rust/src/inline_asm.rs

670 lines
25 KiB
Rust

//! Codegen of `asm!` invocations.
use crate::prelude::*;
use std::fmt::Write;
use rustc_ast::ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_middle::mir::InlineAsmOperand;
use rustc_span::Symbol;
use rustc_target::asm::*;
pub(crate) fn codegen_inline_asm<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
_span: Span,
template: &[InlineAsmTemplatePiece],
operands: &[InlineAsmOperand<'tcx>],
options: InlineAsmOptions,
) {
// FIXME add .eh_frame unwind info directives
if template[0] == InlineAsmTemplatePiece::String("int $$0x29".to_string()) {
let true_ = fx.bcx.ins().iconst(types::I32, 1);
fx.bcx.ins().trapnz(true_, TrapCode::User(1));
return;
} else if template[0] == InlineAsmTemplatePiece::String("movq %rbx, ".to_string())
&& matches!(
template[1],
InlineAsmTemplatePiece::Placeholder { operand_idx: 0, modifier: Some('r'), span: _ }
)
&& template[2] == InlineAsmTemplatePiece::String("\n".to_string())
&& template[3] == InlineAsmTemplatePiece::String("cpuid".to_string())
&& template[4] == InlineAsmTemplatePiece::String("\n".to_string())
&& template[5] == InlineAsmTemplatePiece::String("xchgq %rbx, ".to_string())
&& matches!(
template[6],
InlineAsmTemplatePiece::Placeholder { operand_idx: 0, modifier: Some('r'), span: _ }
)
{
assert_eq!(operands.len(), 4);
let (leaf, eax_place) = match operands[1] {
InlineAsmOperand::InOut { reg, late: true, ref in_value, out_place } => {
assert_eq!(
reg,
InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax))
);
(
crate::base::codegen_operand(fx, in_value).load_scalar(fx),
crate::base::codegen_place(fx, out_place.unwrap()),
)
}
_ => unreachable!(),
};
let ebx_place = match operands[0] {
InlineAsmOperand::Out { reg, late: true, place } => {
assert_eq!(
reg,
InlineAsmRegOrRegClass::RegClass(InlineAsmRegClass::X86(
X86InlineAsmRegClass::reg
))
);
crate::base::codegen_place(fx, place.unwrap())
}
_ => unreachable!(),
};
let (sub_leaf, ecx_place) = match operands[2] {
InlineAsmOperand::InOut { reg, late: true, ref in_value, out_place } => {
assert_eq!(
reg,
InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::cx))
);
(
crate::base::codegen_operand(fx, in_value).load_scalar(fx),
crate::base::codegen_place(fx, out_place.unwrap()),
)
}
_ => unreachable!(),
};
let edx_place = match operands[3] {
InlineAsmOperand::Out { reg, late: true, place } => {
assert_eq!(
reg,
InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx))
);
crate::base::codegen_place(fx, place.unwrap())
}
_ => unreachable!(),
};
let (eax, ebx, ecx, edx) = crate::intrinsics::codegen_cpuid_call(fx, leaf, sub_leaf);
eax_place.write_cvalue(fx, CValue::by_val(eax, fx.layout_of(fx.tcx.types.u32)));
ebx_place.write_cvalue(fx, CValue::by_val(ebx, fx.layout_of(fx.tcx.types.u32)));
ecx_place.write_cvalue(fx, CValue::by_val(ecx, fx.layout_of(fx.tcx.types.u32)));
edx_place.write_cvalue(fx, CValue::by_val(edx, fx.layout_of(fx.tcx.types.u32)));
return;
} else if fx.tcx.symbol_name(fx.instance).name.starts_with("___chkstk") {
// ___chkstk, ___chkstk_ms and __alloca are only used on Windows
crate::trap::trap_unimplemented(fx, "Stack probes are not supported");
} else if fx.tcx.symbol_name(fx.instance).name == "__alloca" {
crate::trap::trap_unimplemented(fx, "Alloca is not supported");
}
let mut inputs = Vec::new();
let mut outputs = Vec::new();
let mut asm_gen = InlineAssemblyGenerator {
tcx: fx.tcx,
arch: fx.tcx.sess.asm_arch.unwrap(),
template,
operands,
options,
registers: Vec::new(),
stack_slots_clobber: Vec::new(),
stack_slots_input: Vec::new(),
stack_slots_output: Vec::new(),
stack_slot_size: Size::from_bytes(0),
};
asm_gen.allocate_registers();
asm_gen.allocate_stack_slots();
let inline_asm_index = fx.cx.inline_asm_index.get();
