rust/src/shims/fs.rs

1190 lines
48 KiB
Rust

use std::collections::BTreeMap;
use std::convert::{TryFrom, TryInto};
use std::fs::{read_dir, remove_dir, remove_file, rename, DirBuilder, File, FileType, OpenOptions, ReadDir};
use std::io::{Read, Seek, SeekFrom, Write};
use std::path::Path;
use std::time::SystemTime;
use rustc_data_structures::fx::FxHashMap;
use rustc_target::abi::{Align, LayoutOf, Size};
use crate::stacked_borrows::Tag;
use crate::*;
use helpers::{check_arg_count, immty_from_int_checked, immty_from_uint_checked};
use shims::time::system_time_to_duration;
#[derive(Debug)]
pub struct FileHandle {
file: File,
writable: bool,
}
#[derive(Debug, Default)]
pub struct FileHandler {
handles: BTreeMap<i32, FileHandle>,
}
// fd numbers 0, 1, and 2 are reserved for stdin, stdout, and stderr
const MIN_NORMAL_FILE_FD: i32 = 3;
impl FileHandler {
fn insert_fd(&mut self, file_handle: FileHandle) -> i32 {
self.insert_fd_with_min_fd(file_handle, 0)
}
fn insert_fd_with_min_fd(&mut self, file_handle: FileHandle, min_fd: i32) -> i32 {
let min_fd = std::cmp::max(min_fd, MIN_NORMAL_FILE_FD);
// Find the lowest unused FD, starting from min_fd. If the first such unused FD is in
// between used FDs, the find_map combinator will return it. If the first such unused FD
// is after all other used FDs, the find_map combinator will return None, and we will use
// the FD following the greatest FD thus far.
let candidate_new_fd = self
.handles
.range(min_fd..)
.zip(min_fd..)
.find_map(|((fd, _fh), counter)| {
if *fd != counter {
// There was a gap in the fds stored, return the first unused one
// (note that this relies on BTreeMap iterating in key order)
Some(counter)
} else {
// This fd is used, keep going
None
}
});
let new_fd = candidate_new_fd.unwrap_or_else(|| {
// find_map ran out of BTreeMap entries before finding a free fd, use one plus the
// maximum fd in the map
self.handles.last_key_value().map(|(fd, _)| fd.checked_add(1).unwrap()).unwrap_or(min_fd)
});
self.handles.insert(new_fd, file_handle).unwrap_none();
new_fd
}
}
impl<'mir, 'tcx: 'mir> EvalContextExtPrivate<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
trait EvalContextExtPrivate<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Emulate `stat` or `lstat` on `macos`. This function is not intended to be
/// called directly from `emulate_foreign_item_by_name`, so it does not check if isolation is
/// disabled or if the target OS is the correct one. Please use `macos_stat` or
/// `macos_lstat` instead.
fn macos_stat_or_lstat(
&mut self,
follow_symlink: bool,
path_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
let path_scalar = this.read_scalar(path_op)?.not_undef()?;
let path = this.read_path_from_c_str(path_scalar)?.into_owned();
let metadata = match FileMetadata::from_path(this, &path, follow_symlink)? {
Some(metadata) => metadata,
None => return Ok(-1),
};
this.macos_stat_write_buf(metadata, buf_op)
}
fn macos_stat_write_buf(
&mut self,
metadata: FileMetadata,
buf_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
let mode: u16 = metadata.mode.to_u16()?;
let (access_sec, access_nsec) = metadata.accessed.unwrap_or((0, 0));
let (created_sec, created_nsec) = metadata.created.unwrap_or((0, 0));
