rust/src/librustc/middle/check_match.rs
Simonas Kazlauskas 7a90865db5 Implement RFC 1058
2015-07-12 00:47:56 +03:00

1223 lines
46 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use middle::const_eval::{compare_const_vals, ConstVal};
use middle::const_eval::{eval_const_expr, eval_const_expr_partial};
use middle::const_eval::{const_expr_to_pat, lookup_const_by_id};
use middle::def::*;
use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor, Init};
use middle::expr_use_visitor::{JustWrite, LoanCause, MutateMode};
use middle::expr_use_visitor::WriteAndRead;
use middle::expr_use_visitor as euv;
use middle::infer;
use middle::mem_categorization::{cmt};
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use std::cmp::Ordering;
use std::fmt;
use std::iter::{range_inclusive, FromIterator, IntoIterator, repeat};
use std::slice;
use syntax::ast::{self, DUMMY_NODE_ID, NodeId, Pat};
use syntax::ast_util;
use syntax::codemap::{Span, Spanned, DUMMY_SP};
use syntax::fold::{Folder, noop_fold_pat};
use syntax::print::pprust::pat_to_string;
use syntax::parse::token;
use syntax::ptr::P;
use syntax::visit::{self, Visitor, FnKind};
use util::nodemap::FnvHashMap;
pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
id: DUMMY_NODE_ID,
node: ast::PatWild(ast::PatWildSingle),
span: DUMMY_SP
};
struct Matrix<'a>(Vec<Vec<&'a Pat>>);
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a> fmt::Debug for Matrix<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "\n"));
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter()
.map(|&pat| pat_to_string(&*pat))
.collect::<Vec<String>>()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
try!(write!(f, "{}\n", br));
for row in pretty_printed_matrix {
try!(write!(f, "+"));
for (column, pat_str) in row.into_iter().enumerate() {
try!(write!(f, " "));
try!(write!(f, "{:1$}", pat_str, column_widths[column]));
try!(write!(f, " +"));
}
try!(write!(f, "\n"));
try!(write!(f, "{}\n", br));
}
Ok(())
}
}
impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pat>>>(iter: T) -> Matrix<'a> {
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>,
pub param_env: ParameterEnvironment<'a, 'tcx>,
}
#[derive(Clone, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(ast::DefId),
/// Literal values.
ConstantValue(ConstVal),
/// Ranges of literal values (2..5).
ConstantRange(ConstVal, ConstVal),
/// Array patterns of length n.
Slice(usize),
/// Array patterns with a subslice.
SliceWithSubslice(usize, usize)
}
#[derive(Clone, PartialEq)]
enum Usefulness {
Useful,
UsefulWithWitness(Vec<P<Pat>>),
NotUseful
}
#[derive(Copy, Clone)]
enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
fn visit_expr(&mut self, ex: &ast::Expr) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &ast::Local) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v ast::FnDecl,
b: &'v ast::Block, s: Span, n: NodeId) {
check_fn(self, fk, fd, b, s, n);
}
}
pub fn check_crate(tcx: &ty::ctxt) {
visit::walk_crate(&mut MatchCheckCtxt {
tcx: tcx,
param_env: tcx.empty_parameter_environment(),
}, tcx.map.krate());
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &ast::Expr) {
visit::walk_expr(cx, ex);
match ex.node {
ast::ExprMatch(ref scrut, ref arms, source) => {
for arm in arms {
// First, check legality of move bindings.
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
&arm.pats);
// Second, if there is a guard on each arm, make sure it isn't
// assigning or borrowing anything mutably.
match arm.guard {
Some(ref guard) => check_for_mutation_in_guard(cx, &**guard),
None => {}
}
}
let mut static_inliner = StaticInliner::new(cx.tcx, None);
let inlined_arms = arms.iter().map(|arm| {
(arm.pats.iter().map(|pat| {
static_inliner.fold_pat((*pat).clone())
}).collect(), arm.guard.as_ref().map(|e| &**e))
}).collect::<Vec<(Vec<P<Pat>>, Option<&ast::Expr>)>>();
// Bail out early if inlining failed.
if static_inliner.failed {
return;
}
for pat in inlined_arms
.iter()
.flat_map(|&(ref pats, _)| pats) {
// Third, check legality of move bindings.
check_legality_of_bindings_in_at_patterns(cx, &**pat);
// Fourth, check if there are any references to NaN that we should warn about.
check_for_static_nan(cx, &**pat);
// Fifth, check if for any of the patterns that match an enumerated type
// are bindings with the same name as one of the variants of said type.
check_for_bindings_named_the_same_as_variants(cx, &**pat);
}
// Fourth, check for unreachable arms.
check_arms(cx, &inlined_arms[..], source);
// Finally, check if the whole match expression is exhaustive.
