4ca1b19fde
This commit is an implementation of LLVM's ThinLTO for consumption in rustc itself. Currently today LTO works by merging all relevant LLVM modules into one and then running optimization passes. "Thin" LTO operates differently by having more sharded work and allowing parallelism opportunities between optimizing codegen units. Further down the road Thin LTO also allows *incremental* LTO which should enable even faster release builds without compromising on the performance we have today. This commit uses a `-Z thinlto` flag to gate whether ThinLTO is enabled. It then also implements two forms of ThinLTO: * In one mode we'll *only* perform ThinLTO over the codegen units produced in a single compilation. That is, we won't load upstream rlibs, but we'll instead just perform ThinLTO amongst all codegen units produced by the compiler for the local crate. This is intended to emulate a desired end point where we have codegen units turned on by default for all crates and ThinLTO allows us to do this without performance loss. * In anther mode, like full LTO today, we'll optimize all upstream dependencies in "thin" mode. Unlike today, however, this LTO step is fully parallelized so should finish much more quickly. There's a good bit of comments about what the implementation is doing and where it came from, but the tl;dr; is that currently most of the support here is copied from upstream LLVM. This code duplication is done for a number of reasons: * Controlling parallelism means we can use the existing jobserver support to avoid overloading machines. * We will likely want a slightly different form of incremental caching which integrates with our own incremental strategy, but this is yet to be determined. * This buys us some flexibility about when/where we run ThinLTO, as well as having it tailored to fit our needs for the time being. * Finally this allows us to reuse some artifacts such as our `TargetMachine` creation, where all our options we used today aren't necessarily supported by upstream LLVM yet. My hope is that we can get some experience with this copy/paste in tree and then eventually upstream some work to LLVM itself to avoid the duplication while still ensuring our needs are met. Otherwise I fear that maintaining these bindings may be quite costly over the years with LLVM updates!
279 lines
8.6 KiB
Rust
279 lines
8.6 KiB
Rust
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use std::collections::HashMap;
|
|
use std::fs::File;
|
|
use std::io::prelude::*;
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
use std::sync::{Arc, Mutex};
|
|
use std::time::Instant;
|
|
|
|
const OUTPUT_WIDTH_IN_PX: u64 = 1000;
|
|
const TIME_LINE_HEIGHT_IN_PX: u64 = 20;
|
|
const TIME_LINE_HEIGHT_STRIDE_IN_PX: usize = 30;
|
|
|
|
#[derive(Clone)]
|
|
struct Timing {
|
|
start: Instant,
|
|
end: Instant,
|
|
work_package_kind: WorkPackageKind,
|
|
name: String,
|
|
events: Vec<(String, Instant)>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Hash, Eq, PartialEq, Debug)]
|
|
pub struct TimelineId(pub usize);
|
|
|
|
#[derive(Clone)]
|
|
struct PerThread {
|
|
timings: Vec<Timing>,
|
|
open_work_package: Option<(Instant, WorkPackageKind, String)>,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct TimeGraph {
|
|
data: Arc<Mutex<HashMap<TimelineId, PerThread>>>,
|
|
}
|
|
|
|
#[derive(Clone, Copy)]
|
|
pub struct WorkPackageKind(pub &'static [&'static str]);
|
|
|
|
pub struct Timeline {
|
|
token: Option<RaiiToken>,
|
|
}
|
|
|
|
struct RaiiToken {
|
|
graph: TimeGraph,
|
|
timeline: TimelineId,
|
|
events: Vec<(String, Instant)>,
|
|
// The token must not be Send:
|
|
_marker: PhantomData<*const ()>
|
|
}
|
|
|
|
|
|
impl Drop for RaiiToken {
|
|
fn drop(&mut self) {
|
|
self.graph.end(self.timeline, mem::replace(&mut self.events, Vec::new()));
|
|
}
|
|
}
|
|
|
|
impl TimeGraph {
|
|
pub fn new() -> TimeGraph {
|
|
TimeGraph {
|
|
data: Arc::new(Mutex::new(HashMap::new()))
|
|
}
|
|
}
|
|
|
|
pub fn start(&self,
|
|
timeline: TimelineId,
|
|
work_package_kind: WorkPackageKind,
|
|
name: &str) -> Timeline {
|
|
{
|
|
let mut table = self.data.lock().unwrap();
|
|
|
|
let data = table.entry(timeline).or_insert(PerThread {
|
|
timings: Vec::new(),
|
|
open_work_package: None,
|
|
});
|
|
|
|
assert!(data.open_work_package.is_none());
|
|
data.open_work_package = Some((Instant::now(), work_package_kind, name.to_string()));
|
|
}
|
|
|
|
Timeline {
|
|
token: Some(RaiiToken {
|
|
graph: self.clone(),
|
|
timeline,
|
|
events: Vec::new(),
|
|
_marker: PhantomData,
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn end(&self, timeline: TimelineId, events: Vec<(String, Instant)>) {
|
|
let end = Instant::now();
|
|
|
|
let mut table = self.data.lock().unwrap();
|
|
let data = table.get_mut(&timeline).unwrap();
|
|
|
|
if let Some((start, work_package_kind, name)) = data.open_work_package.take() {
|
|
data.timings.push(Timing {
|
|
start,
|
|
end,
|
|
work_package_kind,
|
|
name,
|
|
events,
|
|
});
|
|
} else {
|
|
bug!("end timing without start?")
