bors bcda58f491 Auto merge of #31710 - eddyb:reify, r=nikomatsakis
Distinguish fn item types to allow reification from nothing to fn pointers.

The first commit is a rebase of #26284, except for files that have moved since.

This is a [breaking-change], due to:
* each FFI function has a distinct type, like all other functions currently do
* all generic parameters on functions are recorded in their item types, e.g.:
`size_of::<u8>` & `size_of::<i8>`'s types differ despite their identical signature.
* function items are zero-sized, which will stop transmutes from working on them

The first two cases are handled in most cases with the new coerce-unify logic,
which will combine incompatible function item types into function pointers,
at the outer-most level of if-else chains, match arms and array literals.

The last case is specially handled during type-checking such that transmutes
from a function item type to a pointer or integer type will continue to work for
another release cycle, but are being linted against. To get rid of warnings and
ensure your code will continue to compile, cast to a pointer before transmuting.
2016-03-09 20:16:20 -08:00

1637 lines
67 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name = "rustc_privacy"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "dylib"]
#![crate_type = "rlib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![cfg_attr(not(stage0), deny(warnings))]
#![feature(rustc_diagnostic_macros)]
#![feature(rustc_private)]
#![feature(staged_api)]
#[macro_use] extern crate log;
#[macro_use] extern crate syntax;
extern crate rustc;
extern crate rustc_front;
use self::PrivacyResult::*;
use self::FieldName::*;
use std::cmp;
use std::mem::replace;
use rustc_front::hir::{self, PatKind};
use rustc_front::intravisit::{self, Visitor};
use rustc::dep_graph::DepNode;
use rustc::lint;
use rustc::middle::cstore::CrateStore;
use rustc::middle::def::{self, Def};
use rustc::middle::def_id::DefId;
use rustc::middle::privacy::{AccessLevel, AccessLevels};
use rustc::middle::ty::{self, TyCtxt};
use rustc::util::nodemap::{NodeMap, NodeSet};
use rustc::front::map as ast_map;
use syntax::ast;
use syntax::codemap::Span;
pub mod diagnostics;
type Context<'a, 'tcx> = (&'a ty::MethodMap<'tcx>, &'a def::ExportMap);
/// Result of a checking operation - None => no errors were found. Some => an
/// error and contains the span and message for reporting that error and
/// optionally the same for a note about the error.
type CheckResult = Option<(Span, String, Option<(Span, String)>)>;
////////////////////////////////////////////////////////////////////////////////
/// The parent visitor, used to determine what's the parent of what (node-wise)
////////////////////////////////////////////////////////////////////////////////
struct ParentVisitor<'a, 'tcx:'a> {
tcx: &'a TyCtxt<'tcx>,
parents: NodeMap<ast::NodeId>,
curparent: ast::NodeId,
}
impl<'a, 'tcx, 'v> Visitor<'v> for ParentVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
self.parents.insert(item.id, self.curparent);
let prev = self.curparent;
match item.node {
hir::ItemMod(..) => { self.curparent = item.id; }
// Enum variants are parented to the enum definition itself because
// they inherit privacy
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
// The parent is considered the enclosing enum because the
// enum will dictate the privacy visibility of this variant
// instead.
self.parents.insert(variant.node.data.id(), item.id);
}
}
// Trait methods are always considered "public", but if the trait is
// private then we need some private item in the chain from the
// method to the root. In this case, if the trait is private, then
// parent all the methods to the trait to indicate that they're
// private.
hir::ItemTrait(_, _, _, ref trait_items) if item.vis != hir::Public => {
for trait_item in trait_items {
self.parents.insert(trait_item.id, item.id);
}
}
_ => {}
}
intravisit::walk_item(self, item);
self.curparent = prev;
}
fn visit_foreign_item(&mut self, a: &hir::ForeignItem) {
self.parents.insert(a.id, self.curparent);
intravisit::walk_foreign_item(self, a);
}
fn visit_fn(&mut self, a: intravisit::FnKind<'v>, b: &'v hir::FnDecl,
c: &'v hir::Block, d: Span, id: ast::NodeId) {
// We already took care of some trait methods above, otherwise things
// like impl methods and pub trait methods are parented to the
// containing module, not the containing trait.
if !self.parents.contains_key(&id) {
self.parents.insert(id, self.curparent);
}
intravisit::walk_fn(self, a, b, c, d);
}
fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
// visit_fn handles methods, but associated consts have to be handled
// here.
if !self.parents.contains_key(&ii.id) {
self.parents.insert(ii.id, self.curparent);
}
intravisit::walk_impl_item(self, ii);
}
fn visit_variant_data(&mut self, s: &hir::VariantData, _: ast::Name,
_: &'v hir::Generics, item_id: ast::NodeId, _: Span) {
// Struct constructors are parented to their struct definitions because
// they essentially are the struct definitions.
if !s.is_struct() {
self.parents.insert(s.id(), item_id);
}
// While we have the id of the struct definition, go ahead and parent
// all the fields.
for field in s.fields() {
self.parents.insert(field.id, self.curparent);
}
intravisit::walk_struct_def(self, s)
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the ast
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
export_map: &'a def::ExportMap,
// Accessibility levels for reachable nodes
access_levels: AccessLevels,
// Previous accessibility level, None means unreachable
prev_level: Option<AccessLevel>,
// Have something changed in the level map?