// Check for empty enum, because is_useful only works on inhabited types.
let pat_ty = cx.tcx.node_id_to_type(scrut.id);
if inlined_arms.is_empty() {
if !pat_ty.is_empty(cx.tcx) {
// We know the type is inhabited, so this must be wrong
span_err!(cx.tcx.sess, ex.span, E0002,
"non-exhaustive patterns: type {} is non-empty",
pat_ty);
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
let matrix: Matrix = inlined_arms
.iter()
.filter(|&&(_, guard)| guard.is_none())
.flat_map(|arm| &arm.0)
.map(|pat| vec![&**pat])
.collect();
check_exhaustive(cx, ex.span, &matrix, source);
},
_ => ()
}
}
fn check_for_bindings_named_the_same_as_variants(cx: &MatchCheckCtxt, pat: &Pat) {
ast_util::walk_pat(pat, |p| {
match p.node {
ast::PatIdent(ast::BindByValue(ast::MutImmutable), ident, None) => {
let pat_ty = cx.tcx.pat_ty(p);
if let ty::TyEnum(def_id, _) = pat_ty.sty {
let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def());
if let Some(DefLocal(_)) = def {
if cx.tcx.enum_variants(def_id).iter().any(|variant|
token::get_name(variant.name) == token::get_name(ident.node.name)
&& variant.args.is_empty()
) {
span_warn!(cx.tcx.sess, p.span, E0170,
"pattern binding `{}` is named the same as one \
of the variants of the type `{}`",
&token::get_ident(ident.node), pat_ty);
fileline_help!(cx.tcx.sess, p.span,
"if you meant to match on a variant, \
consider making the path in the pattern qualified: `{}::{}`",
pat_ty, &token::get_ident(ident.node));
}
}
}
}
_ => ()
}
true
});
}
// Check that we do not match against a static NaN (#6804)
fn check_for_static_nan(cx: &MatchCheckCtxt, pat: &Pat) {
ast_util::walk_pat(pat, |p| {
if let ast::PatLit(ref expr) = p.node {
match eval_const_expr_partial(cx.tcx, &**expr, None) {
Ok(ConstVal::Float(f)) if f.is_nan() => {
span_warn!(cx.tcx.sess, p.span, E0003,
"unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
Ok(_) => {}
Err(err) => {
let subspan = p.span.lo <= err.span.lo && err.span.hi <= p.span.hi;
cx.tcx.sess.span_err(err.span,
&format!("constant evaluation error: {}",
err.description()));
if !subspan {
cx.tcx.sess.span_note(p.span,
"in pattern here")
}
}
}
}
true
});
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt,
arms: &[(Vec<P<Pat>>, Option<&ast::Expr>)],
source: ast::MatchSource) {
let mut seen = Matrix(vec![]);
let mut printed_if_let_err = false;
for &(ref pats, guard) in arms {
for pat in pats {
let v = vec![&**pat];
match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
NotUseful => {
match source {
ast::MatchSource::IfLetDesugar { .. } => {
if printed_if_let_err {
// we already printed an irrefutable if-let pattern error.
// We don't want two, that's just confusing.
