Niko Matsakis f0f13f86ef Rather than expanding the where-clauses in the environment over and over
again, do it once and then just remember the expanded form. At the same
time, filter globally nameable predicates out of the environment, since
they can cause cache errors (and they are not necessary in any case).
2015-06-15 17:31:27 -04:00

589 lines
22 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Trait Resolution. See the Book for more.
pub use self::SelectionError::*;
pub use self::FulfillmentErrorCode::*;
pub use self::Vtable::*;
pub use self::ObligationCauseCode::*;
use middle::free_region::FreeRegionMap;
use middle::subst;
use middle::ty::{self, HasProjectionTypes, Ty};
use middle::ty_fold::TypeFoldable;
use middle::infer::{self, fixup_err_to_string, InferCtxt};
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::{Span, DUMMY_SP};
use util::ppaux::Repr;
pub use self::error_reporting::report_fulfillment_errors;
pub use self::error_reporting::report_overflow_error;
pub use self::error_reporting::report_selection_error;
pub use self::error_reporting::suggest_new_overflow_limit;
pub use self::coherence::orphan_check;
pub use self::coherence::overlapping_impls;
pub use self::coherence::OrphanCheckErr;
pub use self::fulfill::{FulfillmentContext, FulfilledPredicates, RegionObligation};
pub use self::project::MismatchedProjectionTypes;
pub use self::project::normalize;
pub use self::project::Normalized;
pub use self::object_safety::is_object_safe;
pub use self::object_safety::object_safety_violations;
pub use self::object_safety::ObjectSafetyViolation;
pub use self::object_safety::MethodViolationCode;
pub use self::object_safety::is_vtable_safe_method;
pub use self::select::SelectionContext;
pub use self::select::SelectionCache;
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
pub use self::util::elaborate_predicates;
pub use self::util::get_vtable_index_of_object_method;
pub use self::util::trait_ref_for_builtin_bound;
pub use self::util::predicate_for_trait_def;
pub use self::util::supertraits;
pub use self::util::Supertraits;
pub use self::util::supertrait_def_ids;
pub use self::util::SupertraitDefIds;
pub use self::util::transitive_bounds;
pub use self::util::upcast;
mod coherence;
mod error_reporting;
mod fulfill;
mod project;
mod object_safety;
mod select;
mod util;
/// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
/// which the vtable must be found. The process of finding a vtable is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// provides the required vtable, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[derive(Clone, PartialEq, Eq)]
pub struct Obligation<'tcx, T> {
pub cause: ObligationCause<'tcx>,
pub recursion_depth: usize,
pub predicate: T,
}
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
/// Why did we incur this obligation? Used for error reporting.
#[derive(Clone, PartialEq, Eq)]
pub struct ObligationCause<'tcx> {
pub span: Span,
// The id of the fn body that triggered this obligation. This is
// used for region obligations to determine the precise
// environment in which the region obligation should be evaluated
// (in particular, closures can add new assumptions). See the
// field `region_obligations` of the `FulfillmentContext` for more
// information.
pub body_id: ast::NodeId,
pub code: ObligationCauseCode<'tcx>
}
#[derive(Clone, PartialEq, Eq)]
pub enum ObligationCauseCode<'tcx> {
/// Not well classified or should be obvious from span.
MiscObligation,
/// In an impl of trait X for type Y, type Y must
/// also implement all supertraits of X.
ItemObligation(ast::DefId),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ Ty<'tcx>),
/// Various cases where expressions must be sized/copy/etc:
AssignmentLhsSized, // L = X implies that L is Sized
StructInitializerSized, // S { ... } must be Sized
VariableType(ast::NodeId), // Type of each variable must be Sized
ReturnType, // Return type must be Sized
RepeatVec, // [T,..n] --> T must be Copy
// Captures of variable the given id by a closure (span is the
// span of the closure)
ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),
// Types of fields (other than the last) in a struct must be sized.