fx.cx.inline_asm_index.set(inline_asm_index + 1);
let asm_name = format!(
"__inline_asm_{}_n{}",
fx.cx.cgu_name.as_str().replace('.', "__").replace('-', "_"),
inline_asm_index
);
let generated_asm = asm_gen.generate_asm_wrapper(&asm_name);
fx.cx.global_asm.push_str(&generated_asm);
for (i, operand) in operands.iter().enumerate() {
match *operand {
InlineAsmOperand::In { reg: _, ref value } => {
inputs.push((
asm_gen.stack_slots_input[i].unwrap(),
crate::base::codegen_operand(fx, value).load_scalar(fx),
));
}
InlineAsmOperand::Out { reg: _, late: _, place } => {
if let Some(place) = place {
outputs.push((
asm_gen.stack_slots_output[i].unwrap(),
crate::base::codegen_place(fx, place),
));
}
}
InlineAsmOperand::InOut { reg: _, late: _, ref in_value, out_place } => {
inputs.push((
asm_gen.stack_slots_input[i].unwrap(),
crate::base::codegen_operand(fx, in_value).load_scalar(fx),
));
if let Some(out_place) = out_place {
outputs.push((
asm_gen.stack_slots_output[i].unwrap(),
crate::base::codegen_place(fx, out_place),
));
}
}
InlineAsmOperand::Const { value: _ } => todo!(),
InlineAsmOperand::SymFn { value: _ } => todo!(),
InlineAsmOperand::SymStatic { def_id: _ } => todo!(),
}
}
call_inline_asm(fx, &asm_name, asm_gen.stack_slot_size, inputs, outputs);
}
struct InlineAssemblyGenerator<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
arch: InlineAsmArch,
template: &'a [InlineAsmTemplatePiece],
operands: &'a [InlineAsmOperand<'tcx>],
options: InlineAsmOptions,
registers: Vec<Option<InlineAsmReg>>,
stack_slots_clobber: Vec<Option<Size>>,
stack_slots_input: Vec<Option<Size>>,
stack_slots_output: Vec<Option<Size>>,
stack_slot_size: Size,
}
impl<'tcx> InlineAssemblyGenerator<'_, 'tcx> {
fn allocate_registers(&mut self) {
let sess = self.tcx.sess;
let map = allocatable_registers(
self.arch,
|feature| sess.target_features.contains(&Symbol::intern(feature)),
&sess.target,
);
let mut allocated = FxHashMap::<_, (bool, bool)>::default();
let mut regs = vec![None; self.operands.len()];
// Add explicit registers to the allocated set.
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::In { reg: InlineAsmRegOrRegClass::Reg(reg), .. } => {
regs[i] = Some(reg);
allocated.entry(reg).or_default().0 = true;
}
InlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::Reg(reg), late: true, ..
} => {
regs[i] = Some(reg);
allocated.entry(reg).or_default().1 = true;
}
InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(reg), .. }
| InlineAsmOperand::InOut { reg: InlineAsmRegOrRegClass::Reg(reg), .. } => {
regs[i] = Some(reg);
allocated.insert(reg, (true, true));
}
_ => (),
}
}
// Allocate out/inout/inlateout registers first because they are more constrained.
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::RegClass(class),
late: false,
..
}
| InlineAsmOperand::InOut {
reg: InlineAsmRegOrRegClass::RegClass(class), ..
} => {
let mut alloc_reg = None;
for &reg in &map[&class] {
let mut used = false;
reg.overlapping_regs(|r| {
if allocated.contains_key(&r) {
used = true;
}
});
if !used {
alloc_reg = Some(reg);
break;
}
}
let reg = alloc_reg.expect("cannot allocate registers");
regs[i] = Some(reg);
allocated.insert(reg, (true, true));
}
_ => (),
}
}
// Allocate in/lateout.
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::In { reg: InlineAsmRegOrRegClass::RegClass(class), .. } => {
let mut alloc_reg = None;
for &reg in &map[&class] {
let mut used = false;
reg.overlapping_regs(|r| {
if allocated.get(&r).copied().unwrap_or_default().0 {
used = true;
}
});
if !used {
alloc_reg = Some(reg);
break;
}
}
let reg = alloc_reg.expect("cannot allocate registers");
regs[i] = Some(reg);
allocated.entry(reg).or_default().0 = true;
}
InlineAsmOperand::Out {
reg: InlineAsmRegOrRegClass::RegClass(class),
late: true,
..
