rust/src/librustc/hir/map/definitions.rs

669 lines
22 KiB
Rust

//! For each definition, we track the following data. A definition
//! here is defined somewhat circularly as "something with a `DefId`",
//! but it generally corresponds to things like structs, enums, etc.
//! There are also some rather random cases (like const initializer
//! expressions) that are mostly just leftovers.
use crate::hir;
use crate::hir::def_id::{CrateNum, DefId, DefIndex, LOCAL_CRATE, CRATE_DEF_INDEX};
use crate::ich::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::{IndexVec};
use rustc_data_structures::stable_hasher::StableHasher;
use crate::session::CrateDisambiguator;
use std::borrow::Borrow;
use std::fmt::Write;
use std::hash::Hash;
use syntax::ast;
use syntax::ext::hygiene::Mark;
use syntax::symbol::{Symbol, sym, InternedString};
use syntax_pos::{Span, DUMMY_SP};
use crate::util::nodemap::NodeMap;
/// The DefPathTable maps DefIndexes to DefKeys and vice versa.
/// Internally the DefPathTable holds a tree of DefKeys, where each DefKey
/// stores the DefIndex of its parent.
/// There is one DefPathTable for each crate.
#[derive(Clone, Default, RustcDecodable, RustcEncodable)]
pub struct DefPathTable {
index_to_key: Vec<DefKey>,
def_path_hashes: Vec<DefPathHash>,
}
impl DefPathTable {
fn allocate(&mut self,
key: DefKey,
def_path_hash: DefPathHash)
-> DefIndex {
let index = {
let index = DefIndex::from(self.index_to_key.len());
debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index);
self.index_to_key.push(key);
index
};
self.def_path_hashes.push(def_path_hash);
debug_assert!(self.def_path_hashes.len() == self.index_to_key.len());
index
}
pub fn next_id(&self) -> DefIndex {
DefIndex::from(self.index_to_key.len())
}
#[inline(always)]
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.index_to_key[index.index()].clone()
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
let ret = self.def_path_hashes[index.index()];
debug!("def_path_hash({:?}) = {:?}", index, ret);
return ret
}
pub fn add_def_path_hashes_to(&self,
cnum: CrateNum,
out: &mut FxHashMap<DefPathHash, DefId>) {
out.extend(
self.def_path_hashes
.iter()
.enumerate()
.map(|(index, &hash)| {
let def_id = DefId {
krate: cnum,
index: DefIndex::from(index),
};
(hash, def_id)
})
);
}
pub fn size(&self) -> usize {
self.index_to_key.len()
}
}
/// The definition table containing node definitions.
/// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a
/// mapping from `NodeId`s to local `DefId`s.
#[derive(Clone, Default)]
pub struct Definitions {
table: DefPathTable,
node_to_def_index: NodeMap<DefIndex>,
def_index_to_node: Vec<ast::NodeId>,
pub(super) node_to_hir_id: IndexVec<ast::NodeId, hir::HirId>,
/// If `Mark` is an ID of some macro expansion,
/// then `DefId` is the normal module (`mod`) in which the expanded macro was defined.
parent_modules_of_macro_defs: FxHashMap<Mark, DefId>,
/// Item with a given `DefIndex` was defined during macro expansion with ID `Mark`.
expansions_that_defined: FxHashMap<DefIndex, Mark>,
next_disambiguator: FxHashMap<(DefIndex, DefPathData), u32>,
def_index_to_span: FxHashMap<DefIndex, Span>,
}
/// A unique identifier that we can use to lookup a definition
/// precisely. It combines the index of the definition's parent (if
/// any) with a `DisambiguatedDefPathData`.
#[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DefKey {
/// The parent path.
pub parent: Option<DefIndex>,
/// The identifier of this node.
pub disambiguated_data: DisambiguatedDefPathData,
}
impl DefKey {
fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash {
let mut hasher = StableHasher::new();
// We hash a 0u8 here to disambiguate between regular DefPath hashes,
// and the special "root_parent" below.
0u8.hash(&mut hasher);
parent_hash.hash(&mut hasher);
let DisambiguatedDefPathData {
ref data,
disambiguator,
} = self.disambiguated_data;
::std::mem::discriminant(data).hash(&mut hasher);
if let Some(name) = data.get_opt_name() {
name.hash(&mut hasher);
}
disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
fn root_parent_stable_hash(crate_name: &str,
crate_disambiguator: CrateDisambiguator)
-> DefPathHash {
let mut hasher = StableHasher::new();
// Disambiguate this from a regular DefPath hash,
// see compute_stable_hash() above.