FieldSized,
// static items must have `Sync` type
SharedStatic,
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
ImplDerivedObligation(DerivedObligationCause<'tcx>),
CompareImplMethodObligation,
}
#[derive(Clone, PartialEq, Eq)]
pub struct DerivedObligationCause<'tcx> {
/// The trait reference of the parent obligation that led to the
/// current obligation. Note that only trait obligations lead to
/// derived obligations, so we just store the trait reference here
/// directly.
parent_trait_ref: ty::PolyTraitRef<'tcx>,
/// The parent trait had this cause
parent_code: Rc<ObligationCauseCode<'tcx>>
}
pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
#[derive(Clone,Debug)]
pub enum SelectionError<'tcx> {
Unimplemented,
OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
ty::PolyTraitRef<'tcx>,
ty::type_err<'tcx>),
TraitNotObjectSafe(ast::DefId),
}
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub code: FulfillmentErrorCode<'tcx>
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
CodeSelectionError(SelectionError<'tcx>),
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
CodeAmbiguity,
}
/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
/// to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
/// Given the successful resolution of an obligation, the `Vtable`
/// indicates where the vtable comes from. Note that while we call this
/// a "vtable", it does not necessarily indicate dynamic dispatch at
/// runtime. `Vtable` instances just tell the compiler where to find
/// methods, but in generic code those methods are typically statically
/// dispatched -- only when an object is constructed is a `Vtable`
/// instance reified into an actual vtable.
///
/// For example, the vtable may be tied to a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
///
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
/// impl Clone for int { ... } // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
/// param: T,
/// mixed: Option<T>) {
///
/// // Case A: Vtable points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, Vtable will carry resolutions for those as well:
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
/// // Case B: Vtable must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // VtableParam
///
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `VtableImplData`.
#[derive(Debug,Clone)]
pub enum Vtable<'tcx, N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<'tcx, N>),
/// Vtable for default trait implementations
/// This carries the information and nested obligations with regards
/// to a default implementation for a trait `Trait`. The nested obligations
/// ensure the trait implementation holds for all the constituent types.
VtableDefaultImpl(VtableDefaultImplData<N>),
/// Successful resolution to an obligation provided by the caller
/// for some type parameter. The `Vec<N>` represents the
/// obligations incurred from normalizing the where-clause (if
/// any).
VtableParam(Vec<N>),
/// Virtual calls through an object
VtableObject(VtableObjectData<'tcx>),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
/// Vtable automatically generated for a closure. The def ID is the ID
/// of the closure expression. This is a `VtableImpl` in spirit, but the
/// impl is generated by the compiler and does not appear in the source.
VtableClosure(ast::DefId, subst::Substs<'tcx>),
/// Same as above, but for a fn pointer type with the given signature.
VtableFnPointer(ty::Ty<'tcx>),
}
/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type check, this
/// is `Obligation`, as one might expect. During trans, however, this
/// is `()`, because trans only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
#[derive(Clone, PartialEq, Eq)]
pub struct VtableImplData<'tcx, N> {
pub impl_def_id: ast::DefId,
pub substs: subst::Substs<'tcx>,
pub nested: Vec<N>
}
#[derive(Debug,Clone)]
pub struct VtableDefaultImplData<N> {
pub trait_def_id: ast::DefId,
pub nested: Vec<N>
}
#[derive(Debug,Clone)]
pub struct VtableBuiltinData<N> {
pub nested: Vec<N>
}
/// A vtable for some object-safe trait `Foo` automatically derived
/// for the object type `Foo`.
#[derive(PartialEq,Eq,Clone)]
pub struct VtableObjectData<'tcx> {
/// the object type `Foo`.
pub object_ty: Ty<'tcx>,
/// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
}
/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
-> PredicateObligations<'tcx>
{
util::predicates_for_generics(tcx, cause, 0, generic_bounds)
}
/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn evaluate_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
typer: &ty::ClosureTyper<'tcx>,
ty: Ty<'tcx>,
bound: ty::BuiltinBound,
span: Span)
-> SelectionResult<'tcx, ()>
{
debug!("type_known_to_meet_builtin_bound(ty={}, bound={:?})",
ty.repr(infcx.tcx),
bound);
let mut fulfill_cx = FulfillmentContext::new(false);
// We can use a dummy node-id here because we won't pay any mind
// to region obligations that arise (there shouldn't really be any
// anyhow).
let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);
// Note: we only assume something is `Copy` if we can
// *definitively* show that it implements `Copy`. Otherwise,
// assume it is move; linear is always ok.
let result = match fulfill_cx.select_all_or_error(infcx, typer) {
Ok(()) => Ok(Some(())), // Success, we know it implements Copy.