} => {
let mut alloc_reg = None;
for &reg in &map[&class] {
let mut used = false;
reg.overlapping_regs(|r| {
if allocated.get(&r).copied().unwrap_or_default().1 {
used = true;
}
});
if !used {
alloc_reg = Some(reg);
break;
}
}
let reg = alloc_reg.expect("cannot allocate registers");
regs[i] = Some(reg);
allocated.entry(reg).or_default().1 = true;
}
_ => (),
}
}
self.registers = regs;
}
fn allocate_stack_slots(&mut self) {
let mut slot_size = Size::from_bytes(0);
let mut slots_clobber = vec![None; self.operands.len()];
let mut slots_input = vec![None; self.operands.len()];
let mut slots_output = vec![None; self.operands.len()];
let new_slot_fn = |slot_size: &mut Size, reg_class: InlineAsmRegClass| {
let reg_size =
reg_class.supported_types(self.arch).iter().map(|(ty, _)| ty.size()).max().unwrap();
let align = rustc_target::abi::Align::from_bytes(reg_size.bytes()).unwrap();
let offset = slot_size.align_to(align);
*slot_size = offset + reg_size;
offset
};
let mut new_slot = |x| new_slot_fn(&mut slot_size, x);
// Allocate stack slots for saving clobbered registers
let abi_clobber = InlineAsmClobberAbi::parse(
self.arch,
|feature| self.tcx.sess.target_features.contains(&Symbol::intern(feature)),
&self.tcx.sess.target,
Symbol::intern("C"),
)
.unwrap()
.clobbered_regs();
for (i, reg) in self.registers.iter().enumerate().filter_map(|(i, r)| r.map(|r| (i, r))) {
let mut need_save = true;
// If the register overlaps with a register clobbered by function call, then
// we don't need to save it.
for r in abi_clobber {
r.overlapping_regs(|r| {
if r == reg {
need_save = false;
}
});
if !need_save {
break;
}
}
if need_save {
slots_clobber[i] = Some(new_slot(reg.reg_class()));
}
}
// Allocate stack slots for inout
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::InOut { reg, out_place: Some(_), .. } => {
let slot = new_slot(reg.reg_class());
slots_input[i] = Some(slot);
slots_output[i] = Some(slot);
}
_ => (),
}
}
let slot_size_before_input = slot_size;
let mut new_slot = |x| new_slot_fn(&mut slot_size, x);
// Allocate stack slots for input
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::In { reg, .. }
| InlineAsmOperand::InOut { reg, out_place: None, .. } => {
slots_input[i] = Some(new_slot(reg.reg_class()));
}
_ => (),
}
}
// Reset slot size to before input so that input and output operands can overlap
// and save some memory.
let slot_size_after_input = slot_size;
slot_size = slot_size_before_input;
let mut new_slot = |x| new_slot_fn(&mut slot_size, x);
// Allocate stack slots for output
for (i, operand) in self.operands.iter().enumerate() {
match *operand {
InlineAsmOperand::Out { reg, place: Some(_), .. } => {
slots_output[i] = Some(new_slot(reg.reg_class()));
}
_ => (),
}
}
slot_size = slot_size.max(slot_size_after_input);
self.stack_slots_clobber = slots_clobber;
self.stack_slots_input = slots_input;
self.stack_slots_output = slots_output;
self.stack_slot_size = slot_size;
}
fn generate_asm_wrapper(&self, asm_name: &str) -> String {
let mut generated_asm = String::new();
writeln!(generated_asm, ".globl {}", asm_name).unwrap();
writeln!(generated_asm, ".type {},@function", asm_name).unwrap();
writeln!(generated_asm, ".section .text.{},\"ax\",@progbits", asm_name).unwrap();
writeln!(generated_asm, "{}:", asm_name).unwrap();
let is_x86 = matches!(self.arch, InlineAsmArch::X86 | InlineAsmArch::X86_64);
if is_x86 {
generated_asm.push_str(".intel_syntax noprefix\n");
}
Self::prologue(&mut generated_asm, self.arch);
