delim)
}
/// Returns the closing delimiter as a token.
pub fn close_token(&self) -> token::Token {
token::CloseDelim(self.delim)
}
/// Returns the opening delimiter as a token tree.
pub fn open_tt(&self) -> TokenTree {
TokenTree::Token(self.open_span, self.open_token())
}
/// Returns the closing delimiter as a token tree.
pub fn close_tt(&self) -> TokenTree {
TokenTree::Token(self.close_span, self.close_token())
}
}
/// A sequence of token treesee
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct SequenceRepetition {
/// The sequence of token trees
pub tts: Vec<TokenTree>,
/// The optional separator
pub separator: Option<token::Token>,
/// Whether the sequence can be repeated zero (*), or one or more times (+)
pub op: KleeneOp,
/// The number of `MatchNt`s that appear in the sequence (and subsequences)
pub num_captures: usize,
}
/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
/// for token sequences.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum KleeneOp {
ZeroOrMore,
OneOrMore,
}
/// When the main rust parser encounters a syntax-extension invocation, it
/// parses the arguments to the invocation as a token-tree. This is a very
/// loose structure, such that all sorts of different AST-fragments can
/// be passed to syntax extensions using a uniform type.
///
/// If the syntax extension is an MBE macro, it will attempt to match its
/// LHS token tree against the provided token tree, and if it finds a
/// match, will transcribe the RHS token tree, splicing in any captured
/// macro_parser::matched_nonterminals into the `SubstNt`s it finds.
///
/// The RHS of an MBE macro is the only place `SubstNt`s are substituted.
/// Nothing special happens to misnamed or misplaced `SubstNt`s.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TokenTree {
/// A single token
Token(Span, token::Token),
/// A delimited sequence of token trees
Delimited(Span, Rc<Delimited>),
// This only makes sense in MBE macros.
/// A kleene-style repetition sequence with a span
// FIXME(eddyb) #12938 Use DST.
Sequence(Span, Rc<SequenceRepetition>),
}
impl TokenTree {
pub fn len(&self) -> usize {
match *self {
TokenTree::Token(_, token::DocComment(name)) => {
match doc_comment_style(&name.as_str()) {
AttrStyle::Outer => 2,
AttrStyle::Inner => 3
}
}
TokenTree::Token(_, token::SpecialVarNt(..)) => 2,
TokenTree::Token(_, token::MatchNt(..)) => 3,
TokenTree::Delimited(_, ref delimed) => {
delimed.tts.len() + 2
}
TokenTree::Sequence(_, ref seq) => {
seq.tts.len()
}
TokenTree::Token(..) => 0
}
}
pub fn get_tt(&self, index: usize) -> TokenTree {
match (self, index) {
(&TokenTree::Token(sp, token::DocComment(_)), 0) => {
TokenTree::Token(sp, token::Pound)
}
(&TokenTree::Token(sp, token::DocComment(name)), 1)
if doc_comment_style(&name.as_str()) == AttrStyle::Inner => {
TokenTree::Token(sp, token::Not)
}
(&TokenTree::Token(sp, token::DocComment(name)), _) => {
let stripped = strip_doc_comment_decoration(&name.as_str());
TokenTree::Delimited(sp, Rc::new(Delimited {
delim: token::Bracket,
open_span: sp,
tts: vec![TokenTree::Token(sp, token::Ident(token::str_to_ident("doc"),
token::Plain)),
TokenTree::Token(sp, token::Eq),
TokenTree::Token(sp, token::Literal(
token::StrRaw(token::intern(&stripped), 0), None))],
close_span: sp,
}))
}
(&TokenTree::Delimited(_, ref delimed), _) => {
if index == 0 {
return delimed.open_tt();
}
if index == delimed.tts.len() + 1 {
return delimed.close_tt();
}
delimed.tts[index - 1].clone()
}
(&TokenTree::Token(sp, token::SpecialVarNt(var)), _) => {
let v = [TokenTree::Token(sp, token::Dollar),
TokenTree::Token(sp, token::Ident(token::str_to_ident(var.as_str()),
token::Plain))];
v[index].clone()
}
(&TokenTree::Token(sp, token::MatchNt(name, kind, name_st, kind_st)), _) => {
let v = [TokenTree::Token(sp, token::SubstNt(name, name_st)),
TokenTree::Token(sp, token::Colon),
TokenTree::Token(sp, token::Ident(kind, kind_st))];
v[index].clone()
}
(&TokenTree::Sequence(_, ref seq), _) => {
seq.tts[index].clone()
}
_ => panic!("Cannot expand a token tree")
}
}
/// Returns the `Span` corresponding to this token tree.