let (modified_sec, modified_nsec) = metadata.modified.unwrap_or((0, 0));
let dev_t_layout = this.libc_ty_layout("dev_t")?;
let mode_t_layout = this.libc_ty_layout("mode_t")?;
let nlink_t_layout = this.libc_ty_layout("nlink_t")?;
let ino_t_layout = this.libc_ty_layout("ino_t")?;
let uid_t_layout = this.libc_ty_layout("uid_t")?;
let gid_t_layout = this.libc_ty_layout("gid_t")?;
let time_t_layout = this.libc_ty_layout("time_t")?;
let long_layout = this.libc_ty_layout("c_long")?;
let off_t_layout = this.libc_ty_layout("off_t")?;
let blkcnt_t_layout = this.libc_ty_layout("blkcnt_t")?;
let blksize_t_layout = this.libc_ty_layout("blksize_t")?;
let uint32_t_layout = this.libc_ty_layout("uint32_t")?;
let imms = [
immty_from_uint_checked(0u128, dev_t_layout)?, // st_dev
immty_from_uint_checked(mode, mode_t_layout)?, // st_mode
immty_from_uint_checked(0u128, nlink_t_layout)?, // st_nlink
immty_from_uint_checked(0u128, ino_t_layout)?, // st_ino
immty_from_uint_checked(0u128, uid_t_layout)?, // st_uid
immty_from_uint_checked(0u128, gid_t_layout)?, // st_gid
immty_from_uint_checked(0u128, dev_t_layout)?, // st_rdev
immty_from_uint_checked(0u128, uint32_t_layout)?, // padding
immty_from_uint_checked(access_sec, time_t_layout)?, // st_atime
immty_from_uint_checked(access_nsec, long_layout)?, // st_atime_nsec
immty_from_uint_checked(modified_sec, time_t_layout)?, // st_mtime
immty_from_uint_checked(modified_nsec, long_layout)?, // st_mtime_nsec
immty_from_uint_checked(0u128, time_t_layout)?, // st_ctime
immty_from_uint_checked(0u128, long_layout)?, // st_ctime_nsec
immty_from_uint_checked(created_sec, time_t_layout)?, // st_birthtime
immty_from_uint_checked(created_nsec, long_layout)?, // st_birthtime_nsec
immty_from_uint_checked(metadata.size, off_t_layout)?, // st_size
immty_from_uint_checked(0u128, blkcnt_t_layout)?, // st_blocks
immty_from_uint_checked(0u128, blksize_t_layout)?, // st_blksize
immty_from_uint_checked(0u128, uint32_t_layout)?, // st_flags
immty_from_uint_checked(0u128, uint32_t_layout)?, // st_gen
];
let buf = this.deref_operand(buf_op)?;
this.write_packed_immediates(buf, &imms)?;
Ok(0)
}
/// Function used when a handle is not found inside `FileHandler`. It returns `Ok(-1)`and sets
/// the last OS error to `libc::EBADF` (invalid file descriptor). This function uses
/// `T: From<i32>` instead of `i32` directly because some fs functions return different integer
/// types (like `read`, that returns an `i64`).
fn handle_not_found<T: From<i32>>(&mut self) -> InterpResult<'tcx, T> {
let this = self.eval_context_mut();
let ebadf = this.eval_libc("EBADF")?;
this.set_last_error(ebadf)?;
Ok((-1).into())
}
fn file_type_to_d_type(&mut self, file_type: std::io::Result<FileType>) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
match file_type {
Ok(file_type) => {
if file_type.is_dir() {
Ok(this.eval_libc("DT_DIR")?.to_u8()?.into())
} else if file_type.is_file() {
Ok(this.eval_libc("DT_REG")?.to_u8()?.into())
} else if file_type.is_symlink() {
Ok(this.eval_libc("DT_LNK")?.to_u8()?.into())
} else {
// Certain file types are only supported when the host is a Unix system.
// (i.e. devices and sockets) If it is, check those cases, if not, fall back to
// DT_UNKNOWN sooner.