changed: bool,
}
struct ReachEverythingInTheInterfaceVisitor<'b, 'a: 'b, 'tcx: 'a> {
ev: &'b mut EmbargoVisitor<'a, 'tcx>,
}
impl<'a, 'tcx> EmbargoVisitor<'a, 'tcx> {
fn ty_level(&self, ty: &hir::Ty) -> Option<AccessLevel> {
if let hir::TyPath(..) = ty.node {
match self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def() {
Def::PrimTy(..) | Def::SelfTy(..) | Def::TyParam(..) => {
Some(AccessLevel::Public)
}
def => {
if let Some(node_id) = self.tcx.map.as_local_node_id(def.def_id()) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
}
} else {
Some(AccessLevel::Public)
}
}
fn trait_level(&self, trait_ref: &hir::TraitRef) -> Option<AccessLevel> {
let did = self.tcx.trait_ref_to_def_id(trait_ref);
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
fn get(&self, id: ast::NodeId) -> Option<AccessLevel> {
self.access_levels.map.get(&id).cloned()
}
// Updates node level and returns the updated level
fn update(&mut self, id: ast::NodeId, level: Option<AccessLevel>) -> Option<AccessLevel> {
let old_level = self.get(id);
// Accessibility levels can only grow
if level > old_level {
self.access_levels.map.insert(id, level.unwrap());
self.changed = true;
level
} else {
old_level
}
}
fn reach<'b>(&'b mut self) -> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
ReachEverythingInTheInterfaceVisitor { ev: self }
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for EmbargoVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let inherited_item_level = match item.node {
// Impls inherit level from their types and traits
hir::ItemImpl(_, _, _, None, ref ty, _) => {
self.ty_level(&ty)
}
hir::ItemImpl(_, _, _, Some(ref trait_ref), ref ty, _) => {
cmp::min(self.ty_level(&ty), self.trait_level(trait_ref))
}
hir::ItemDefaultImpl(_, ref trait_ref) => {
self.trait_level(trait_ref)
}
// Foreign mods inherit level from parents
hir::ItemForeignMod(..) => {
self.prev_level
}
// Other `pub` items inherit levels from parents
_ => {
if item.vis == hir::Public { self.prev_level } else { None }
}
};
// Update level of the item itself
let item_level = self.update(item.id, inherited_item_level);
// Update levels of nested things
match item.node {
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
let variant_level = self.update(variant.node.data.id(), item_level);
for field in variant.node.data.fields() {
self.update(field.id, variant_level);
}
}
}
hir::ItemImpl(_, _, _, None, _, ref impl_items) => {
for impl_item in impl_items {
if impl_item.vis == hir::Public {
self.update(impl_item.id, item_level);
}
}
}
hir::ItemImpl(_, _, _, Some(_), _, ref impl_items) => {
for impl_item in impl_items {
self.update(impl_item.id, item_level);
}
}
hir::ItemTrait(_, _, _, ref trait_items) => {
for trait_item in trait_items {
self.update(trait_item.id, item_level);
}
}
hir::ItemStruct(ref def, _) => {
if !def.is_struct() {
self.update(def.id(), item_level);
}
for field in def.fields() {
if field.vis == hir::Public {
self.update(field.id, item_level);
}
}
}
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis == hir::Public {
self.update(foreign_item.id, item_level);
}
}
}
_ => {}
}
// Mark all items in interfaces of reachable items as reachable
match item.node {
// The interface is empty
hir::ItemExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemMod(..) => {}
// Reexports are handled in visit_mod
hir::ItemUse(..) => {}
// Visit everything
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemTrait(..) | hir::ItemTy(..) | hir::ItemImpl(_, _, _, Some(..), _, _) => {
if item_level.is_some() {
self.reach().visit_item(item);
}
}
// Visit everything, but enum variants have their own levels
hir::ItemEnum(ref def, ref generics) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
}
for variant in &def.variants {
if self.get(variant.node.data.id()).is_some() {
for field in variant.node.data.fields() {
self.reach().visit_struct_field(field);
}
// Corner case: if the variant is reachable, but its
// enum is not, make the enum reachable as well.
self.update(item.id, Some(AccessLevel::Reachable));
}
}
}
// Visit everything, but foreign items have their own levels
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if self.get(foreign_item.id).is_some() {
self.reach().visit_foreign_item(foreign_item);
}
}
}
// Visit everything except for private fields
hir::ItemStruct(ref struct_def, ref generics) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
for field in struct_def.fields() {
if self.get(field.id).is_some() {
self.reach().visit_struct_field(field);
}
}
}
}
// The interface is empty
hir::ItemDefaultImpl(..) => {}
// Visit everything except for private impl items
hir::ItemImpl(_, _, ref generics, None, _, ref impl_items) => {
if item_level.is_some() {
self.reach().visit_generics(generics);
for impl_item in impl_items {
if self.get(impl_item.id).is_some() {
self.reach().visit_impl_item(impl_item);
}
}
}
}
}
let orig_level = self.prev_level;
self.prev_level = item_level;
intravisit::walk_item(self, item);
self.prev_level = orig_level;
}
fn visit_block(&mut self, b: &'v hir::Block) {
let orig_level = replace(&mut self.prev_level, None);
// Blocks can have public items, for example impls, but they always
// start as completely private regardless of publicity of a function,
// constant, type, field, etc. in which this block resides
intravisit::walk_block(self, b);
self.prev_level = orig_level;
}
fn visit_mod(&mut self, m: &hir::Mod, _sp: Span, id: ast::NodeId) {
// This code is here instead of in visit_item so that the
// crate module gets processed as well.