pub fn get_span(&self) -> Span {
match *self {
TokenTree::Token(span, _) => span,
TokenTree::Delimited(span, _) => span,
TokenTree::Sequence(span, _) => span,
}
}
/// Use this token tree as a matcher to parse given tts.
pub fn parse(cx: &base::ExtCtxt, mtch: &[TokenTree], tts: &[TokenTree])
-> macro_parser::NamedParseResult {
// `None` is because we're not interpolating
let arg_rdr = lexer::new_tt_reader_with_doc_flag(&cx.parse_sess().span_diagnostic,
None,
None,
tts.iter().cloned().collect(),
true);
macro_parser::parse(cx.parse_sess(), cx.cfg(), arg_rdr, mtch)
}
}
pub type Mac = Spanned<Mac_>;
/// Represents a macro invocation. The Path indicates which macro
/// is being invoked, and the vector of token-trees contains the source
/// of the macro invocation.
///
/// NB: the additional ident for a macro_rules-style macro is actually
/// stored in the enclosing item. Oog.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mac_ {
pub path: Path,
pub tts: Vec<TokenTree>,
pub ctxt: SyntaxContext,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum StrStyle {
/// A regular string, like `"foo"`
CookedStr,
/// A raw string, like `r##"foo"##`
///
/// The uint is the number of `#` symbols used
RawStr(usize)
}
/// A literal
pub type Lit = Spanned<Lit_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Sign {
Minus,
Plus
}
impl Sign {
pub fn new<T: IntSign>(n: T) -> Sign {
n.sign()
}
}
pub trait IntSign {
fn sign(&self) -> Sign;
}
macro_rules! doit {
($($t:ident)*) => ($(impl IntSign for $t {
#[allow(unused_comparisons)]
fn sign(&self) -> Sign {
if *self < 0 {Minus} else {Plus}
}
})*)
}
doit! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum LitIntType {
SignedIntLit(IntTy, Sign),
UnsignedIntLit(UintTy),
UnsuffixedIntLit(Sign)
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Lit_ {
/// A string literal (`"foo"`)
LitStr(InternedString, StrStyle),
/// A byte string (`b"foo"`)
LitByteStr(Rc<Vec<u8>>),
/// A byte char (`b'f'`)
LitByte(u8),
/// A character literal (`'a'`)
LitChar(char),
/// An integer literal (`1u8`)
LitInt(u64, LitIntType),
/// A float literal (`1f64` or `1E10f64`)
LitFloat(InternedString, FloatTy),
/// A float literal without a suffix (`1.0 or 1.0E10`)
LitFloatUnsuffixed(InternedString),
/// A boolean literal
LitBool(bool),
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
/// Represents a method's signature in a trait declaration,
/// or in an implementation.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MethodSig {
pub unsafety: Unsafety,
pub constness: Constness,
pub abi: Abi,
pub decl: P<FnDecl>,
pub generics: Generics,
pub explicit_self: ExplicitSelf,
}
/// Represents a method declaration in a trait declaration, possibly including
/// a default implementation A trait method is either required (meaning it
/// doesn't have an implementation, just a signature) or provided (meaning it
/// has a default implementation).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItem {
pub id: NodeId,
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: TraitItem_,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitItem_ {
ConstTraitItem(P<Ty>, Option<P<Expr>>),
MethodTraitItem(MethodSig, Option<P<Block>>),
TypeTraitItem(TyParamBounds, Option<P<Ty>>),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItem {
pub id: NodeId,
pub ident: Ident,
pub vis: Visibility,
pub attrs: Vec<Attribute>,
pub node: ImplItemKind,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ImplItemKind {
Const(P<Ty>, P<Expr>),
