rust/src/libstd/io/error.rs
2015-09-08 00:36:29 +02:00

369 lines
12 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use boxed::Box;
use convert::Into;
use error;
use fmt;
use marker::{Send, Sync};
use option::Option::{self, Some, None};
use result;
use sys;
/// A specialized [`Result`][result] type for I/O operations.
///
/// [result]: ../result/enum.Result.html
///
/// This type is broadly used across `std::io` for any operation which may
/// produce an error.
///
/// This typedef is generally used to avoid writing out `io::Error` directly and
/// is otherwise a direct mapping to `Result`.
///
/// While usual Rust style is to import types directly, aliases of `Result`
/// often are not, to make it easier to distinguish between them. `Result` is
/// generally assumed to be `std::result::Result`, and so users of this alias
/// will generally use `io::Result` instead of shadowing the prelude's import
/// of `std::result::Result`.
///
/// # Examples
///
/// A convenience function that bubbles an `io::Result` to its caller:
///
/// ```
/// use std::io;
///
/// fn get_string() -> io::Result<String> {
/// let mut buffer = String::new();
///
/// try!(io::stdin().read_line(&mut buffer));
///
/// Ok(buffer)
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result<T> = result::Result<T, Error>;
/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
/// associated traits.
///
/// Errors mostly originate from the underlying OS, but custom instances of
/// `Error` can be created with crafted error messages and a particular value of
/// `ErrorKind`.
#[derive(Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Error {
repr: Repr,
}
enum Repr {
Os(i32),
Custom(Box<Custom>),
}
#[derive(Debug)]
struct Custom {
kind: ErrorKind,
error: Box<error::Error+Send+Sync>,
}
/// A list specifying general categories of I/O error.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum ErrorKind {
/// An entity was not found, often a file.
#[stable(feature = "rust1", since = "1.0.0")]
NotFound,
/// The operation lacked the necessary privileges to complete.
#[stable(feature = "rust1", since = "1.0.0")]
PermissionDenied,
/// The connection was refused by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionRefused,
/// The connection was reset by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
#[stable(feature = "rust1", since = "1.0.0")]
ConnectionAborted,
/// The network operation failed because it was not connected yet.
#[stable(feature = "rust1", since = "1.0.0")]
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
#[stable(feature = "rust1", since = "1.0.0")]
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
#[stable(feature = "rust1", since = "1.0.0")]
AddrNotAvailable,
/// The operation failed because a pipe was closed.
#[stable(feature = "rust1", since = "1.0.0")]
BrokenPipe,
/// An entity already exists, often a file.
#[stable(feature = "rust1", since = "1.0.0")]
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
#[stable(feature = "rust1", since = "1.0.0")]
WouldBlock,
/// A parameter was incorrect.
#[stable(feature = "rust1", since = "1.0.0")]
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike `InvalidInput`, this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
#[stable(feature = "io_invalid_data", since = "1.2.0")]
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
#[stable(feature = "rust1", since = "1.0.0")]
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to `write` returned `Ok(0)`.
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
#[stable(feature = "rust1", since = "1.0.0")]
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
#[stable(feature = "rust1", since = "1.0.0")]
Interrupted,
/// Any I/O error not part of this list.
#[stable(feature = "rust1", since = "1.0.0")]
Other,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
#[unstable(feature = "read_exact", reason = "recently added", issue = "27585")]
UnexpectedEOF,
/// Any I/O error not part of this list.
#[unstable(feature = "io_error_internals",
reason = "better expressed through extensible enums that this \
enum cannot be exhaustively matched against",
issue = "0")]
#[doc(hidden)]
__Nonexhaustive,
}
impl Error {
/// Creates a new I/O error from a known kind of error as well as an
/// arbitrary error payload.
///
/// This function is used to generically create I/O errors which do not
/// originate from the OS itself. The `error` argument is an arbitrary
/// payload which will be contained in this `Error`.