Err(errors) => {
// If there were any hard errors, propagate an arbitrary
// one of those. If no hard errors at all, report
// ambiguity.
let sel_error =
errors.iter()
.filter_map(|err| {
match err.code {
CodeAmbiguity => None,
CodeSelectionError(ref e) => Some(e.clone()),
CodeProjectionError(_) => {
infcx.tcx.sess.span_bug(
span,
"projection error while selecting?")
}
}
})
.next();
match sel_error {
None => { Ok(None) }
Some(e) => { Err(e) }
}
}
};
debug!("type_known_to_meet_builtin_bound: ty={} bound={:?} result={:?}",
ty.repr(infcx.tcx),
bound,
result);
result
}
pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
typer: &ty::ClosureTyper<'tcx>,
ty: Ty<'tcx>,
bound: ty::BuiltinBound,
span: Span)
-> bool
{
match evaluate_builtin_bound(infcx, typer, ty, bound, span) {
Ok(Some(())) => {
// definitely impl'd
true
}
Ok(None) => {
// ambiguous: if coherence check was successful, shouldn't
// happen, but we might have reported an error and been
// soldering on, so just treat this like not implemented
false
}
Err(_) => {
// errors: not implemented.
false
}
}
}
/// Normalizes the parameter environment, reporting errors if they occur.
pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>,
cause: ObligationCause<'tcx>)
-> ty::ParameterEnvironment<'a,'tcx>
{
// I'm not wild about reporting errors here; I'd prefer to
// have the errors get reported at a defined place (e.g.,
// during typeck). Instead I have all parameter
// environments, in effect, going through this function
// and hence potentially reporting errors. This ensurse of
// course that we never forget to normalize (the
// alternative seemed like it would involve a lot of
// manual invocations of this fn -- and then we'd have to
// deal with the errors at each of those sites).
//
// In any case, in practice, typeck constructs all the
// parameter environments once for every fn as it goes,
// and errors will get reported then; so after typeck we
// can be sure that no errors should occur.
let tcx = unnormalized_env.tcx;
let span = cause.span;
let body_id = cause.body_id;
debug!("normalize_param_env_or_error(unnormalized_env={})",
unnormalized_env.repr(tcx));
let predicates: Vec<_> =
util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.clone())
.filter(|p| !p.is_global()) // (*)
.collect();
// (*) Any predicate like `i32: Trait<u32>` or whatever doesn't
// need to be in the *environment* to be proven, so screen those
// out. This is important for the soundness of inter-fn
// caching. Note though that we should probably check that these
// predicates hold at the point where the environment is
// constructed, but I am not currently doing so out of laziness.
// -nmatsakis
debug!("normalize_param_env_or_error: elaborated-predicates={}",
predicates.repr(tcx));
let elaborated_env = unnormalized_env.with_caller_bounds(predicates);
let infcx = infer::new_infer_ctxt(tcx);
let predicates = match fully_normalize(&infcx, &elaborated_env, cause,
&elaborated_env.caller_bounds) {
Ok(predicates) => predicates,
Err(errors) => {
report_fulfillment_errors(&infcx, &errors);
return unnormalized_env; // an unnormalized env is better than nothing
}
};
let free_regions = FreeRegionMap::new();
infcx.resolve_regions_and_report_errors(&free_regions, body_id);
let predicates = match infcx.fully_resolve(&predicates) {
Ok(predicates) => predicates,
Err(fixup_err) => {
// If we encounter a fixup error, it means that some type
// variable wound up unconstrained. I actually don't know
// if this can happen, and I certainly don't expect it to
// happen often, but if it did happen it probably
// represents a legitimate failure due to some kind of
// unconstrained variable, and it seems better not to ICE,
// all things considered.