} else {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
printed_if_let_err = true;
}
},
ast::MatchSource::WhileLetDesugar => {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
},
ast::MatchSource::ForLoopDesugar => {
// this is a bug, because on `match iter.next()` we cover
// `Some(<head>)` and `None`. It's impossible to have an unreachable
// pattern
// (see libsyntax/ext/expand.rs for the full expansion of a for loop)
cx.tcx.sess.span_bug(pat.span, "unreachable for-loop pattern")
},
ast::MatchSource::Normal => {
span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern")
},
}
}
Useful => (),
UsefulWithWitness(_) => unreachable!()
}
if guard.is_none() {
let Matrix(mut rows) = seen;
rows.push(v);
seen = Matrix(rows);
}
}
}
}
fn raw_pat<'a>(p: &'a Pat) -> &'a Pat {
match p.node {
ast::PatIdent(_, _, Some(ref s)) => raw_pat(&**s),
_ => p
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix, source: ast::MatchSource) {
match is_useful(cx, matrix, &[DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
let witness = match &pats[..] {
[ref witness] => &**witness,
[] => DUMMY_WILD_PAT,
_ => unreachable!()
};
match source {
ast::MatchSource::ForLoopDesugar => {
// `witness` has the form `Some(<head>)`, peel off the `Some`
let witness = match witness.node {
ast::PatEnum(_, Some(ref pats)) => match &pats[..] {
[ref pat] => &**pat,
_ => unreachable!(),
},
_ => unreachable!(),
};
span_err!(cx.tcx.sess, sp, E0297,
"refutable pattern in `for` loop binding: \
`{}` not covered",
pat_to_string(witness));
},
_ => {
span_err!(cx.tcx.sess, sp, E0004,
"non-exhaustive patterns: `{}` not covered",
pat_to_string(witness)
);
},
}
}
NotUseful => {
// This is good, wildcard pattern isn't reachable
},
_ => unreachable!()
}
}
fn const_val_to_expr(value: &ConstVal) -> P<ast::Expr> {
let node = match value {
&ConstVal::Bool(b) => ast::LitBool(b),
_ => unreachable!()
};
P(ast::Expr {
id: 0,
node: ast::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP
})
}
pub struct StaticInliner<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>,
pub failed: bool,
pub renaming_map: Option<&'a mut FnvHashMap<(NodeId, Span), NodeId>>,
}
impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
pub fn new<'b>(tcx: &'b ty::ctxt<'tcx>,
renaming_map: Option<&'b mut FnvHashMap<(NodeId, Span), NodeId>>)
-> StaticInliner<'b, 'tcx> {
StaticInliner {
tcx: tcx,
failed: false,
renaming_map: renaming_map
}
}
}
struct RenamingRecorder<'map> {
substituted_node_id: NodeId,
origin_span: Span,
renaming_map: &'map mut FnvHashMap<(NodeId, Span), NodeId>
}
impl<'map> ast_util::IdVisitingOperation for RenamingRecorder<'map> {
fn visit_id(&mut self, node_id: NodeId) {
let key = (node_id, self.origin_span);
self.renaming_map.insert(key, self.substituted_node_id);
}
}
impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
return match pat.node {
ast::PatIdent(..) | ast::PatEnum(..) | ast::PatQPath(..) => {
let def = self.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def());
match def {
Some(DefAssociatedConst(did, _)) |
Some(DefConst(did)) => match lookup_const_by_id(self.tcx, did, Some(pat.id)) {
Some(const_expr) => {
const_expr_to_pat(self.tcx, const_expr, pat.span).map(|new_pat| {
if let Some(ref mut renaming_map) = self.renaming_map {
// Record any renamings we do here
record_renamings(const_expr, &pat, renaming_map);
}
new_pat
})
}
None => {
self.failed = true;
span_err!(self.tcx.sess, pat.span, E0158,
"statics cannot be referenced in patterns");
pat
}
},
_ => noop_fold_pat(pat, self)
}
}
_ => noop_fold_pat(pat, self)
};
fn record_renamings(const_expr: &ast::Expr,
substituted_pat: &ast::Pat,
renaming_map: &mut FnvHashMap<(NodeId, Span), NodeId>) {
let mut renaming_recorder = RenamingRecorder {
substituted_node_id: substituted_pat.id,
origin_span: substituted_pat.span,
renaming_map: renaming_map,
};
let mut id_visitor = ast_util::IdVisitor {
operation: &mut renaming_recorder,
pass_through_items: true,
visited_outermost: false,
};
id_visitor.visit_expr(const_expr);
}
}
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn construct_witness(cx: &MatchCheckCtxt, ctor: &Constructor,
pats: Vec<&Pat>, left_ty: Ty) -> P<Pat> {
let pats_len = pats.len();
let mut pats = pats.into_iter().map(|p| P((*p).clone()));