|
|
}
|
|
}
|
|
|
|
pub fn dump(&self, output_filename: &str) {
|
|
let table = self.data.lock().unwrap();
|
|
|
|
for data in table.values() {
|
|
assert!(data.open_work_package.is_none());
|
|
}
|
|
|
|
let mut threads: Vec<PerThread> =
|
|
table.values().map(|data| data.clone()).collect();
|
|
|
|
threads.sort_by_key(|timeline| timeline.timings[0].start);
|
|
|
|
let earliest_instant = threads[0].timings[0].start;
|
|
let latest_instant = threads.iter()
|
|
.map(|timeline| timeline.timings
|
|
.last()
|
|
.unwrap()
|
|
.end)
|
|
.max()
|
|
.unwrap();
|
|
let max_distance = distance(earliest_instant, latest_instant);
|
|
|
|
let mut file = File::create(format!("{}.html", output_filename)).unwrap();
|
|
|
|
writeln!(file, "
|
|
<html>
|
|
<head>
|
|
<style>
|
|
#threads a {{
|
|
position: absolute;
|
|
overflow: hidden;
|
|
}}
|
|
#threads {{
|
|
height: {total_height}px;
|
|
width: {width}px;
|
|
}}
|
|
|
|
.timeline {{
|
|
display: none;
|
|
width: {width}px;
|
|
position: relative;
|
|
}}
|
|
|
|
.timeline:target {{
|
|
display: block;
|
|
}}
|
|
|
|
.event {{
|
|
position: absolute;
|
|
}}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<div id='threads'>
|
|
",
|
|
total_height = threads.len() * TIME_LINE_HEIGHT_STRIDE_IN_PX,
|
|
width = OUTPUT_WIDTH_IN_PX,
|
|
).unwrap();
|
|
|
|
let mut color = 0;
|
|
for (line_index, thread) in threads.iter().enumerate() {
|
|
let line_top = line_index * TIME_LINE_HEIGHT_STRIDE_IN_PX;
|
|
|
|
for span in &thread.timings {
|
|
let start = distance(earliest_instant, span.start);
|
|
let end = distance(earliest_instant, span.end);
|
|
|
|
let start = normalize(start, max_distance, OUTPUT_WIDTH_IN_PX);
|
|
let end = normalize(end, max_distance, OUTPUT_WIDTH_IN_PX);
|
|
|
|
let colors = span.work_package_kind.0;
|
|
|
|
writeln!(file, "<a href='#timing{}'
|
|
style='top:{}px; \
|
|
left:{}px; \
|
|
width:{}px; \
|
|
height:{}px; \
|
|
background:{};'>{}</a>",
|
|
color,
|
|
line_top,
|
|
start,
|
|
end - start,
|
|
TIME_LINE_HEIGHT_IN_PX,
|
|
colors[color % colors.len()],
|
|
span.name,
|
|
).unwrap();
|
|
|
|
color += 1;
|
|
}
|
|
}
|
|
|
|
writeln!(file, "
|
|
</div>
|
|
").unwrap();
|
|
|
|
let mut idx = 0;
|
|
for thread in threads.iter() {
|
|
for timing in &thread.timings {
|
|
let colors = timing.work_package_kind.0;
|
|
let height = TIME_LINE_HEIGHT_STRIDE_IN_PX * timing.events.len();
|
|
writeln!(file, "<div class='timeline'
|
|
id='timing{}'
|
|
style='background:{};height:{}px;'>",
|
|
idx,
|
|
colors[idx % colors.len()],
|
|
height).unwrap();
|
|
idx += 1;
|
|
let max = distance(timing.start, timing.end);
|
|
for (i, &(ref event, time)) in timing.events.iter().enumerate() {
|
|
let i = i as u64;
|
|
let time = distance(timing.start, time);
|
|
let at = normalize(time, max, OUTPUT_WIDTH_IN_PX);
|
|
writeln!(file, "<span class='event'
|
|
style='left:{}px;\
|
|
top:{}px;'>{}</span>",
|
|
at,
|
|
TIME_LINE_HEIGHT_IN_PX * i,
|
|
event).unwrap();
|
|
}
|
|
writeln!(file, "</div>").unwrap();
|
|
}
|
|
}
|
|
|
|
writeln!(file, "
|
|
</body>
|
|
</html>
|
|
").unwrap();
|
|
}
|
|
}
|
|
|
|
impl Timeline {
|
|
pub fn noop() -> Timeline {
|
|
Timeline { token: None }
|
|
}
|
|
|
|
/// Record an event which happened at this moment on this timeline.
|
|
///
|
|
/// Events are displayed in the eventual HTML output where you can click on
|
|
/// a particular timeline and it'll expand to all of the events that
|
|
/// happened on that timeline. This can then be used to drill into a
|
|
/// particular timeline and see what events are happening and taking the
|
|
/// most time.
|
|
pub fn record(&mut self, name: &str) {
|
|
if let Some(ref mut token) = self.token {
|
|
token.events.push((name.to_string(), Instant::now()));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn distance(zero: Instant, x: Instant) -> u64 {
|
|
|
|
let duration = x.duration_since(zero);
|
|
(duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64) // / div
|
|
}
|
|
|
|
fn normalize(distance: u64, max: u64, max_pixels: u64) -> u64 {
|
|
(max_pixels * distance) / max
|
|
}
|
|
|