// Save clobbered registers
if !self.options.contains(InlineAsmOptions::NORETURN) {
for (reg, slot) in self
.registers
.iter()
.zip(self.stack_slots_clobber.iter().copied())
.filter_map(|(r, s)| r.zip(s))
{
Self::save_register(&mut generated_asm, self.arch, reg, slot);
}
}
// Write input registers
for (reg, slot) in self
.registers
.iter()
.zip(self.stack_slots_input.iter().copied())
.filter_map(|(r, s)| r.zip(s))
{
Self::restore_register(&mut generated_asm, self.arch, reg, slot);
}
if is_x86 && self.options.contains(InlineAsmOptions::ATT_SYNTAX) {
generated_asm.push_str(".att_syntax\n");
}
// The actual inline asm
for piece in self.template {
match piece {
InlineAsmTemplatePiece::String(s) => {
generated_asm.push_str(s);
}
InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => {
if self.options.contains(InlineAsmOptions::ATT_SYNTAX) {
generated_asm.push('%');
}
self.registers[*operand_idx]
.unwrap()
.emit(&mut generated_asm, self.arch, *modifier)
.unwrap();
}
}
}
generated_asm.push('\n');
if is_x86 && self.options.contains(InlineAsmOptions::ATT_SYNTAX) {
generated_asm.push_str(".intel_syntax noprefix\n");
}
if !self.options.contains(InlineAsmOptions::NORETURN) {
// Read output registers
for (reg, slot) in self
.registers
.iter()
.zip(self.stack_slots_output.iter().copied())
.filter_map(|(r, s)| r.zip(s))
{
Self::save_register(&mut generated_asm, self.arch, reg, slot);
}
// Restore clobbered registers
for (reg, slot) in self
.registers
.iter()
.zip(self.stack_slots_clobber.iter().copied())
.filter_map(|(r, s)| r.zip(s))
{
Self::restore_register(&mut generated_asm, self.arch, reg, slot);
}
Self::epilogue(&mut generated_asm, self.arch);
} else {
Self::epilogue_noreturn(&mut generated_asm, self.arch);
}
if is_x86 {
generated_asm.push_str(".att_syntax\n");
}
writeln!(generated_asm, ".size {name}, .-{name}", name = asm_name).unwrap();
generated_asm.push_str(".text\n");
generated_asm.push_str("\n\n");
generated_asm
}
fn prologue(generated_asm: &mut String, arch: InlineAsmArch) {
match arch {
InlineAsmArch::X86 => {
generated_asm.push_str(" push ebp\n");
generated_asm.push_str(" mov ebp,[esp+8]\n");
}
InlineAsmArch::X86_64 => {
generated_asm.push_str(" push rbp\n");
generated_asm.push_str(" mov rbp,rdi\n");
}
InlineAsmArch::RiscV32 => {
generated_asm.push_str(" addi sp, sp, -8\n");
generated_asm.push_str(" sw ra, 4(sp)\n");
generated_asm.push_str(" sw s0, 0(sp)\n");
generated_asm.push_str(" mv s0, a0\n");
}
InlineAsmArch::RiscV64 => {
generated_asm.push_str(" addi sp, sp, -16\n");
generated_asm.push_str(" sd ra, 8(sp)\n");
generated_asm.push_str(" sd s0, 0(sp)\n");
generated_asm.push_str(" mv s0, a0\n");
}
_ => unimplemented!("prologue for {:?}", arch),
}
}
fn epilogue(generated_asm: &mut String, arch: InlineAsmArch) {
match arch {
InlineAsmArch::X86 => {
generated_asm.push_str(" pop ebp\n");
generated_asm.push_str(" ret\n");
}
InlineAsmArch::X86_64 => {
generated_asm.push_str(" pop rbp\n");
generated_asm.push_str(" ret\n");
}
InlineAsmArch::RiscV32 => {
generated_asm.push_str(" lw s0, 0(sp)\n");
generated_asm.push_str(" lw ra, 4(sp)\n");
generated_asm.push_str(" addi sp, sp, 8\n");
generated_asm.push_str(" ret\n");
}
InlineAsmArch::RiscV64 => {
generated_asm.push_str(" ld s0, 0(sp)\n");
generated_asm.push_str(" ld ra, 8(sp)\n");
generated_asm.push_str(" addi sp, sp, 16\n");
generated_asm.push_str(" ret\n");
}
_ => unimplemented!("epilogue for {:?}", arch),
}
}
