rust/src/libstd/io/signal.rs
Alex Crichton 4538369566 std: Expose that LocalIo may not always be available
It is not the case that all programs will always be able to acquire an instance
of the LocalIo borrow, so this commit exposes this limitation by returning
Option<LocalIo> from LocalIo::borrow().

At the same time, a helper method LocalIo::maybe_raise() has been added in order
to encapsulate the functionality of raising on io_error if there is on local I/O
available.
2013-12-24 14:42:00 -08:00

217 lines
6.9 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Signal handling
This modules provides bindings to receive signals safely, built on top of the
local I/O factory. There are a number of defined signals which can be caught,
but not all signals will work across all platforms (windows doesn't have
definitions for a number of signals.
*/
use clone::Clone;
use comm::{Port, SharedChan};
use container::{Map, MutableMap};
use hashmap;
use option::{Some, None};
use rt::rtio::{IoFactory, LocalIo, RtioSignal};
#[repr(int)]
#[deriving(Eq, IterBytes)]
pub enum Signum {
/// Equivalent to SIGBREAK, delivered when the user presses Ctrl-Break.
Break = 21i,
/// Equivalent to SIGHUP, delivered when the user closes the terminal
/// window. On delivery of HangUp, the program is given approximately
/// 10 seconds to perform any cleanup. After that, Windows will
/// unconditionally terminate it.
HangUp = 1i,
/// Equivalent to SIGINT, delivered when the user presses Ctrl-c.
Interrupt = 2i,
/// Equivalent to SIGQUIT, delivered when the user presses Ctrl-\.
Quit = 3i,
/// Equivalent to SIGTSTP, delivered when the user presses Ctrl-z.
StopTemporarily = 20i,
/// Equivalent to SIGUSR1.
User1 = 10i,
/// Equivalent to SIGUSR2.
User2 = 12i,
/// Equivalent to SIGWINCH, delivered when the console has been resized.
/// WindowSizeChange may not be delivered in a timely manner; size change
/// will only be detected when the cursor is being moved.
WindowSizeChange = 28i,
}
/// Listener provides a port to listen for registered signals.
///
/// Listener automatically unregisters its handles once it is out of scope.
/// However, clients can still unregister signums manually.
///
/// # Example
///
/// ```rust,ignore
/// use std::io::signal::{Listener, Interrupt};
///
/// let mut listener = Listener::new();
/// listener.register(Interrupt);
///
/// do spawn {
/// loop {
/// match listener.port.recv() {
/// Interrupt => println("Got Interrupt'ed"),
/// _ => (),
/// }
/// }
/// }
///
/// ```
pub struct Listener {
/// A map from signums to handles to keep the handles in memory
priv handles: hashmap::HashMap<Signum, ~RtioSignal>,
/// chan is where all the handles send signums, which are received by
/// the clients from port.
priv chan: SharedChan<Signum>,
/// Clients of Listener can `recv()` from this port. This is exposed to
/// allow selection over this port as well as manipulation of the port
/// directly.
port: Port<Signum>,
}
impl Listener {
/// Creates a new listener for signals. Once created, signals are bound via
/// the `register` method (otherwise nothing will ever be received)
pub fn new() -> Listener {
let (port, chan) = SharedChan::new();
Listener {
chan: chan,
port: port,
handles: hashmap::HashMap::new(),
}
}
/// Listen for a signal, returning true when successfully registered for
/// signum. Signals can be received using `recv()`.
///
/// Once a signal is registered, this listener will continue to receive
/// notifications of signals until it is unregistered. This occurs
/// regardless of the number of other listeners registered in other tasks
/// (or on this task).
///
/// Signals are still received if there is no task actively waiting for
/// a signal, and a later call to `recv` will return the signal that was
/// received while no task was waiting on it.
///
/// # Failure
///
/// If this function fails to register a signal handler, then an error will
/// be raised on the `io_error` condition and the function will return
/// false.
pub fn register(&mut self, signum: Signum) -> bool {
if self.handles.contains_key(&signum) {
return true; // self is already listening to signum, so succeed
}
match LocalIo::maybe_raise(|io| {
io.signal(signum, self.chan.clone())
}) {
Some(handle) => {
self.handles.insert(signum, handle);
true
}
None => false
}
}
/// Unregisters a signal. If this listener currently had a handler
/// registered for the signal, then it will stop receiving any more
/// notification about the signal. If the signal has already been received,
/// it may still be returned by `recv`.
pub fn unregister(&mut self, signum: Signum) {
self.handles.pop(&signum);
}
}
#[cfg(test)]
mod test {
use libc;
use io::timer;
use super::{Listener, Interrupt};
// kill is only available on Unixes
#[cfg(unix)]
fn sigint() {
unsafe {
libc::funcs::posix88::signal::kill(libc::getpid(), libc::SIGINT);
}
}
#[test] #[cfg(unix, not(target_os="android"))] // FIXME(#10378)
fn test_io_signal_smoketest() {
let mut signal = Listener::new();
signal.register(Interrupt);
sigint();
timer::sleep(10);
match signal.port.recv() {
Interrupt => (),
s => fail!("Expected Interrupt, got {:?}", s),
}
}
#[test] #[cfg(unix, not(target_os="android"))] // FIXME(#10378)
fn test_io_signal_two_signal_one_signum() {
let mut s1 = Listener::new();
let mut s2 = Listener::new();
s1.register(Interrupt);
s2.register(Interrupt);
sigint();
timer::sleep(10);
match s1.port.recv() {
Interrupt => (),
s => fail!("Expected Interrupt, got {:?}", s),
}
match s2.port.recv() {
Interrupt => (),
s => fail!("Expected Interrupt, got {:?}", s),
}
}
#[test] #[cfg(unix, not(target_os="android"))] // FIXME(#10378)
fn test_io_signal_unregister() {
let mut s1 = Listener::new();
let mut s2 = Listener::new();
s1.register(Interrupt);
s2.register(Interrupt);
s2.unregister(Interrupt);
sigint();
timer::sleep(10);
assert!(s2.port.try_recv().is_none());
}
#[cfg(windows)]
#[test]
fn test_io_signal_invalid_signum() {
use io;
use super::User1;
let mut s = Listener::new();
let mut called = false;
io::io_error::cond.trap(|_| {
called = true;
}).inside(|| {
if s.register(User1) {
fail!("Unexpected successful registry of signum {:?}", User1);
}
});
assert!(called);
}
}