1u8.hash(&mut hasher);
crate_name.hash(&mut hasher);
crate_disambiguator.hash(&mut hasher);
DefPathHash(hasher.finish())
}
}
/// A pair of `DefPathData` and an integer disambiguator. The integer is
/// normally 0, but in the event that there are multiple defs with the
/// same `parent` and `data`, we use this field to disambiguate
/// between them. This introduces some artificial ordering dependency
/// but means that if you have (e.g.) two impls for the same type in
/// the same module, they do get distinct `DefId`s.
#[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DisambiguatedDefPathData {
pub data: DefPathData,
pub disambiguator: u32
}
#[derive(Clone, Debug, Hash, RustcEncodable, RustcDecodable)]
pub struct DefPath {
/// The path leading from the crate root to the item.
pub data: Vec<DisambiguatedDefPathData>,
/// The crate root this path is relative to.
pub krate: CrateNum,
}
impl DefPath {
pub fn is_local(&self) -> bool {
self.krate == LOCAL_CRATE
}
pub fn make<FN>(krate: CrateNum,
start_index: DefIndex,
mut get_key: FN) -> DefPath
where FN: FnMut(DefIndex) -> DefKey
{
let mut data = vec![];
let mut index = Some(start_index);
loop {
debug!("DefPath::make: krate={:?} index={:?}", krate, index);
let p = index.unwrap();
let key = get_key(p);
debug!("DefPath::make: key={:?}", key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
break;
}
_ => {
data.push(key.disambiguated_data);
index = key.parent;
}
}
}
data.reverse();
DefPath { data: data, krate: krate }
}
/// Returns a string representation of the `DefPath` without
/// the crate-prefix. This method is useful if you don't have
/// a `TyCtxt` available.
pub fn to_string_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
for component in &self.data {
write!(s,
"::{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
s
}
/// Returns a filename-friendly string for the `DefPath`, with the
/// crate-prefix.
pub fn to_string_friendly<F>(&self, crate_imported_name: F) -> String
where F: FnOnce(CrateNum) -> Symbol
{
let crate_name_str = crate_imported_name(self.krate).as_str();
let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16);
write!(s, "::{}", crate_name_str).unwrap();
for component in &self.data {
if component.disambiguator == 0 {
write!(s, "::{}", component.data.as_interned_str()).unwrap();
} else {
write!(s,
"{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
}
s
}
/// Returns a filename-friendly string of the `DefPath`, without
/// the crate-prefix. This method is useful if you don't have
/// a `TyCtxt` available.
pub fn to_filename_friendly_no_crate(&self) -> String {
let mut s = String::with_capacity(self.data.len() * 16);
let mut opt_delimiter = None;
for component in &self.data {
opt_delimiter.map(|d| s.push(d));
opt_delimiter = Some('-');
if component.disambiguator == 0 {
write!(s, "{}", component.data.as_interned_str()).unwrap();
} else {
write!(s,
"{}[{}]",
component.data.as_interned_str(),
component.disambiguator)
.unwrap();
}
}
s
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum DefPathData {
// Root: these should only be used for the root nodes, because
// they are treated specially by the `def_path` function.
/// The crate root (marker)
CrateRoot,
// Catch-all for random DefId things like `DUMMY_NODE_ID`
Misc,
// Different kinds of items and item-like things:
/// An impl
Impl,
/// Something in the type NS
TypeNs(InternedString),
/// Something in the value NS
ValueNs(InternedString),
/// Something in the macro NS
MacroNs(InternedString),
/// Something in the lifetime NS
LifetimeNs(InternedString),
/// A closure expression
ClosureExpr,
// Subportions of items
/// Implicit ctor for a unit or tuple-like struct or enum variant.
Ctor,
/// A constant expression (see {ast,hir}::AnonConst).
AnonConst,
/// An `impl Trait` type node
ImplTrait,
/// Identifies a piece of crate metadata that is global to a whole crate
/// (as opposed to just one item). `GlobalMetaData` components are only
/// supposed to show up right below the crate root.
GlobalMetaData(InternedString),
}
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug,
RustcEncodable, RustcDecodable)]
pub struct DefPathHash(pub Fingerprint);
impl_stable_hash_for!(tuple_struct DefPathHash { fingerprint });
impl Borrow<Fingerprint> for DefPathHash {
#[inline]
fn borrow(&self) -> &Fingerprint {
&self.0
}
}
impl Definitions {
pub fn def_path_table(&self) -> &DefPathTable {
&self.table
}
/// Gets the number of definitions.
pub fn def_index_count(&self) -> usize {
self.table.index_to_key.len()
}
pub fn def_key(&self, index: DefIndex) -> DefKey {
self.table.def_key(index)
}
#[inline(always)]
pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash {
self.table.def_path_hash(index)
}
/// Returns the path from the crate root to `index`. The root
/// nodes are not included in the path (i.e., this will be an
/// empty vector for the crate root). For an inlined item, this
/// will be the path of the item in the external crate (but the
/// path will begin with the path to the external crate).