let pat = match left_ty.sty {
ty::TyTuple(_) => ast::PatTup(pats.collect()),
ty::TyEnum(cid, _) | ty::TyStruct(cid, _) => {
let (vid, is_structure) = match ctor {
&Variant(vid) =>
(vid, cx.tcx.enum_variant_with_id(cid, vid).arg_names.is_some()),
_ =>
(cid, !cx.tcx.is_tuple_struct(cid))
};
if is_structure {
let fields = cx.tcx.lookup_struct_fields(vid);
let field_pats: Vec<_> = fields.into_iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != ast::PatWild(ast::PatWildSingle))
.map(|(field, pat)| Spanned {
span: DUMMY_SP,
node: ast::FieldPat {
ident: ast::Ident::new(field.name),
pat: pat,
is_shorthand: false,
}
}).collect();
let has_more_fields = field_pats.len() < pats_len;
ast::PatStruct(def_to_path(cx.tcx, vid), field_pats, has_more_fields)
} else {
ast::PatEnum(def_to_path(cx.tcx, vid), Some(pats.collect()))
}
}
ty::TyRef(_, ty::mt { ty, mutbl }) => {
match ty.sty {
ty::TyArray(_, n) => match ctor {
&Single => {
assert_eq!(pats_len, n);
ast::PatVec(pats.collect(), None, vec!())
},
_ => unreachable!()
},
ty::TySlice(_) => match ctor {
&Slice(n) => {
assert_eq!(pats_len, n);
ast::PatVec(pats.collect(), None, vec!())
},
_ => unreachable!()
},
ty::TyStr => ast::PatWild(ast::PatWildSingle),
_ => {
assert_eq!(pats_len, 1);
ast::PatRegion(pats.nth(0).unwrap(), mutbl)
}
}
}
ty::TyArray(_, len) => {
assert_eq!(pats_len, len);
ast::PatVec(pats.collect(), None, vec![])
}
_ => {
match *ctor {
ConstantValue(ref v) => ast::PatLit(const_val_to_expr(v)),
_ => ast::PatWild(ast::PatWildSingle),
}
}
};
P(ast::Pat {
id: 0,
node: pat,
span: DUMMY_SP
})
}
fn missing_constructor(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
left_ty: Ty, max_slice_length: usize) -> Option<Constructor> {
let used_constructors: Vec<Constructor> = rows.iter()
.flat_map(|row| pat_constructors(cx, row[0], left_ty, max_slice_length))
.collect();
all_constructors(cx, left_ty, max_slice_length)
.into_iter()
.find(|c| !used_constructors.contains(c))
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(cx: &MatchCheckCtxt, left_ty: Ty,
max_slice_length: usize) -> Vec<Constructor> {
match left_ty.sty {
ty::TyBool =>
[true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
ty::TyRef(_, ty::mt { ty, .. }) => match ty.sty {
ty::TySlice(_) =>
range_inclusive(0, max_slice_length).map(|length| Slice(length)).collect(),
_ => vec!(Single)
},
ty::TyEnum(eid, _) =>
cx.tcx.enum_variants(eid)
.iter()
.map(|va| Variant(va.id))
.collect(),
_ =>
vec!(Single)
}
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt,
matrix: &Matrix,
v: &[&Pat],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("{:?}", matrix);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec!()),
LeaveOutWitness => Useful
};
}
if rows[0].is_empty() {
return NotUseful;
}
assert!(rows.iter().all(|r| r.len() == v.len()));
let real_pat = match rows.iter().find(|r| (*r)[0].id != DUMMY_NODE_ID) {
Some(r) => raw_pat(r[0]),
None if v.is_empty() => return NotUseful,
None => v[0]
};
let left_ty = if real_pat.id == DUMMY_NODE_ID {
cx.tcx.mk_nil()
} else {
let left_ty = cx.tcx.pat_ty(&*real_pat);
match real_pat.node {
ast::PatIdent(ast::BindByRef(..), _, _) => {
left_ty.builtin_deref(false).unwrap().ty
}
_ => left_ty,
}
};
let max_slice_length = rows.iter().filter_map(|row| match row[0].node {
ast::PatVec(ref before, _, ref after) => Some(before.len() + after.len()),
_ => None
}).max().map_or(0, |v| v + 1);
let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
if constructors.is_empty() {
match missing_constructor(cx, matrix, left_ty, max_slice_length) {
None => {
all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
UsefulWithWitness(pats) => UsefulWithWitness({
let arity = constructor_arity(cx, &c, left_ty);
let mut result = {
let pat_slice = &pats[..];
let subpats: Vec<_> = (0..arity).map(|i| {
pat_slice.get(i).map_or(DUMMY_WILD_PAT, |p| &**p)
}).collect();
vec![construct_witness(cx, &c, subpats, left_ty)]
};
result.extend(pats.into_iter().skip(arity));
result
}),
result => result
}
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
},
Some(constructor) => {
let matrix = rows.iter().filter_map(|r| {
if pat_is_binding_or_wild(&cx.tcx.def_map, raw_pat(r[0])) {
Some(r[1..].to_vec())
} else {
None
