Go to file
bors 79a1bddaf3 Auto merge of #118310 - scottmcm:three-way-compare, r=davidtwco
Add `Ord::cmp` for primitives as a `BinOp` in MIR

Update: most of this OP was written months ago.  See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.

---

There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches.  Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:

1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.

Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic.  Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical.  Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)?  But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)?  And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers.  Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.

As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR.  The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks.  Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues.  (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)

---

r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
2024-04-02 19:21:44 +00:00
.github Merge commit '4cf4ffc6ba514f171b3f52d1c731063e4fc45be3' into sync_cg_clif-2024-03-16 2024-03-16 17:23:11 +00:00
.vscode Merge commit '3e50cf65025f96854d6597e80449b0d64ad89589' into sync_cg_clif-2024-01-26 2024-01-26 18:33:45 +00:00
build_system Merge commit '54cbb6e7531f95e086d5c3dd0d5e73bfbe3545ba' into sync_cg_clif-2024-03-08 2024-03-08 20:41:29 +00:00
docs Merge commit 'dda103b1e33c4902deca8bccf614991ada781fa6' into sync_cg_clif-2023-09-06 2023-09-06 18:51:03 +00:00
example Codegen const panic messages as function calls 2024-03-22 09:55:50 -04:00
patches Merge commit '09fae60a86b848a2fc0ad219ecc4e438dc1eef86' into sync_cg_clif-2024-03-28 2024-03-28 11:43:35 +00:00
scripts Merge commit '09fae60a86b848a2fc0ad219ecc4e438dc1eef86' into sync_cg_clif-2024-03-28 2024-03-28 11:43:35 +00:00
src Auto merge of #118310 - scottmcm:three-way-compare, r=davidtwco 2024-04-02 19:21:44 +00:00
.cirrus.yml Merge commit 'c07d1e2f88cb3b1a0604ae8f18b478c1aeb7a7fa' into sync_cg_clif-2023-10-21 2023-10-21 19:54:51 +00:00
.gitattributes Merge commit '5988bbd24aa87732bfa1d111ba00bcdaa22c481a' into sync_cg_clif-2020-11-27 2020-11-27 20:48:53 +01:00
.gitignore Merge commit '54cbb6e7531f95e086d5c3dd0d5e73bfbe3545ba' into sync_cg_clif-2024-03-08 2024-03-08 20:41:29 +00:00
Cargo.lock Merge commit '09fae60a86b848a2fc0ad219ecc4e438dc1eef86' into sync_cg_clif-2024-03-28 2024-03-28 11:43:35 +00:00
Cargo.toml Merge commit '09fae60a86b848a2fc0ad219ecc4e438dc1eef86' into sync_cg_clif-2024-03-28 2024-03-28 11:43:35 +00:00
clean_all.sh Merge commit '8830dccd1d4c74f1f69b0d3bd982a3f1fcde5807' into sync_cg_clif-2023-06-15 2023-06-15 17:56:01 +00:00
config.txt Merge commit '710c67909d034e1c663174a016ca82b95c2d6c12' into sync_cg_clif-2023-11-25 2023-11-25 10:05:52 +00:00
LICENSE-APACHE
LICENSE-MIT Add LICENSE-MIT 2018-06-22 19:34:27 +02:00
Readme.md Merge commit '54cbb6e7531f95e086d5c3dd0d5e73bfbe3545ba' into sync_cg_clif-2024-03-08 2024-03-08 20:41:29 +00:00
rust-toolchain Merge commit '09fae60a86b848a2fc0ad219ecc4e438dc1eef86' into sync_cg_clif-2024-03-28 2024-03-28 11:43:35 +00:00
rustfmt.toml Merge commit '54cbb6e7531f95e086d5c3dd0d5e73bfbe3545ba' into sync_cg_clif-2024-03-08 2024-03-08 20:41:29 +00:00
test.sh Merge commit '8830dccd1d4c74f1f69b0d3bd982a3f1fcde5807' into sync_cg_clif-2023-06-15 2023-06-15 17:56:01 +00:00
y.cmd Merge commit '3a9bf729322fb5035518f99b9d76a742bf7c124e' into sync_cg_clif-2023-12-19 2023-12-19 12:46:39 +00:00
y.ps1 Merge commit '3a9bf729322fb5035518f99b9d76a742bf7c124e' into sync_cg_clif-2023-12-19 2023-12-19 12:46:39 +00:00
y.sh Merge commit '8830dccd1d4c74f1f69b0d3bd982a3f1fcde5807' into sync_cg_clif-2023-06-15 2023-06-15 17:56:01 +00:00

Cranelift codegen backend for rust

The goal of this project is to create an alternative codegen backend for the rust compiler based on Cranelift. This has the potential to improve compilation times in debug mode. If your project doesn't use any of the things listed under "Not yet supported", it should work fine. If not please open an issue.