pub fn def_path(&self, index: DefIndex) -> DefPath {
DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p))
}
#[inline]
pub fn opt_def_index(&self, node: ast::NodeId) -> Option<DefIndex> {
self.node_to_def_index.get(&node).cloned()
}
#[inline]
pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option<DefId> {
self.opt_def_index(node).map(DefId::local)
}
#[inline]
pub fn local_def_id(&self, node: ast::NodeId) -> DefId {
self.opt_local_def_id(node).unwrap()
}
#[inline]
pub fn as_local_node_id(&self, def_id: DefId) -> Option<ast::NodeId> {
if def_id.krate == LOCAL_CRATE {
let node_id = self.def_index_to_node[def_id.index.index()];
if node_id != ast::DUMMY_NODE_ID {
return Some(node_id);
}
}
None
}
#[inline]
pub fn as_local_hir_id(&self, def_id: DefId) -> Option<hir::HirId> {
if def_id.krate == LOCAL_CRATE {
let hir_id = self.def_index_to_hir_id(def_id.index);
if hir_id != hir::DUMMY_HIR_ID {
Some(hir_id)
} else {
None
}
} else {
None
}
}
#[inline]
pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId {
self.node_to_hir_id[node_id]
}
#[inline]
pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> hir::HirId {
let node_id = self.def_index_to_node[def_index.index()];
self.node_to_hir_id[node_id]
}
/// Retrieves the span of the given `DefId` if `DefId` is in the local crate, the span exists
/// and it's not `DUMMY_SP`.
#[inline]
pub fn opt_span(&self, def_id: DefId) -> Option<Span> {
if def_id.krate == LOCAL_CRATE {
self.def_index_to_span.get(&def_id.index).cloned()
} else {
None
}
}
/// Adds a root definition (no parent) and a few other reserved definitions.
///
/// After the initial definitions are created the first `FIRST_FREE_DEF_INDEX` indexes
/// are taken, so the "user" indexes will be allocated starting with `FIRST_FREE_DEF_INDEX`
/// in ascending order.
pub fn create_root_def(&mut self,
crate_name: &str,
crate_disambiguator: CrateDisambiguator)
-> DefIndex {
let key = DefKey {
parent: None,
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::CrateRoot,
disambiguator: 0
}
};
let parent_hash = DefKey::root_parent_stable_hash(crate_name,
crate_disambiguator);
let def_path_hash = key.compute_stable_hash(parent_hash);
// Create the definition.
let root_index = self.table.allocate(key, def_path_hash);
assert_eq!(root_index, CRATE_DEF_INDEX);
assert!(self.def_index_to_node.is_empty());
self.def_index_to_node.push(ast::CRATE_NODE_ID);
self.node_to_def_index.insert(ast::CRATE_NODE_ID, root_index);
// Allocate some other DefIndices that always must exist.
GlobalMetaDataKind::allocate_def_indices(self);
root_index
}
/// Adds a definition with a parent definition.
pub fn create_def_with_parent(&mut self,
parent: DefIndex,
node_id: ast::NodeId,
data: DefPathData,
expansion: Mark,
span: Span)
-> DefIndex {
debug!("create_def_with_parent(parent={:?}, node_id={:?}, data={:?})",
parent, node_id, data);
assert!(!self.node_to_def_index.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.table.def_key(self.node_to_def_index[&node_id]));
// The root node must be created with create_root_def()
assert!(data != DefPathData::CrateRoot);
// Find the next free disambiguator for this key.
let disambiguator = {
let next_disamb = self.next_disambiguator.entry((parent, data.clone())).or_insert(0);
let disambiguator = *next_disamb;
*next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow");
disambiguator
};
let key = DefKey {
parent: Some(parent),
disambiguated_data: DisambiguatedDefPathData {
data, disambiguator
}
};
let parent_hash = self.table.def_path_hash(parent);
let def_path_hash = key.compute_stable_hash(parent_hash);
debug!("create_def_with_parent: after disambiguation, key = {:?}", key);
// Create the definition.
let index = self.table.allocate(key, def_path_hash);
assert_eq!(index.index(), self.def_index_to_node.len());
self.def_index_to_node.push(node_id);
// Some things for which we allocate DefIndices don't correspond to
// anything in the AST, so they don't have a NodeId. For these cases
// we don't need a mapping from NodeId to DefIndex.
if node_id != ast::DUMMY_NODE_ID {
debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id);
self.node_to_def_index.insert(node_id, index);
}
if expansion != Mark::root() {
self.expansions_that_defined.insert(index, expansion);
}
// The span is added if it isn't dummy
if !span.is_dummy() {
self.def_index_to_span.insert(index, span);
}
index
}
/// Initialize the `ast::NodeId` to `HirId` mapping once it has been generated during
/// AST to HIR lowering.