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let arity = constructor_arity(cx, &constructor, left_ty);
let wild_pats = vec![DUMMY_WILD_PAT; arity];
let enum_pat = construct_witness(cx, &constructor, wild_pats, left_ty);
let mut new_pats = vec![enum_pat];
new_pats.extend(pats);
UsefulWithWitness(new_pats)
},
result => result
}
}
}
} else {
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
v: &[&Pat], ctor: Constructor, lty: Ty,
witness: WitnessPreference) -> Usefulness {
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().filter_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
}).collect());
match specialize(cx, v, &ctor, 0, arity) {
Some(v) => is_useful(cx, &matrix, &v[..], witness),
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// On the other hand, a wild pattern and an identifier pattern cannot be
/// specialized in any way.
fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let pat = raw_pat(p);
match pat.node {
ast::PatIdent(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(DefStruct(_)) => vec!(Single),
Some(DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!()
},
ast::PatEnum(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!(Single)
},
ast::PatQPath(..) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
ast::PatStruct(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(DefVariant(_, id, _)) => vec!(Variant(id)),
_ => vec!(Single)
},
ast::PatLit(ref expr) =>
vec!(ConstantValue(eval_const_expr(cx.tcx, &**expr))),
ast::PatRange(ref lo, ref hi) =>
vec!(ConstantRange(eval_const_expr(cx.tcx, &**lo), eval_const_expr(cx.tcx, &**hi))),
ast::PatVec(ref before, ref slice, ref after) =>
match left_ty.sty {
ty::TyArray(_, _) => vec!(Single),
_ => if slice.is_some() {
range_inclusive(before.len() + after.len(), max_slice_length)
.map(|length| Slice(length))
.collect()
} else {
vec!(Slice(before.len() + after.len()))
}
},
ast::PatBox(_) | ast::PatTup(_) | ast::PatRegion(..) =>
vec!(Single),
ast::PatWild(_) =>
vec!(),
ast::PatMac(_) =>
cx.tcx.sess.bug("unexpanded macro")
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
pub fn constructor_arity(cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
match ty.sty {
ty::TyTuple(ref fs) => fs.len(),
ty::TyBox(_) => 1,
ty::TyRef(_, ty::mt { ty, .. }) => match ty.sty {
ty::TySlice(_) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => unreachable!()
},
ty::TyStr => 0,
_ => 1
},
ty::TyEnum(eid, _) => {
match *ctor {
Variant(id) => cx.tcx.enum_variant_with_id(eid, id).args.len(),
_ => unreachable!()
}
}
ty::TyStruct(cid, _) => cx.tcx.lookup_struct_fields(cid).len(),
ty::TyArray(_, n) => n,
_ => 0
}
}
fn range_covered_by_constructor(ctor: &Constructor,
from: &ConstVal, to: &ConstVal) -> Option<bool> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Some(true),
_ => unreachable!()
};
let cmp_from = compare_const_vals(c_from, from);
let cmp_to = compare_const_vals(c_to, to);
match (cmp_from, cmp_to) {
(Some(cmp_from), Some(cmp_to)) => {
Some(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
}
_ => None
}
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
constructor: &Constructor, col: usize, arity: usize) -> Option<Vec<&'a Pat>> {
let &Pat {
id: pat_id, ref node, span: pat_span
} = raw_pat(r[col]);
let head: Option<Vec<&Pat>> = match *node {
ast::PatWild(_) =>
Some(vec![DUMMY_WILD_PAT; arity]),
ast::PatIdent(_, _, _) => {
let opt_def = cx.tcx.def_map.borrow().get(&pat_id).map(|d| d.full_def());
match opt_def {
Some(DefConst(..)) | Some(DefAssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
Some(DefVariant(_, id, _)) => if *constructor == Variant(id) {
Some(vec!())
} else {
None
},
_ => Some(vec![DUMMY_WILD_PAT; arity])
}
}
ast::PatEnum(_, ref args) => {
let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
match def {
DefConst(..) | DefAssociatedConst(..) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
DefVariant(_, id, _) if *constructor != Variant(id) => None,
DefVariant(..) | DefStruct(..) => {
Some(match args {
&Some(ref args) => args.iter().map(|p| &**p).collect(),
&None => vec![DUMMY_WILD_PAT; arity],
})
}
_ => None
}
}
ast::PatQPath(_, _) => {
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten")
}
ast::PatStruct(_, ref pattern_fields, _) => {
// Is this a struct or an enum variant?