if self.prev_level.is_some() {
if let Some(exports) = self.export_map.get(&id) {
for export in exports {
if let Some(node_id) = self.tcx.map.as_local_node_id(export.def_id) {
self.update(node_id, Some(AccessLevel::Exported));
}
}
}
}
intravisit::walk_mod(self, m);
}
fn visit_macro_def(&mut self, md: &'v hir::MacroDef) {
self.update(md.id, Some(AccessLevel::Public));
}
}
impl<'b, 'a, 'tcx: 'a> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
// Make the type hidden under a type alias reachable
fn reach_aliased_type(&mut self, item: &hir::Item, path: &hir::Path) {
if let hir::ItemTy(ref ty, ref generics) = item.node {
// See `fn is_public_type_alias` for details
self.visit_ty(ty);
let provided_params = path.segments.last().unwrap().parameters.types().len();
for ty_param in &generics.ty_params[provided_params..] {
if let Some(ref default_ty) = ty_param.default {
self.visit_ty(default_ty);
}
}
}
}
}
impl<'b, 'a, 'tcx: 'a, 'v> Visitor<'v> for ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(_, ref path) = ty.node {
let def = self.ev.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
match def {
Def::Struct(def_id) | Def::Enum(def_id) | Def::TyAlias(def_id) |
Def::Trait(def_id) | Def::AssociatedTy(def_id, _) => {
if let Some(node_id) = self.ev.tcx.map.as_local_node_id(def_id) {
let item = self.ev.tcx.map.expect_item(node_id);
if let Def::TyAlias(..) = def {
// Type aliases are substituted. Associated type aliases are not
// substituted yet, but ideally they should be.
if self.ev.get(item.id).is_none() {
self.reach_aliased_type(item, path);
}
} else {
self.ev.update(item.id, Some(AccessLevel::Reachable));
}
}
}
_ => {}
}
}
intravisit::walk_ty(self, ty);
}
fn visit_trait_ref(&mut self, trait_ref: &hir::TraitRef) {
let def_id = self.ev.tcx.trait_ref_to_def_id(trait_ref);
if let Some(node_id) = self.ev.tcx.map.as_local_node_id(def_id) {
let item = self.ev.tcx.map.expect_item(node_id);
self.ev.update(item.id, Some(AccessLevel::Reachable));
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Don't recurse into function bodies
fn visit_block(&mut self, _: &hir::Block) {}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &hir::Pat) {}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy visitor, where privacy checks take place (violations reported)
////////////////////////////////////////////////////////////////////////////////
struct PrivacyVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
curitem: ast::NodeId,
in_foreign: bool,
parents: NodeMap<ast::NodeId>,
}
#[derive(Debug)]
enum PrivacyResult {
Allowable,
ExternallyDenied,
DisallowedBy(ast::NodeId),
}
enum FieldName {
UnnamedField(usize), // index
NamedField(ast::Name),
}
impl<'a, 'tcx> PrivacyVisitor<'a, 'tcx> {
// Determines whether the given definition is public from the point of view
// of the current item.
fn def_privacy(&self, did: DefId) -> PrivacyResult {
let node_id = if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
node_id
} else {
if self.tcx.sess.cstore.visibility(did) == hir::Public {
debug!("privacy - {:?} was externally exported", did);
return Allowable;
}
debug!("privacy - is {:?} a public method", did);
return match self.tcx.impl_or_trait_items.borrow().get(&did) {
Some(&ty::ConstTraitItem(ref ac)) => {
debug!("privacy - it's a const: {:?}", *ac);
match ac.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found inherent \
associated constant {:?}",
ac.vis);
if ac.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
Some(&ty::MethodTraitItem(ref meth)) => {
debug!("privacy - well at least it's a method: {:?}",
*meth);
match meth.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found a method {:?}",
meth.vis);
if meth.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
Some(&ty::TypeTraitItem(ref typedef)) => {
match typedef.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match self.tcx.impl_trait_ref(id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found a typedef {:?}",
typedef.vis);
if typedef.vis == hir::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
None => {
debug!("privacy - nope, not even a method");
ExternallyDenied
}
};
};
debug!("privacy - local {} not public all the way down",
self.tcx.map.node_to_string(node_id));
// return quickly for things in the same module
if self.parents.get(&node_id) == self.parents.get(&self.curitem) {
debug!("privacy - same parent, we're done here");
return Allowable;
}
let vis = match self.tcx.map.find(node_id) {
// If this item is a method, then we know for sure that it's an
// actual method and not a static method. The reason for this is
// that these cases are only hit in the ExprMethodCall
// expression, and ExprCall will have its path checked later
// (the path of the trait/impl) if it's a static method.
//
// With this information, then we can completely ignore all
// trait methods. The privacy violation would be if the trait
// couldn't get imported, not if the method couldn't be used
// (all trait methods are public).
//
// However, if this is an impl method, then we dictate this
// decision solely based on the privacy of the method
// invocation.
Some(ast_map::NodeImplItem(ii)) => {
let imp = self.tcx.map.get_parent_did(node_id);
match self.tcx.impl_trait_ref(imp) {
Some(..) => hir::Public,
_ => ii.vis,
}
}
Some(ast_map::NodeTraitItem(_)) => hir::Public,
// This is not a method call, extract the visibility as one
// would normally look at it
Some(ast_map::NodeItem(it)) => it.vis,
Some(ast_map::NodeForeignItem(_)) => {
self.tcx.map.get_foreign_vis(node_id)
}
_ => hir::Public,
};
if vis == hir::Public { return Allowable }
if self.private_accessible(node_id) {
Allowable
} else {
DisallowedBy(node_id)
}
}
/// True if `id` is both local and private-accessible
fn local_private_accessible(&self, did: DefId) -> bool {
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.private_accessible(node_id)
} else {
false
}
}
/// For a local private node in the AST, this function will determine
/// whether the node is accessible by the current module that iteration is
/// inside.
fn private_accessible(&self, id: ast::NodeId) -> bool {
self.tcx.map.private_item_is_visible_from(id, self.curitem)
}
fn report_error(&self, result: CheckResult) -> bool {
match result {
None => true,
Some((span, msg, note)) => {
let mut err = self.tcx.sess.struct_span_err(span, &msg[..]);
if let Some((span, msg)) = note {
err.span_note(span, &msg[..]);
}
err.emit();
false
},
}
}
/// Guarantee that a particular definition is public. Returns a CheckResult
/// which contains any errors found. These can be reported using `report_error`.