Method(MethodSig, P<Block>),
Type(P<Ty>),
Macro(Mac),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub enum IntTy {
TyIs,
TyI8,
TyI16,
TyI32,
TyI64,
}
impl fmt::Debug for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::int_ty_to_string(*self, None))
}
}
impl IntTy {
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
TyIs => return None,
TyI8 => 8,
TyI16 => 16,
TyI32 => 32,
TyI64 => 64,
})
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub enum UintTy {
TyUs,
TyU8,
TyU16,
TyU32,
TyU64,
}
impl UintTy {
pub fn bit_width(&self) -> Option<usize> {
Some(match *self {
TyUs => return None,
TyU8 => 8,
TyU16 => 16,
TyU32 => 32,
TyU64 => 64,
})
}
}
impl fmt::Debug for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::uint_ty_to_string(*self, None))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub enum FloatTy {
TyF32,
TyF64,
}
impl fmt::Debug for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::float_ty_to_string(*self))
}
}
impl FloatTy {
pub fn bit_width(&self) -> usize {
match *self {
TyF32 => 32,
TyF64 => 64,
}
}
}
// Bind a type to an associated type: `A=Foo`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TypeBinding {
pub id: NodeId,
pub ident: Ident,
pub ty: P<Ty>,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Ty {
pub id: NodeId,
pub node: Ty_,
pub span: Span,
}
impl fmt::Debug for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "type({})", pprust::ty_to_string(self))
}
}
/// Not represented directly in the AST, referred to by name through a ty_path.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BareFnTy {
pub unsafety: Unsafety,
pub abi: Abi,
pub lifetimes: Vec<LifetimeDef>,
pub decl: P<FnDecl>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
/// The different kinds of types recognized by the compiler
pub enum Ty_ {
TyVec(P<Ty>),
/// A fixed length array (`[T; n]`)
TyFixedLengthVec(P<Ty>, P<Expr>),
/// A raw pointer (`*const T` or `*mut T`)
TyPtr(MutTy),
/// A reference (`&'a T` or `&'a mut T`)
TyRptr(Option<Lifetime>, MutTy),
/// A bare function (e.g. `fn(usize) -> bool`)
TyBareFn(P<BareFnTy>),
/// A tuple (`(A, B, C, D,...)`)
TyTup(Vec<P<Ty>> ),
/// A path (`module::module::...::Type`), optionally
/// "qualified", e.g. `<Vec<T> as SomeTrait>::SomeType`.
///
/// Type parameters are stored in the Path itself
TyPath(Option<QSelf>, Path),
/// Something like `A+B`. Note that `B` must always be a path.
TyObjectSum(P<Ty>, TyParamBounds),
/// A type like `for<'a> Foo<&'a Bar>`
TyPolyTraitRef(TyParamBounds),
/// No-op; kept solely so that we can pretty-print faithfully
TyParen(P<Ty>),
/// Unused for now
TyTypeof(P<Expr>),
/// TyInfer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
TyInfer,
// A macro in the type position.
TyMac(Mac)
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum AsmDialect {
Att,
Intel,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsm {
pub asm: InternedString,
pub asm_str_style: StrStyle,
pub outputs: Vec<(InternedString, P<Expr>, bool)>,
pub inputs: Vec<(InternedString, P<Expr>)>,
pub clobbers: Vec<InternedString>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub expn_id: ExpnId,
}
/// represents an argument in a function header
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arg {
pub ty: P<Ty>,
pub pat: P<Pat>,
pub id: NodeId,
}
impl Arg {
pub fn new_self(span: Span, mutability: Mutability, self_ident: Ident) -> Arg {
let path = Spanned{span:span,node:self_ident};
Arg {
// HACK(eddyb) fake type for the self argument.