pub fn init_node_id_to_hir_id_mapping(&mut self,
mapping: IndexVec<ast::NodeId, hir::HirId>) {
assert!(self.node_to_hir_id.is_empty(),
"Trying initialize NodeId -> HirId mapping twice");
self.node_to_hir_id = mapping;
}
pub fn expansion_that_defined(&self, index: DefIndex) -> Mark {
self.expansions_that_defined.get(&index).cloned().unwrap_or(Mark::root())
}
pub fn parent_module_of_macro_def(&self, mark: Mark) -> DefId {
self.parent_modules_of_macro_defs[&mark]
}
pub fn add_parent_module_of_macro_def(&mut self, mark: Mark, module: DefId) {
self.parent_modules_of_macro_defs.insert(mark, module);
}
}
impl DefPathData {
pub fn get_opt_name(&self) -> Option<InternedString> {
use self::DefPathData::*;
match *self {
TypeNs(name) |
ValueNs(name) |
MacroNs(name) |
LifetimeNs(name) |
GlobalMetaData(name) => Some(name),
Impl |
CrateRoot |
Misc |
ClosureExpr |
Ctor |
AnonConst |
ImplTrait => None
}
}
pub fn as_interned_str(&self) -> InternedString {
use self::DefPathData::*;
let s = match *self {
TypeNs(name) |
ValueNs(name) |
MacroNs(name) |
LifetimeNs(name) |
GlobalMetaData(name) => {
return name
}
// Note that this does not show up in user print-outs.
CrateRoot => sym::double_braced_crate,
Impl => sym::double_braced_impl,
Misc => sym::double_braced_misc,
ClosureExpr => sym::double_braced_closure,
Ctor => sym::double_braced_constructor,
AnonConst => sym::double_braced_constant,
ImplTrait => sym::double_braced_opaque,
};
s.as_interned_str()
}
pub fn to_string(&self) -> String {
self.as_interned_str().to_string()
}
}
/// Evaluates to the number of tokens passed to it.
///
/// Logarithmic counting: every one or two recursive expansions, the number of
/// tokens to count is divided by two, instead of being reduced by one.
/// Therefore, the recursion depth is the binary logarithm of the number of
/// tokens to count, and the expanded tree is likewise very small.
macro_rules! count {
() => (0usize);
($one:tt) => (1usize);
($($pairs:tt $_p:tt)*) => (count!($($pairs)*) << 1usize);
($odd:tt $($rest:tt)*) => (count!($($rest)*) | 1usize);
}
// We define the GlobalMetaDataKind enum with this macro because we want to
// make sure that we exhaustively iterate over all variants when registering
// the corresponding DefIndices in the DefTable.
macro_rules! define_global_metadata_kind {
(pub enum GlobalMetaDataKind {
$($variant:ident),*
}) => (
#[derive(Clone, Copy, Debug, Hash, RustcEncodable, RustcDecodable)]
pub enum GlobalMetaDataKind {
$($variant),*
}
pub const FIRST_FREE_DEF_INDEX: usize = 1 + count!($($variant)*);
impl GlobalMetaDataKind {
fn allocate_def_indices(definitions: &mut Definitions) {
$({
let instance = GlobalMetaDataKind::$variant;
definitions.create_def_with_parent(
CRATE_DEF_INDEX,
ast::DUMMY_NODE_ID,
DefPathData::GlobalMetaData(instance.name().as_interned_str()),
Mark::root(),
DUMMY_SP
);
// Make sure calling def_index does not crash.
instance.def_index(&definitions.table);
})*
}
pub fn def_index(&self, def_path_table: &DefPathTable) -> DefIndex {
let def_key = DefKey {
parent: Some(CRATE_DEF_INDEX),
disambiguated_data: DisambiguatedDefPathData {
data: DefPathData::GlobalMetaData(self.name().as_interned_str()),
disambiguator: 0,
}
};
// These DefKeys are all right after the root,
// so a linear search is fine.
let index = def_path_table.index_to_key
.iter()
.position(|k| *k == def_key)
.unwrap();
DefIndex::from(index)
}
fn name(&self) -> Symbol {
let string = match *self {
$(
GlobalMetaDataKind::$variant => {
concat!("{{GlobalMetaData::", stringify!($variant), "}}")
}
)*
};
Symbol::intern(string)
}
}
)
}
define_global_metadata_kind!(pub enum GlobalMetaDataKind {
Krate,
CrateDeps,
DylibDependencyFormats,
LangItems,
LangItemsMissing,
NativeLibraries,
SourceMap,
Impls,
ExportedSymbols
});