/// If the result is `None`, no errors were found.
fn ensure_public(&self,
span: Span,
to_check: DefId,
source_did: Option<DefId>,
msg: &str)
-> CheckResult {
debug!("ensure_public(span={:?}, to_check={:?}, source_did={:?}, msg={:?})",
span, to_check, source_did, msg);
let def_privacy = self.def_privacy(to_check);
debug!("ensure_public: def_privacy={:?}", def_privacy);
let id = match def_privacy {
ExternallyDenied => {
return Some((span, format!("{} is private", msg), None))
}
Allowable => return None,
DisallowedBy(id) => id,
};
// If we're disallowed by a particular id, then we attempt to
// give a nice error message to say why it was disallowed. It
// was either because the item itself is private or because
// its parent is private and its parent isn't in our
// ancestry. (Both the item being checked and its parent must
// be local.)
let def_id = source_did.unwrap_or(to_check);
let node_id = self.tcx.map.as_local_node_id(def_id);
let (err_span, err_msg) = if Some(id) == node_id {
return Some((span, format!("{} is private", msg), None));
} else {
(span, format!("{} is inaccessible", msg))
};
let item = match self.tcx.map.find(id) {
Some(ast_map::NodeItem(item)) => {
match item.node {
// If an impl disallowed this item, then this is resolve's
// way of saying that a struct/enum's static method was
// invoked, and the struct/enum itself is private. Crawl
// back up the chains to find the relevant struct/enum that
// was private.
hir::ItemImpl(_, _, _, _, ref ty, _) => {
match ty.node {
hir::TyPath(..) => {}
_ => return Some((err_span, err_msg, None)),
};
let def = self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
let did = def.def_id();
let node_id = self.tcx.map.as_local_node_id(did).unwrap();
match self.tcx.map.get(node_id) {
ast_map::NodeItem(item) => item,
_ => self.tcx.sess.span_bug(item.span,
"path is not an item")
}
}
_ => item
}
}
Some(..) | None => return Some((err_span, err_msg, None)),
};
let desc = match item.node {
hir::ItemMod(..) => "module",
hir::ItemTrait(..) => "trait",
hir::ItemStruct(..) => "struct",
hir::ItemEnum(..) => "enum",
_ => return Some((err_span, err_msg, None))
};
let msg = format!("{} `{}` is private", desc, item.name);
Some((err_span, err_msg, Some((span, msg))))
}
// Checks that a field is in scope.
fn check_field(&mut self,
span: Span,
def: ty::AdtDef<'tcx>,
v: ty::VariantDef<'tcx>,
name: FieldName) {
let field = match name {
NamedField(f_name) => {
debug!("privacy - check named field {} in struct {:?}", f_name, def);
v.field_named(f_name)
}
UnnamedField(idx) => &v.fields[idx]
};
if field.vis == hir::Public || self.local_private_accessible(def.did) {
return;
}
let struct_desc = match def.adt_kind() {
ty::AdtKind::Struct =>
format!("struct `{}`", self.tcx.item_path_str(def.did)),
// struct variant fields have inherited visibility
ty::AdtKind::Enum => return
};
let msg = match name {
NamedField(name) => format!("field `{}` of {} is private",
name, struct_desc),
UnnamedField(idx) => format!("field #{} of {} is private",
idx, struct_desc),
};
span_err!(self.tcx.sess, span, E0451,
"{}", &msg[..]);
}
// Given the ID of a method, checks to ensure it's in scope.
fn check_static_method(&mut self,
span: Span,
method_id: DefId,
name: ast::Name) {
self.report_error(self.ensure_public(span,
method_id,
None,
&format!("method `{}`",
name)));
}
// Checks that a method is in scope.
fn check_method(&mut self, span: Span, method_def_id: DefId,
name: ast::Name) {
match self.tcx.impl_or_trait_item(method_def_id).container() {
ty::ImplContainer(_) => {
self.check_static_method(span, method_def_id, name)
}
// Trait methods are always all public. The only controlling factor
// is whether the trait itself is accessible or not.
ty::TraitContainer(trait_def_id) => {
let msg = format!("source trait `{}`", self.tcx.item_path_str(trait_def_id));
self.report_error(self.ensure_public(span, trait_def_id, None, &msg));
}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
let orig_curitem = replace(&mut self.curitem, item.id);
intravisit::walk_item(self, item);
self.curitem = orig_curitem;
}
fn visit_expr(&mut self, expr: &hir::Expr) {
match expr.node {
hir::ExprField(ref base, name) => {
if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&base).sty {
self.check_field(expr.span,
def,
def.struct_variant(),
NamedField(name.node));
}
}
hir::ExprTupField(ref base, idx) => {
if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&base).sty {
self.check_field(expr.span,
def,
def.struct_variant(),
UnnamedField(idx.node));
}
}
hir::ExprMethodCall(name, _, _) => {
let method_call = ty::MethodCall::expr(expr.id);
let method = self.tcx.tables.borrow().method_map[&method_call];
debug!("(privacy checking) checking impl method");
self.check_method(expr.span, method.def_id, name.node);
}
hir::ExprStruct(..) => {
let adt = self.tcx.expr_ty(expr).ty_adt_def().unwrap();
let variant = adt.variant_of_def(self.tcx.resolve_expr(expr));
// RFC 736: ensure all unmentioned fields are visible.