fn epilogue_noreturn(generated_asm: &mut String, arch: InlineAsmArch) {
match arch {
InlineAsmArch::X86 | InlineAsmArch::X86_64 => {
generated_asm.push_str(" ud2\n");
}
InlineAsmArch::RiscV32 | InlineAsmArch::RiscV64 => {
generated_asm.push_str(" ebreak\n");
}
_ => unimplemented!("epilogue_noreturn for {:?}", arch),
}
}
fn save_register(
generated_asm: &mut String,
arch: InlineAsmArch,
reg: InlineAsmReg,
offset: Size,
) {
match arch {
InlineAsmArch::X86 => {
write!(generated_asm, " mov [ebp+0x{:x}], ", offset.bytes()).unwrap();
reg.emit(generated_asm, InlineAsmArch::X86, None).unwrap();
generated_asm.push('\n');
}
InlineAsmArch::X86_64 => {
write!(generated_asm, " mov [rbp+0x{:x}], ", offset.bytes()).unwrap();
reg.emit(generated_asm, InlineAsmArch::X86_64, None).unwrap();
generated_asm.push('\n');
}
InlineAsmArch::RiscV32 => {
generated_asm.push_str(" sw ");
reg.emit(generated_asm, InlineAsmArch::RiscV32, None).unwrap();
writeln!(generated_asm, ", 0x{:x}(s0)", offset.bytes()).unwrap();
}
InlineAsmArch::RiscV64 => {
generated_asm.push_str(" sd ");
reg.emit(generated_asm, InlineAsmArch::RiscV64, None).unwrap();
writeln!(generated_asm, ", 0x{:x}(s0)", offset.bytes()).unwrap();
}
_ => unimplemented!("save_register for {:?}", arch),
}
}
fn restore_register(
generated_asm: &mut String,
arch: InlineAsmArch,
reg: InlineAsmReg,
offset: Size,
) {
match arch {
InlineAsmArch::X86 => {
generated_asm.push_str(" mov ");
reg.emit(generated_asm, InlineAsmArch::X86, None).unwrap();
writeln!(generated_asm, ", [ebp+0x{:x}]", offset.bytes()).unwrap();
}
InlineAsmArch::X86_64 => {
generated_asm.push_str(" mov ");
reg.emit(generated_asm, InlineAsmArch::X86_64, None).unwrap();
writeln!(generated_asm, ", [rbp+0x{:x}]", offset.bytes()).unwrap();
}
InlineAsmArch::RiscV32 => {
generated_asm.push_str(" lw ");
reg.emit(generated_asm, InlineAsmArch::RiscV32, None).unwrap();
writeln!(generated_asm, ", 0x{:x}(s0)", offset.bytes()).unwrap();
}
InlineAsmArch::RiscV64 => {
generated_asm.push_str(" ld ");
reg.emit(generated_asm, InlineAsmArch::RiscV64, None).unwrap();
writeln!(generated_asm, ", 0x{:x}(s0)", offset.bytes()).unwrap();
}
_ => unimplemented!("restore_register for {:?}", arch),
}
}
}
fn call_inline_asm<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
asm_name: &str,
slot_size: Size,
inputs: Vec<(Size, Value)>,
outputs: Vec<(Size, CPlace<'tcx>)>,
) {
let stack_slot = fx.bcx.func.create_stack_slot(StackSlotData {
kind: StackSlotKind::ExplicitSlot,
size: u32::try_from(slot_size.bytes()).unwrap(),
});
if fx.clif_comments.enabled() {
fx.add_comment(stack_slot, "inline asm scratch slot");
}
let inline_asm_func = fx
.module
.declare_function(
asm_name,
Linkage::Import,
&Signature {
call_conv: CallConv::SystemV,
params: vec![AbiParam::new(fx.pointer_type)],
returns: vec![],
},
)
.unwrap();
let inline_asm_func = fx.module.declare_func_in_func(inline_asm_func, &mut fx.bcx.func);
if fx.clif_comments.enabled() {
fx.add_comment(inline_asm_func, asm_name);
}
for (offset, value) in inputs {
fx.bcx.ins().stack_store(value, stack_slot, i32::try_from(offset.bytes()).unwrap());
}
let stack_slot_addr = fx.bcx.ins().stack_addr(fx.pointer_type, stack_slot, 0);
fx.bcx.ins().call(inline_asm_func, &[stack_slot_addr]);
for (offset, place) in outputs {
let ty = fx.clif_type(place.layout().ty).unwrap();
let value = fx.bcx.ins().stack_load(ty, stack_slot, i32::try_from(offset.bytes()).unwrap());
place.write_cvalue(fx, CValue::by_val(value, place.layout()));
}
}