Download using Rustup

The Cranelift codegen backend is distributed in nightly builds on Linux and x86_64 macOS. If you want to install it using Rustup, you can do that by running:

$ rustup component add rustc-codegen-cranelift-preview --toolchain nightly

Once it is installed, you can enable it with one of the following approaches:

  • CARGO_PROFILE_DEV_CODEGEN_BACKEND=cranelift cargo +nightly build -Zcodegen-backend
  • RUSTFLAGS="-Zcodegen-backend=cranelift" cargo +nightly build
  • Add the following to .cargo/config.toml:
    [unstable]
    codegen-backend = true
    
    [profile.dev]
    codegen-backend = "cranelift"
    
  • Add the following to Cargo.toml:
    # This line needs to come before anything else in Cargo.toml
    cargo-features = ["codegen-backend"]
    
    [profile.dev]
    codegen-backend = "cranelift"
    

Precompiled builds

You can also download a pre-built version from the releases page. Extract the dist directory in the archive anywhere you want. If you want to use cargo clif build instead of having to specify the full path to the cargo-clif executable, you can add the bin subdirectory of the extracted dist directory to your PATH. (tutorial for Windows, and for Linux/MacOS).

Building and testing

If you want to build the backend manually, you can download it from GitHub and build it yourself:

$ git clone https://github.com/rust-lang/rustc_codegen_cranelift
$ cd rustc_codegen_cranelift
$ ./y.sh prepare
$ ./y.sh build

To run the test suite replace the last command with:

$ ./test.sh

For more docs on how to build and test see build_system/usage.txt or the help message of ./y.sh.

Platform support

OS \ architecture x86_64 AArch64 Riscv64 s390x (System-Z)
Linux 1 1
FreeBSD 1
AIX 2 N/A N/A 2
Other unixes
macOS 3 N/A N/A
Windows 1 N/A N/A

: Fully supported and tested : Maybe supported, not tested : Not supported at all

Not all targets are available as rustup component for nightly. See notes in the platform support matrix.

Usage

rustc_codegen_cranelift can be used as a near-drop-in replacement for cargo build or cargo run for existing projects.

Assuming $cg_clif_dir is the directory you cloned this repo into and you followed the instructions (y.sh prepare and y.sh build or test.sh).

In the directory with your project (where you can do the usual cargo build), run:

$ $cg_clif_dir/dist/cargo-clif build

This will build your project with rustc_codegen_cranelift instead of the usual LLVM backend.

For additional ways to use rustc_codegen_cranelift like the JIT mode see usage.md.

Building and testing with changes in rustc code

This is useful when changing code in rustc_codegen_cranelift as part of changing main Rust repository. This can happen, for example, when you are implementing a new compiler intrinsic.

Instruction below uses $RustCheckoutDir as substitute for any folder where you cloned Rust repository.

You need to do this steps to successfully compile and use the cranelift backend with your changes in rustc code:

  1. cd $RustCheckoutDir
  2. Run python x.py setup and choose option for compiler (b).
  3. Build compiler and necessary tools: python x.py build --stage=2 compiler library/std src/tools/rustdoc src/tools/rustfmt
    • (Optional) You can also build cargo by adding src/tools/cargo to previous command.
  4. Copy cargo from a nightly toolchain: cp $(rustup +nightly which cargo) ./build/host/stage2/bin/cargo. Note that you would need to do this every time you rebuilt rust repository.
  5. Link your new rustc to toolchain: rustup toolchain link stage2 ./build/host/stage2/.
  6. (Windows only) compile the build system: rustc +stage2 -O build_system/main.rs -o y.exe.
  7. You need to prefix every ./y.sh (or y if you built build_system/main.rs as y) command by rustup run stage2 to make cg_clif use your local changes in rustc.
  • rustup run stage2 ./y.sh prepare
  • rustup run stage2 ./y.sh build
  • (Optional) run tests: rustup run stage2 ./y.sh test
  1. Now you can use your cg_clif build to compile other Rust programs, e.g. you can open any Rust crate and run commands like $RustCheckoutDir/compiler/rustc_codegen_cranelift/dist/cargo-clif build --release.

You can also set rust-analyzer.rustc.source to your rust workspace to get rust-analyzer to understand your changes.

Not yet supported

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be dual licensed as above, without any additional terms or conditions.


  1. Not available as rustup component for nightly. You can build it yourself. ↩︎

  2. XCOFF object file format is not supported. ↩︎

  3. Tracked in #1248. ↩︎