// Rather than computing the set of unmentioned fields
// (i.e. `all_fields - fields`), just check them all.
for field in &variant.fields {
self.check_field(expr.span, adt, variant, NamedField(field.name));
}
}
hir::ExprPath(..) => {
if let Def::Struct(..) = self.tcx.resolve_expr(expr) {
let expr_ty = self.tcx.expr_ty(expr);
let def = match expr_ty.sty {
ty::TyFnDef(_, _, &ty::BareFnTy { sig: ty::Binder(ty::FnSig {
output: ty::FnConverging(ty), ..
}), ..}) => ty,
_ => expr_ty
}.ty_adt_def().unwrap();
let any_priv = def.struct_variant().fields.iter().any(|f| {
f.vis != hir::Public && !self.local_private_accessible(def.did)
});
if any_priv {
span_err!(self.tcx.sess, expr.span, E0450,
"cannot invoke tuple struct constructor with private \
fields");
}
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pattern: &hir::Pat) {
// Foreign functions do not have their patterns mapped in the def_map,
// and there's nothing really relevant there anyway, so don't bother
// checking privacy. If you can name the type then you can pass it to an
// external C function anyway.
if self.in_foreign { return }
match pattern.node {
PatKind::Struct(_, ref fields, _) => {
let adt = self.tcx.pat_ty(pattern).ty_adt_def().unwrap();
let def = self.tcx.def_map.borrow().get(&pattern.id).unwrap().full_def();
let variant = adt.variant_of_def(def);
for field in fields {
self.check_field(pattern.span, adt, variant,
NamedField(field.node.name));
}
}
// Patterns which bind no fields are allowable (the path is check
// elsewhere).
PatKind::TupleStruct(_, Some(ref fields)) => {
match self.tcx.pat_ty(pattern).sty {
ty::TyStruct(def, _) => {
for (i, field) in fields.iter().enumerate() {
if let PatKind::Wild = field.node {
continue
}
self.check_field(field.span,
def,
def.struct_variant(),
UnnamedField(i));
}
}
ty::TyEnum(..) => {
// enum fields have no privacy at this time
}
_ => {}
}
}
_ => {}
}
intravisit::walk_pat(self, pattern);
}
fn visit_foreign_item(&mut self, fi: &hir::ForeignItem) {
self.in_foreign = true;
intravisit::walk_foreign_item(self, fi);
self.in_foreign = false;
}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy sanity check visitor, ensures unnecessary visibility isn't here
////////////////////////////////////////////////////////////////////////////////
struct SanePrivacyVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
}
impl<'a, 'tcx, 'v> Visitor<'v> for SanePrivacyVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
self.check_sane_privacy(item);
intravisit::walk_item(self, item);
}
}
impl<'a, 'tcx> SanePrivacyVisitor<'a, 'tcx> {
/// Validate that items that shouldn't have visibility qualifiers don't have them.
/// Such qualifiers can be set by syntax extensions even if the parser doesn't allow them,
/// so we check things like variant fields too.
fn check_sane_privacy(&self, item: &hir::Item) {
let check_inherited = |sp, vis, note: &str| {
if vis != hir::Inherited {
let mut err = struct_span_err!(self.tcx.sess, sp, E0449,
"unnecessary visibility qualifier");
if !note.is_empty() {
err.span_note(sp, note);
}
err.emit();
}
};
match item.node {
hir::ItemImpl(_, _, _, Some(..), _, ref impl_items) => {
check_inherited(item.span, item.vis,
"visibility qualifiers have no effect on trait impls");
for impl_item in impl_items {
check_inherited(impl_item.span, impl_item.vis,
"visibility qualifiers have no effect on trait impl items");
}
}
hir::ItemImpl(_, _, _, None, _, _) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual methods instead");
}
hir::ItemDefaultImpl(..) => {
check_inherited(item.span, item.vis,
"visibility qualifiers have no effect on trait impls");
}
hir::ItemForeignMod(..) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual functions instead");
}
hir::ItemEnum(ref def, _) => {
for variant in &def.variants {
for field in variant.node.data.fields() {
check_inherited(field.span, field.vis,
"visibility qualifiers have no effect on variant fields");
}
}
}
hir::ItemStruct(..) | hir::ItemTrait(..) |
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemMod(..) | hir::ItemExternCrate(..) |
hir::ItemUse(..) | hir::ItemTy(..) => {}
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// Obsolete visitors for checking for private items in public interfaces.
/// These visitors are supposed to be kept in frozen state and produce an
/// "old error node set". For backward compatibility the new visitor reports
/// warnings instead of hard errors when the erroneous node is not in this old set.
///////////////////////////////////////////////////////////////////////////////
struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
access_levels: &'a AccessLevels,
in_variant: bool,
// set of errors produced by this obsolete visitor
old_error_set: NodeSet,
}
struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b: 'a, 'tcx: 'b> {
inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
/// whether the type refers to private types.
contains_private: bool,
/// whether we've recurred at all (i.e. if we're pointing at the
/// first type on which visit_ty was called).
at_outer_type: bool,
// whether that first type is a public path.
outer_type_is_public_path: bool,
}
impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
fn path_is_private_type(&self, path_id: ast::NodeId) -> bool {
let did = match self.tcx.def_map.borrow().get(&path_id).map(|d| d.full_def()) {
// `int` etc. (None doesn't seem to occur.)