let err_msg = fixup_err_to_string(fixup_err);
tcx.sess.span_err(span, &err_msg);
return elaborated_env; // an unnormalized env is better than nothing
}
};
elaborated_env.with_caller_bounds(predicates)
}
pub fn fully_normalize<'a,'tcx,T>(infcx: &InferCtxt<'a,'tcx>,
closure_typer: &ty::ClosureTyper<'tcx>,
cause: ObligationCause<'tcx>,
value: &T)
-> Result<T, Vec<FulfillmentError<'tcx>>>
where T : TypeFoldable<'tcx> + HasProjectionTypes + Clone + Repr<'tcx>
{
let tcx = closure_typer.tcx();
debug!("normalize_param_env(value={})", value.repr(tcx));
let mut selcx = &mut SelectionContext::new(infcx, closure_typer);
let mut fulfill_cx = FulfillmentContext::new(false);
let Normalized { value: normalized_value, obligations } =
project::normalize(selcx, cause, value);
debug!("normalize_param_env: normalized_value={} obligations={}",
normalized_value.repr(tcx),
obligations.repr(tcx));
for obligation in obligations {
fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
}
try!(fulfill_cx.select_all_or_error(infcx, closure_typer));
let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
debug!("normalize_param_env: resolved_value={}", resolved_value.repr(tcx));
Ok(resolved_value)
}
impl<'tcx,O> Obligation<'tcx,O> {
pub fn new(cause: ObligationCause<'tcx>,
trait_ref: O)
-> Obligation<'tcx, O>
{
Obligation { cause: cause,
recursion_depth: 0,
predicate: trait_ref }
}
fn with_depth(cause: ObligationCause<'tcx>,
recursion_depth: usize,
trait_ref: O)
-> Obligation<'tcx, O>
{
Obligation { cause: cause,
recursion_depth: recursion_depth,
predicate: trait_ref }
}
pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
}
pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
Obligation { cause: self.cause.clone(),
recursion_depth: self.recursion_depth,
predicate: value }
}
}
impl<'tcx> ObligationCause<'tcx> {
pub fn new(span: Span,
body_id: ast::NodeId,
code: ObligationCauseCode<'tcx>)
-> ObligationCause<'tcx> {
ObligationCause { span: span, body_id: body_id, code: code }
}
pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
ObligationCause { span: span, body_id: body_id, code: MiscObligation }
}
pub fn dummy() -> ObligationCause<'tcx> {
ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
}
}
impl<'tcx, N> Vtable<'tcx, N> {
pub fn nested_obligations(self) -> Vec<N> {
match self {
VtableImpl(i) => i.nested,
VtableParam(n) => n,
VtableBuiltin(i) => i.nested,
VtableDefaultImpl(d) => d.nested,
VtableObject(_) | VtableFnPointer(..) |
VtableClosure(..) => vec![]
}
}
pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
match self {
VtableImpl(i) => VtableImpl(VtableImplData {
impl_def_id: i.impl_def_id,
substs: i.substs,
nested: i.nested.into_iter().map(f).collect()
}),
VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
nested: i.nested.into_iter().map(f).collect()
}),
VtableObject(o) => VtableObject(o),
VtableDefaultImpl(d) => VtableDefaultImpl(VtableDefaultImplData {
trait_def_id: d.trait_def_id,
nested: d.nested.into_iter().map(f).collect()
}),
VtableFnPointer(f) => VtableFnPointer(f),
VtableClosure(d, s) => VtableClosure(d, s),
}
}
}
impl<'tcx> FulfillmentError<'tcx> {
fn new(obligation: PredicateObligation<'tcx>,
code: FulfillmentErrorCode<'tcx>)
-> FulfillmentError<'tcx>
{
FulfillmentError { obligation: obligation, code: code }
}
}
impl<'tcx> TraitObligation<'tcx> {
fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
ty::Binder(self.predicate.skip_binder().self_ty())
}
}