///
/// # Examples
///
/// ```
/// use std::io::{Error, ErrorKind};
///
/// // errors can be created from strings
/// let custom_error = Error::new(ErrorKind::Other, "oh no!");
///
/// // errors can also be created from other errors
/// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new<E>(kind: ErrorKind, error: E) -> Error
where E: Into<Box<error::Error+Send+Sync>>
{
Error {
repr: Repr::Custom(Box::new(Custom {
kind: kind,
error: error.into(),
}))
}
}
/// Returns an error representing the last OS error which occurred.
///
/// This function reads the value of `errno` for the target platform (e.g.
/// `GetLastError` on Windows) and will return a corresponding instance of
/// `Error` for the error code.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn last_os_error() -> Error {
Error::from_raw_os_error(sys::os::errno() as i32)
}
/// Creates a new instance of an `Error` from a particular OS error code.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_raw_os_error(code: i32) -> Error {
Error { repr: Repr::Os(code) }
}
/// Returns the OS error that this error represents (if any).
///
/// If this `Error` was constructed via `last_os_error` or
/// `from_raw_os_error`, then this function will return `Some`, otherwise
/// it will return `None`.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn raw_os_error(&self) -> Option<i32> {
match self.repr {
Repr::Os(i) => Some(i),
Repr::Custom(..) => None,
}
}
/// Returns a reference to the inner error wrapped by this error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn get_ref(&self) -> Option<&(error::Error+Send+Sync+'static)> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => Some(&*c.error),
}
}
/// Returns a mutable reference to the inner error wrapped by this error
/// (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn get_mut(&mut self) -> Option<&mut (error::Error+Send+Sync+'static)> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref mut c) => Some(&mut *c.error),
}
}
/// Consumes the `Error`, returning its inner error (if any).
///
/// If this `Error` was constructed via `new` then this function will
/// return `Some`, otherwise it will return `None`.
#[stable(feature = "io_error_inner", since = "1.3.0")]
pub fn into_inner(self) -> Option<Box<error::Error+Send+Sync>> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(c) => Some(c.error)
}
}
/// Returns the corresponding `ErrorKind` for this error.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn kind(&self) -> ErrorKind {
match self.repr {
Repr::Os(code) => sys::decode_error_kind(code),
Repr::Custom(ref c) => c.kind,
}
}
}
impl fmt::Debug for Repr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Repr::Os(ref code) =>
fmt.debug_struct("Os").field("code", code)
.field("message", &sys::os::error_string(*code)).finish(),
Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::Os(code) => {
let detail = sys::os::error_string(code);
write!(fmt, "{} (os error {})", detail, code)
}
Repr::Custom(ref c) => c.error.fmt(fmt),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl error::Error for Error {
fn description(&self) -> &str {
match self.repr {
Repr::Os(..) => "os error",
Repr::Custom(ref c) => c.error.description(),
}
}
fn cause(&self) -> Option<&error::Error> {
match self.repr {
Repr::Os(..) => None,
Repr::Custom(ref c) => c.error.cause(),
}
}
}
fn _assert_error_is_sync_send() {
fn _is_sync_send<T: Sync+Send>() {}
_is_sync_send::<Error>();
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use super::{Error, ErrorKind};
use error;
use error::Error as error_Error;
use fmt;
use sys::os::error_string;
#[test]
fn test_debug_error() {
let code = 6;
let msg = error_string(code);
let err = Error { repr: super::Repr::Os(code) };
let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
assert_eq!(format!("{:?}", err), expected);
}
#[test]
fn test_downcasting() {
#[derive(Debug)]
struct TestError;
impl fmt::Display for TestError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl error::Error for TestError {
fn description(&self) -> &str {
"asdf"
}
}
// we have to call all of these UFCS style right now since method
// resolution won't implicitly drop the Send+Sync bounds
let mut err = Error::new(ErrorKind::Other, TestError);
assert!(err.get_ref().unwrap().is::<TestError>());
assert_eq!("asdf", err.get_ref().unwrap().description());
assert!(err.get_mut().unwrap().is::<TestError>());
let extracted = err.into_inner().unwrap();
extracted.downcast::<TestError>().unwrap();
}
}