None | Some(Def::PrimTy(..)) | Some(Def::SelfTy(..)) => return false,
Some(def) => def.def_id(),
};
// A path can only be private if:
// it's in this crate...
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
// .. and it corresponds to a private type in the AST (this returns
// None for type parameters)
match self.tcx.map.find(node_id) {
Some(ast_map::NodeItem(ref item)) => item.vis != hir::Public,
Some(_) | None => false,
}
} else {
return false
}
}
fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
// FIXME: this would preferably be using `exported_items`, but all
// traits are exported currently (see `EmbargoVisitor.exported_trait`)
self.access_levels.is_public(trait_id)
}
fn check_ty_param_bound(&mut self,
ty_param_bound: &hir::TyParamBound) {
if let hir::TraitTyParamBound(ref trait_ref, _) = *ty_param_bound {
if self.path_is_private_type(trait_ref.trait_ref.ref_id) {
self.old_error_set.insert(trait_ref.trait_ref.ref_id);
}
}
}
fn item_is_public(&self, id: &ast::NodeId, vis: hir::Visibility) -> bool {
self.access_levels.is_reachable(*id) || vis == hir::Public
}
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyPath(..) = ty.node {
if self.inner.path_is_private_type(ty.id) {
self.contains_private = true;
// found what we're looking for so let's stop
// working.
return
} else if self.at_outer_type {
self.outer_type_is_public_path = true;
}
}
self.at_outer_type = false;
intravisit::walk_ty(self, ty)
}
// don't want to recurse into [, .. expr]
fn visit_expr(&mut self, _: &hir::Expr) {}
}
impl<'a, 'tcx, 'v> Visitor<'v> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
match item.node {
// contents of a private mod can be reexported, so we need
// to check internals.
hir::ItemMod(_) => {}
// An `extern {}` doesn't introduce a new privacy
// namespace (the contents have their own privacies).
hir::ItemForeignMod(_) => {}
hir::ItemTrait(_, _, ref bounds, _) => {
if !self.trait_is_public(item.id) {
return
}
for bound in bounds.iter() {
self.check_ty_param_bound(bound)
}
}
// impls need some special handling to try to offer useful
// error messages without (too many) false positives
// (i.e. we could just return here to not check them at
// all, or some worse estimation of whether an impl is
// publicly visible).
hir::ItemImpl(_, _, ref g, ref trait_ref, ref self_, ref impl_items) => {
// `impl [... for] Private` is never visible.
let self_contains_private;
// impl [... for] Public<...>, but not `impl [... for]
// Vec<Public>` or `(Public,)` etc.
let self_is_public_path;
// check the properties of the Self type:
{
let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
inner: self,
contains_private: false,
at_outer_type: true,
outer_type_is_public_path: false,
};
visitor.visit_ty(&self_);
self_contains_private = visitor.contains_private;
self_is_public_path = visitor.outer_type_is_public_path;
}
// miscellaneous info about the impl
// `true` iff this is `impl Private for ...`.
let not_private_trait =
trait_ref.as_ref().map_or(true, // no trait counts as public trait
|tr| {
let did = self.tcx.trait_ref_to_def_id(tr);
if let Some(node_id) = self.tcx.map.as_local_node_id(did) {
self.trait_is_public(node_id)
} else {
true // external traits must be public
}
});
// `true` iff this is a trait impl or at least one method is public.
//
// `impl Public { $( fn ...() {} )* }` is not visible.
//
// This is required over just using the methods' privacy
// directly because we might have `impl<T: Foo<Private>> ...`,
// and we shouldn't warn about the generics if all the methods
// are private (because `T` won't be visible externally).
let trait_or_some_public_method =
trait_ref.is_some() ||
impl_items.iter()
.any(|impl_item| {
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..) => {
self.access_levels.is_reachable(impl_item.id)
}
hir::ImplItemKind::Type(_) => false,
}
});
if !self_contains_private &&
not_private_trait &&
trait_or_some_public_method {
intravisit::walk_generics(self, g);
match *trait_ref {
None => {
for impl_item in impl_items {
// This is where we choose whether to walk down
// further into the impl to check its items. We
// should only walk into public items so that we
// don't erroneously report errors for private
// types in private items.
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..)
if self.item_is_public(&impl_item.id, impl_item.vis) =>
{
intravisit::walk_impl_item(self, impl_item)
}
hir::ImplItemKind::Type(..) => {
intravisit::walk_impl_item(self, impl_item)
}
_ => {}
}
}
}
Some(ref tr) => {
// Any private types in a trait impl fall into three
// categories.
// 1. mentioned in the trait definition
// 2. mentioned in the type params/generics
// 3. mentioned in the associated types of the impl
//
// Those in 1. can only occur if the trait is in
// this crate and will've been warned about on the
// trait definition (there's no need to warn twice
// so we don't check the methods).