let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
let class_id = match def {
DefConst(..) | DefAssociatedConst(..) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
DefVariant(_, variant_id, _) => if *constructor == Variant(variant_id) {
Some(variant_id)
} else {
None
},
_ => {
// Assume this is a struct.
match cx.tcx.node_id_to_type(pat_id).ty_to_def_id() {
None => {
cx.tcx.sess.span_bug(pat_span,
"struct pattern wasn't of a \
type with a def ID?!")
}
Some(def_id) => Some(def_id),
}
}
};
class_id.map(|variant_id| {
let struct_fields = cx.tcx.lookup_struct_fields(variant_id);
let args = struct_fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.node.ident.name == sf.name) {
Some(ref f) => &*f.node.pat,
_ => DUMMY_WILD_PAT
}
}).collect();
args
})
}
ast::PatTup(ref args) =>
Some(args.iter().map(|p| &**p).collect()),
ast::PatBox(ref inner) | ast::PatRegion(ref inner, _) =>
Some(vec![&**inner]),
ast::PatLit(ref expr) => {
let expr_value = eval_const_expr(cx.tcx, &**expr);
match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
None
}
}
}
ast::PatRange(ref from, ref to) => {
let from_value = eval_const_expr(cx.tcx, &**from);
let to_value = eval_const_expr(cx.tcx, &**to);
match range_covered_by_constructor(constructor, &from_value, &to_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0299, "mismatched types between arms");
None
}
}
}
ast::PatVec(ref before, ref slice, ref after) => {
match *constructor {
// Fixed-length vectors.
Single => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() <= length && slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() == length => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
SliceWithSubslice(prefix, suffix)
if before.len() == prefix
&& after.len() == suffix
&& slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
}
_ => None
}
}
ast::PatMac(_) => {
span_err!(cx.tcx.sess, pat_span, E0300, "unexpanded macro");
None
}
};
head.map(|mut head| {
head.push_all(&r[..col]);
head.push_all(&r[col + 1..]);
head
})
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &ast::Local) {
visit::walk_local(cx, loc);
let name = match loc.source {
ast::LocalLet => "local",
ast::LocalFor => "`for` loop"
};
let mut static_inliner = StaticInliner::new(cx.tcx, None);
is_refutable(cx, &*static_inliner.fold_pat(loc.pat.clone()), |pat| {
span_err!(cx.tcx.sess, loc.pat.span, E0005,
"refutable pattern in {} binding: `{}` not covered",
name, pat_to_string(pat)
);
});
// Check legality of move bindings and `@` patterns.