ty: P(Ty {
id: DUMMY_NODE_ID,
node: TyInfer,
span: DUMMY_SP,
}),
pat: P(Pat {
id: DUMMY_NODE_ID,
node: PatIdent(BindByValue(mutability), path, None),
span: span
}),
id: DUMMY_NODE_ID
}
}
}
/// Represents the header (not the body) of a function declaration
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FnDecl {
pub inputs: Vec<Arg>,
pub output: FunctionRetTy,
pub variadic: bool
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Unsafety {
Unsafe,
Normal,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Constness {
Const,
NotConst,
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(match *self {
Unsafety::Normal => "normal",
Unsafety::Unsafe => "unsafe",
}, f)
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum ImplPolarity {
/// `impl Trait for Type`
Positive,
/// `impl !Trait for Type`
Negative,
}
impl fmt::Debug for ImplPolarity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImplPolarity::Positive => "positive".fmt(f),
ImplPolarity::Negative => "negative".fmt(f),
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum FunctionRetTy {
/// Functions with return type `!`that always
/// raise an error or exit (i.e. never return to the caller)
NoReturn(Span),
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
DefaultReturn(Span),
/// Everything else
Return(P<Ty>),
}
impl FunctionRetTy {
pub fn span(&self) -> Span {
match *self {
NoReturn(span) => span,
DefaultReturn(span) => span,
Return(ref ty) => ty.span
}
}
}
/// Represents the kind of 'self' associated with a method
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ExplicitSelf_ {
/// No self
SelfStatic,
/// `self`
SelfValue(Ident),
/// `&'lt self`, `&'lt mut self`
SelfRegion(Option<Lifetime>, Mutability, Ident),
/// `self: TYPE`
SelfExplicit(P<Ty>, Ident),
}
pub type ExplicitSelf = Spanned<ExplicitSelf_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub items: Vec<P<Item>>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignMod {
pub abi: Abi,
pub items: Vec<P<ForeignItem>>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct EnumDef {
pub variants: Vec<P<Variant>>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Variant_ {
pub name: Ident,
pub attrs: Vec<Attribute>,
pub data: VariantData,
/// Explicit discriminant, eg `Foo = 1`
pub disr_expr: Option<P<Expr>>,
}
pub type Variant = Spanned<Variant_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum PathListItem_ {
PathListIdent {
name: Ident,
/// renamed in list, eg `use foo::{bar as baz};`
rename: Option<Ident>,
id: NodeId
},
PathListMod {
/// renamed in list, eg `use foo::{self as baz};`
rename: Option<Ident>,
id: NodeId
}
}
impl PathListItem_ {
pub fn id(&self) -> NodeId {
match *self {
PathListIdent { id, .. } | PathListMod { id, .. } => id
}
}
pub fn name(&self) -> Option<Ident> {
match *self {
PathListIdent { name, .. } => Some(name),
PathListMod { .. } => None,
}
}
pub fn rename(&self) -> Option<Ident> {
match *self {
PathListIdent { rename, .. } | PathListMod { rename, .. } => rename
}
}
}
pub type PathListItem = Spanned<PathListItem_>;
pub type ViewPath = Spanned<ViewPath_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ViewPath_ {
/// `foo::bar::baz as quux`
///
/// or just
///
/// `foo::bar::baz` (with `as baz` implicitly on the right)
ViewPathSimple(Ident, Path),
/// `foo::bar::*`
ViewPathGlob(Path),
/// `foo::bar::{a,b,c}`
ViewPathList(Path, Vec<PathListItem>)
}
/// Meta-data associated with an item
pub type Attribute = Spanned<Attribute_>;
/// Distinguishes between Attributes that decorate items and Attributes that
/// are contained as statements within items. These two cases need to be
/// distinguished for pretty-printing.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum AttrStyle {
Outer,
Inner,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub struct AttrId(pub usize);
/// Doc-comments are promoted to attributes that have is_sugared_doc = true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Attribute_ {
pub id: AttrId,
pub style: AttrStyle,
pub value: P<MetaItem>,
pub is_sugared_doc: bool,
}
/// TraitRef's appear in impls.
///
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. The impl_id maps to the "self type" of this impl.
/// If this impl is an ItemImpl, the impl_id is redundant (it could be the
/// same as the impl's node id).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PolyTraitRef {
/// The `'a` in `<'a> Foo<&'a T>`
pub bound_lifetimes: Vec<LifetimeDef>,
/// The `Foo<&'a T>` in `<'a> Foo<&'a T>`
pub trait_ref: TraitRef,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Visibility {
Public,
Inherited,
}
impl Visibility {
pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility {
match *self {
Inherited => parent_visibility,
Public => *self
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct StructField_ {
pub kind: StructFieldKind,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: Vec<Attribute>,
}
impl StructField_ {
pub fn ident(&self) -> Option<Ident> {
match self.kind {
NamedField(ref ident, _) => Some(ident.clone()),
UnnamedField(_) => None
}
}
}
pub type StructField = Spanned<StructField_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum StructFieldKind {
NamedField(Ident, Visibility),
/// Element of a tuple-like struct
UnnamedField(Visibility),
}
impl StructFieldKind {
pub fn is_unnamed(&self) -> bool {
match *self {
UnnamedField(..) => true,
NamedField(..) => false,
}
}
pub fn visibility(&self) -> Visibility {
match *self {
NamedField(_, vis) | UnnamedField(vis) => vis
}
}
}
/// Fields and Ids of enum variants and structs
///
/// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all
/// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants).