//
// Those in 2. are warned via walk_generics and this
// call here.
intravisit::walk_path(self, &tr.path);
// Those in 3. are warned with this call.
for impl_item in impl_items {
if let hir::ImplItemKind::Type(ref ty) = impl_item.node {
self.visit_ty(ty);
}
}
}
}
} else if trait_ref.is_none() && self_is_public_path {
// impl Public<Private> { ... }. Any public static
// methods will be visible as `Public::foo`.
let mut found_pub_static = false;
for impl_item in impl_items {
match impl_item.node {
hir::ImplItemKind::Const(..) => {
if self.item_is_public(&impl_item.id, impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
hir::ImplItemKind::Method(ref sig, _) => {
if sig.explicit_self.node == hir::SelfStatic &&
self.item_is_public(&impl_item.id, impl_item.vis) {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
}
_ => {}
}
}
if found_pub_static {
intravisit::walk_generics(self, g)
}
}
return
}
// `type ... = ...;` can contain private types, because
// we're introducing a new name.
hir::ItemTy(..) => return,
// not at all public, so we don't care
_ if !self.item_is_public(&item.id, item.vis) => {
return;
}
_ => {}
}
// We've carefully constructed it so that if we're here, then
// any `visit_ty`'s will be called on things that are in
// public signatures, i.e. things that we're interested in for
// this visitor.
debug!("VisiblePrivateTypesVisitor entering item {:?}", item);
intravisit::walk_item(self, item);
}
fn visit_generics(&mut self, generics: &hir::Generics) {
for ty_param in generics.ty_params.iter() {
for bound in ty_param.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(ref bound_pred) => {
for bound in bound_pred.bounds.iter() {
self.check_ty_param_bound(bound)
}
}
&hir::WherePredicate::RegionPredicate(_) => {}
&hir::WherePredicate::EqPredicate(ref eq_pred) => {
self.visit_ty(&eq_pred.ty);
}
}
}
}
fn visit_foreign_item(&mut self, item: &hir::ForeignItem) {
if self.access_levels.is_reachable(item.id) {
intravisit::walk_foreign_item(self, item)
}
}
fn visit_ty(&mut self, t: &hir::Ty) {
debug!("VisiblePrivateTypesVisitor checking ty {:?}", t);
if let hir::TyPath(..) = t.node {
if self.path_is_private_type(t.id) {
self.old_error_set.insert(t.id);
}
}
intravisit::walk_ty(self, t)
}
fn visit_variant(&mut self, v: &hir::Variant, g: &hir::Generics, item_id: ast::NodeId) {
if self.access_levels.is_reachable(v.node.data.id()) {
self.in_variant = true;
intravisit::walk_variant(self, v, g, item_id);
self.in_variant = false;
}
}
fn visit_struct_field(&mut self, s: &hir::StructField) {
if s.vis == hir::Public || self.in_variant {
intravisit::walk_struct_field(self, s);
}
}
// we don't need to introspect into these at all: an
// expression/block context can't possibly contain exported things.
// (Making them no-ops stops us from traversing the whole AST without
// having to be super careful about our `walk_...` calls above.)
// FIXME(#29524): Unfortunately this ^^^ is not true, blocks can contain
// exported items (e.g. impls) and actual code in rustc itself breaks
// if we don't traverse blocks in `EmbargoVisitor`
fn visit_block(&mut self, _: &hir::Block) {}
fn visit_expr(&mut self, _: &hir::Expr) {}
}
///////////////////////////////////////////////////////////////////////////////
/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
/// finds any private components in it.
/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
/// and traits in public interfaces.
///////////////////////////////////////////////////////////////////////////////
struct SearchInterfaceForPrivateItemsVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
// Do not report an error when a private type is found
is_quiet: bool,
// Is private component found?
is_public: bool,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx: 'a> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
// Check if the type alias contain private types when substituted
fn is_public_type_alias(&self, item: &hir::Item, path: &hir::Path) -> bool {
// We substitute type aliases only when determining impl publicity
// FIXME: This will probably change and all type aliases will be substituted,
// requires an amendment to RFC 136.
if !self.is_quiet {
return false
}
// Type alias is considered public if the aliased type is
// public, even if the type alias itself is private. So, something
// like `type A = u8; pub fn f() -> A {...}` doesn't cause an error.
if let hir::ItemTy(ref ty, ref generics) = item.node {
let mut check = SearchInterfaceForPrivateItemsVisitor { is_public: true, ..*self };
check.visit_ty(ty);
// If a private type alias with default type parameters is used in public
// interface we must ensure, that the defaults are public if they are actually used.
// ```
// type Alias<T = Private> = T;
// pub fn f() -> Alias {...} // `Private` is implicitly used here, so it must be public
// ```
let provided_params = path.segments.last().unwrap().parameters.types().len();
for ty_param in &generics.ty_params[provided_params..] {
if let Some(ref default_ty) = ty_param.default {
check.visit_ty(default_ty);
}
}
check.is_public
} else {
false
}
}
}
impl<'a, 'tcx: 'a, 'v> Visitor<'v> for SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &hir::Ty) {
if self.is_quiet && !self.is_public {
// We are in quiet mode and a private type is already found, no need to proceed
return
}
if let hir::TyPath(_, ref path) = ty.node {
let def = self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
match def {
Def::PrimTy(..) | Def::SelfTy(..) | Def::TyParam(..) => {
// Public
}
Def::AssociatedTy(..) if self.is_quiet => {
// Conservatively approximate the whole type alias as public without
// recursing into its components when determining impl publicity.