check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
check_legality_of_bindings_in_at_patterns(cx, &*loc.pat);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: FnKind,
decl: &ast::FnDecl,
body: &ast::Block,
sp: Span,
fn_id: NodeId) {
match kind {
visit::FkFnBlock => {}
_ => cx.param_env = ParameterEnvironment::for_item(cx.tcx, fn_id),
}
visit::walk_fn(cx, kind, decl, body, sp);
for input in &decl.inputs {
is_refutable(cx, &*input.pat, |pat| {
span_err!(cx.tcx.sess, input.pat.span, E0006,
"refutable pattern in function argument: `{}` not covered",
pat_to_string(pat)
);
});
check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
check_legality_of_bindings_in_at_patterns(cx, &*input.pat);
}
}
fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
F: FnOnce(&Pat) -> A,
{
let pats = Matrix(vec!(vec!(pat)));
match is_useful(cx, &pats, &[DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
assert_eq!(pats.len(), 1);
Some(refutable(&*pats[0]))
},
NotUseful => None,
Useful => unreachable!()
}
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[P<Pat>]) {
let tcx = cx.tcx;
let def_map = &tcx.def_map;
let mut by_ref_span = None;
for pat in pats {
pat_bindings(def_map, &**pat, |bm, _, span, _path| {
match bm {
ast::BindByRef(_) => {
by_ref_span = Some(span);
}
ast::BindByValue(_) => {
}
}
})
}
let check_move = |p: &Pat, sub: Option<&Pat>| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(def_map, &*p)) {
span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
} else if has_guard {
span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
span_err!(cx.tcx.sess, p.span, E0009,
"cannot bind by-move and by-ref in the same pattern");
span_note!(cx.tcx.sess, by_ref_span.unwrap(), "by-ref binding occurs here");
}
};
for pat in pats {
ast_util::walk_pat(&**pat, |p| {
if pat_is_binding(def_map, &*p) {
match p.node {
ast::PatIdent(ast::BindByValue(_), _, ref sub) => {
let pat_ty = tcx.node_id_to_type(p.id);
//FIXME: (@jroesch) this code should be floated up as well
let infcx = infer::new_infer_ctxt(cx.tcx,
&cx.tcx.tables,
Some(cx.param_env.clone()),
false);
if infcx.type_moves_by_default(pat_ty, pat.span) {
check_move(p, sub.as_ref().map(|p| &**p));
}
}
ast::PatIdent(ast::BindByRef(_), _, _) => {
}
_ => {
cx.tcx.sess.span_bug(
p.span,
&format!("binding pattern {} is not an \
identifier: {:?}",
p.id,
p.node));
}
}
}
true
});
}
}
/// Ensures that a pattern guard doesn't borrow by mutable reference or
/// assign.
fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>,
guard: &ast::Expr) {
let mut checker = MutationChecker {
cx: cx,
};
let infcx = infer::new_infer_ctxt(cx.tcx,
&cx.tcx.tables,
Some(checker.cx.param_env.clone()),
false);
let mut visitor = ExprUseVisitor::new(&mut checker, &infcx);
visitor.walk_expr(guard);
}
struct MutationChecker<'a, 'tcx: 'a> {
cx: &'a MatchCheckCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> Delegate<'tcx> for MutationChecker<'a, 'tcx> {
fn matched_pat(&mut self, _: &Pat, _: cmt, _: euv::MatchMode) {}
fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
fn borrow(&mut self,
_: NodeId,
span: Span,
_: cmt,
_: Region,
kind: BorrowKind,
_: LoanCause) {
match kind {
MutBorrow => {
span_err!(self.cx.tcx.sess, span, E0301,
"cannot mutably borrow in a pattern guard")
}
ImmBorrow | UniqueImmBorrow => {}
}
}
fn decl_without_init(&mut self, _: NodeId, _: Span) {}
fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
match mode {
JustWrite | WriteAndRead => {
span_err!(self.cx.tcx.sess, span, E0302, "cannot assign in a pattern guard")
}
Init => {}
}
}
}
/// Forbids bindings in `@` patterns. This is necessary for memory safety,
/// because of the way rvalues are handled in the borrow check. (See issue
/// #14587.)
fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
}
struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
cx: &'a MatchCheckCtxt<'b, 'tcx>,
bindings_allowed: bool
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
fn visit_pat(&mut self, pat: &Pat) {
if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map, pat) {
span_err!(self.cx.tcx.sess, pat.span, E0303,
"pattern bindings are not allowed \
after an `@`");
}
match pat.node {
ast::PatIdent(_, _, Some(_)) => {
let bindings_were_allowed = self.bindings_allowed;
self.bindings_allowed = false;
visit::walk_pat(self, pat);
self.bindings_allowed = bindings_were_allowed;
}
_ => visit::walk_pat(self, pat),
}
}
}