/// One shared Id can be successfully used for these two purposes.
/// Id of the whole enum lives in `Item`.
///
/// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually
/// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of
/// the variant itself" from enum variants.
/// Id of the whole struct lives in `Item`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum VariantData {
Struct(Vec<StructField>, NodeId),
Tuple(Vec<StructField>, NodeId),
Unit(NodeId),
}
impl VariantData {
pub fn fields(&self) -> &[StructField] {
match *self {
VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields,
_ => &[],
}
}
pub fn id(&self) -> NodeId {
match *self {
VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id
}
}
pub fn is_struct(&self) -> bool {
if let VariantData::Struct(..) = *self { true } else { false }
}
pub fn is_tuple(&self) -> bool {
if let VariantData::Tuple(..) = *self { true } else { false }
}
pub fn is_unit(&self) -> bool {
if let VariantData::Unit(..) = *self { true } else { false }
}
}
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Item {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub node: Item_,
pub vis: Visibility,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Item_ {
/// An`extern crate` item, with optional original crate name,
///
/// e.g. `extern crate foo` or `extern crate foo_bar as foo`
ItemExternCrate(Option<Name>),
/// A `use` or `pub use` item
ItemUse(P<ViewPath>),
/// A `static` item
ItemStatic(P<Ty>, Mutability, P<Expr>),
/// A `const` item
ItemConst(P<Ty>, P<Expr>),
/// A function declaration
ItemFn(P<FnDecl>, Unsafety, Constness, Abi, Generics, P<Block>),
/// A module
ItemMod(Mod),
/// An external module
ItemForeignMod(ForeignMod),
/// A type alias, e.g. `type Foo = Bar<u8>`
ItemTy(P<Ty>, Generics),
/// An enum definition, e.g. `enum Foo<A, B> {C<A>, D<B>}`
ItemEnum(EnumDef, Generics),
/// A struct definition, e.g. `struct Foo<A> {x: A}`
ItemStruct(VariantData, Generics),
/// Represents a Trait Declaration
ItemTrait(Unsafety,
Generics,
TyParamBounds,
Vec<P<TraitItem>>),
// Default trait implementations
///
// `impl Trait for .. {}`
ItemDefaultImpl(Unsafety, TraitRef),
/// An implementation, eg `impl<A> Trait for Foo { .. }`
ItemImpl(Unsafety,
ImplPolarity,
Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
Vec<P<ImplItem>>),
/// A macro invocation (which includes macro definition)
ItemMac(Mac),
}
impl Item_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemExternCrate(..) => "extern crate",
ItemUse(..) => "use",
ItemStatic(..) => "static item",
ItemConst(..) => "constant item",
ItemFn(..) => "function",
ItemMod(..) => "module",
ItemForeignMod(..) => "foreign module",
ItemTy(..) => "type alias",
ItemEnum(..) => "enum",
ItemStruct(..) => "struct",
ItemTrait(..) => "trait",
ItemMac(..) |
ItemImpl(..) |
ItemDefaultImpl(..) => "item"
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignItem {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: ForeignItem_,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// An item within an `extern` block
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ForeignItem_ {
/// A foreign function
ForeignItemFn(P<FnDecl>, Generics),
/// A foreign static item (`static ext: u8`), with optional mutability
/// (the boolean is true when mutable)
ForeignItemStatic(P<Ty>, bool),
}
impl ForeignItem_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemFn(..) => "foreign function",
ForeignItemStatic(..) => "foreign static item"
}
}
}
/// A macro definition, in this crate or imported from another.
///
/// Not parsed directly, but created on macro import or `macro_rules!` expansion.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MacroDef {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub span: Span,
pub imported_from: Option<Ident>,
pub export: bool,
pub use_locally: bool,
pub allow_internal_unstable: bool,
pub body: Vec<TokenTree>,
}
#[cfg(test)]
mod tests {
use serialize;
use super::*;
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
fn assert_encodable<T: serialize::Encodable>() {}
assert_encodable::<Crate>();
}
}