// For example, `impl <Type as Trait>::Alias {...}` may be a public impl
// even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return
}
Def::Struct(def_id) | Def::Enum(def_id) | Def::TyAlias(def_id) |
Def::Trait(def_id) | Def::AssociatedTy(def_id, _) => {
// Non-local means public (private items can't leave their crate, modulo bugs)
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
if item.vis != hir::Public && !self.is_public_type_alias(item, path) {
if !self.is_quiet {
if self.old_error_set.contains(&ty.id) {
span_err!(self.tcx.sess, ty.span, E0446,
"private type in public interface");
} else {
self.tcx.sess.add_lint (
lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
ty.span,
format!("private type in public interface"),
);
}
}
self.is_public = false;
}
}
}
_ => {}
}
}
intravisit::walk_ty(self, ty);
}
fn visit_trait_ref(&mut self, trait_ref: &hir::TraitRef) {
if self.is_quiet && !self.is_public {
// We are in quiet mode and a private type is already found, no need to proceed
return
}
// Non-local means public (private items can't leave their crate, modulo bugs)
let def_id = self.tcx.trait_ref_to_def_id(trait_ref);
if let Some(node_id) = self.tcx.map.as_local_node_id(def_id) {
let item = self.tcx.map.expect_item(node_id);
if item.vis != hir::Public {
if !self.is_quiet {
if self.old_error_set.contains(&trait_ref.ref_id) {
span_err!(self.tcx.sess, trait_ref.path.span, E0445,
"private trait in public interface");
} else {
self.tcx.sess.add_lint(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
trait_ref.path.span,
"private trait in public interface (error E0445)"
.to_string());
}
}
self.is_public = false;
}
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Don't recurse into function bodies
fn visit_block(&mut self, _: &hir::Block) {}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &hir::Pat) {}
}
struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
old_error_set: &'a NodeSet,
}
impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
// A type is considered public if it doesn't contain any private components
fn is_public_ty(&self, ty: &hir::Ty) -> bool {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: true, is_public: true, old_error_set: self.old_error_set
};
check.visit_ty(ty);
check.is_public
}
// A trait reference is considered public if it doesn't contain any private components
fn is_public_trait_ref(&self, trait_ref: &hir::TraitRef) -> bool {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: true, is_public: true, old_error_set: self.old_error_set
};
check.visit_trait_ref(trait_ref);
check.is_public
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
let mut check = SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx, is_quiet: false, is_public: true, old_error_set: self.old_error_set
};
match item.node {
// Crates are always public
hir::ItemExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemMod(..) => {}
// Checked in resolve
hir::ItemUse(..) => {}
// Subitems of these items have inherited publicity
hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemFn(..) |
hir::ItemEnum(..) | hir::ItemTrait(..) | hir::ItemTy(..) => {
if item.vis == hir::Public {
check.visit_item(item);
}
}
// Subitems of foreign modules have their own publicity
hir::ItemForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis == hir::Public {
check.visit_foreign_item(foreign_item);
}
}
}
// Subitems of structs have their own publicity
hir::ItemStruct(ref struct_def, ref generics) => {
if item.vis == hir::Public {
check.visit_generics(generics);
for field in struct_def.fields() {
if field.vis == hir::Public {
check.visit_struct_field(field);
}
}
}
}
// The interface is empty
hir::ItemDefaultImpl(..) => {}
// An inherent impl is public when its type is public
// Subitems of inherent impls have their own publicity
hir::ItemImpl(_, _, ref generics, None, ref ty, ref impl_items) => {
if self.is_public_ty(ty) {
check.visit_generics(generics);
for impl_item in impl_items {
if impl_item.vis == hir::Public {
check.visit_impl_item(impl_item);
}
}
}
}
// A trait impl is public when both its type and its trait are public
// Subitems of trait impls have inherited publicity
hir::ItemImpl(_, _, ref generics, Some(ref trait_ref), ref ty, ref impl_items) => {
if self.is_public_ty(ty) && self.is_public_trait_ref(trait_ref) {
check.visit_generics(generics);
for impl_item in impl_items {
check.visit_impl_item(impl_item);
}
}
}
}
}
}
pub fn check_crate(tcx: &TyCtxt, export_map: &def::ExportMap) -> AccessLevels {
let _task = tcx.dep_graph.in_task(DepNode::Privacy);
let krate = tcx.map.krate();
// Sanity check to make sure that all privacy usage is reasonable.
let mut visitor = SanePrivacyVisitor { tcx: tcx };
krate.visit_all_items(&mut visitor);
// Figure out who everyone's parent is
let mut visitor = ParentVisitor {
tcx: tcx,
parents: NodeMap(),
curparent: ast::DUMMY_NODE_ID,
};
intravisit::walk_crate(&mut visitor, krate);
// Use the parent map to check the privacy of everything
let mut visitor = PrivacyVisitor {
curitem: ast::DUMMY_NODE_ID,
in_foreign: false,
tcx: tcx,
parents: visitor.parents,
};
intravisit::walk_crate(&mut visitor, krate);
tcx.sess.abort_if_errors();
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx: tcx,
export_map: export_map,
access_levels: Default::default(),
prev_level: Some(AccessLevel::Public),
changed: false,
};
loop {
intravisit::walk_crate(&mut visitor, krate);
if visitor.changed {
visitor.changed = false;
} else {
break
}
}
visitor.update(ast::CRATE_NODE_ID, Some(AccessLevel::Public));
{
let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
tcx: tcx,
access_levels: &visitor.access_levels,
in_variant: false,
old_error_set: NodeSet(),
};
intravisit::walk_crate(&mut visitor, krate);
// Check for private types and traits in public interfaces
let mut visitor = PrivateItemsInPublicInterfacesVisitor {
tcx: tcx,
old_error_set: &visitor.old_error_set,
};
krate.visit_all_items(&mut visitor);
}
visitor.access_levels
}
__build_diagnostic_array! { librustc_privacy, DIAGNOSTICS }