#[cfg(unix)]
{
use std::os::unix::fs::FileTypeExt;
if file_type.is_block_device() {
Ok(this.eval_libc("DT_BLK")?.to_u8()?.into())
} else if file_type.is_char_device() {
Ok(this.eval_libc("DT_CHR")?.to_u8()?.into())
} else if file_type.is_fifo() {
Ok(this.eval_libc("DT_FIFO")?.to_u8()?.into())
} else if file_type.is_socket() {
Ok(this.eval_libc("DT_SOCK")?.to_u8()?.into())
} else {
Ok(this.eval_libc("DT_UNKNOWN")?.to_u8()?.into())
}
}
#[cfg(not(unix))]
Ok(this.eval_libc("DT_UNKNOWN")?.to_u8()?.into())
}
}
Err(e) => return match e.raw_os_error() {
Some(error) => Ok(error),
None => throw_unsup_format!("the error {} couldn't be converted to a return value", e),
}
}
}
}
#[derive(Debug)]
pub struct DirHandler {
/// Directory iterators used to emulate libc "directory streams", as used in opendir, readdir,
/// and closedir.
///
/// When opendir is called, a directory iterator is created on the host for the target
/// directory, and an entry is stored in this hash map, indexed by an ID which represents
/// the directory stream. When readdir is called, the directory stream ID is used to look up
/// the corresponding ReadDir iterator from this map, and information from the next
/// directory entry is returned. When closedir is called, the ReadDir iterator is removed from
/// the map.
streams: FxHashMap<u64, ReadDir>,
/// ID number to be used by the next call to opendir
next_id: u64,
}
impl DirHandler {
fn insert_new(&mut self, read_dir: ReadDir) -> u64 {
let id = self.next_id;
self.next_id += 1;
self.streams.insert(id, read_dir).unwrap_none();
id
}
}
impl Default for DirHandler {
fn default() -> DirHandler {
DirHandler {
streams: FxHashMap::default(),
// Skip 0 as an ID, because it looks like a null pointer to libc
next_id: 1,
}
}
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn open(
&mut self,
path_op: OpTy<'tcx, Tag>,
flag_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("open")?;
let flag = this.read_scalar(flag_op)?.to_i32()?;
let mut options = OpenOptions::new();
let o_rdonly = this.eval_libc_i32("O_RDONLY")?;
let o_wronly = this.eval_libc_i32("O_WRONLY")?;
let o_rdwr = this.eval_libc_i32("O_RDWR")?;
// The first two bits of the flag correspond to the access mode in linux, macOS and
// windows. We need to check that in fact the access mode flags for the current target
// only use these two bits, otherwise we are in an unsupported target and should error.
if (o_rdonly | o_wronly | o_rdwr) & !0b11 != 0 {
throw_unsup_format!("access mode flags on this target are unsupported");
}
let mut writable = true;
// Now we check the access mode
let access_mode = flag & 0b11;
if access_mode == o_rdonly {
writable = false;
options.read(true);
} else if access_mode == o_wronly {
options.write(true);
} else if access_mode == o_rdwr {
options.read(true).write(true);
} else {
throw_unsup_format!("unsupported access mode {:#x}", access_mode);
}
// We need to check that there aren't unsupported options in `flag`. For this we try to
// reproduce the content of `flag` in the `mirror` variable using only the supported
// options.
let mut mirror = access_mode;
let o_append = this.eval_libc_i32("O_APPEND")?;
if flag & o_append != 0 {
options.append(true);
mirror |= o_append;
}
let o_trunc = this.eval_libc_i32("O_TRUNC")?;
if flag & o_trunc != 0 {
options.truncate(true);
mirror |= o_trunc;
}
let o_creat = this.eval_libc_i32("O_CREAT")?;
if flag & o_creat != 0 {
mirror |= o_creat;
let o_excl = this.eval_libc_i32("O_EXCL")?;
if flag & o_excl != 0 {
mirror |= o_excl;
options.create_new(true);
} else {
options.create(true);
}
}
let o_cloexec = this.eval_libc_i32("O_CLOEXEC")?;
if flag & o_cloexec != 0 {
// We do not need to do anything for this flag because `std` already sets it.
// (Technically we do not support *not* setting this flag, but we ignore that.)
mirror |= o_cloexec;
}
// If `flag` is not equal to `mirror`, there is an unsupported option enabled in `flag`,
// then we throw an error.
if flag != mirror {
throw_unsup_format!("unsupported flags {:#x}", flag & !mirror);
}
let path = this.read_path_from_c_str(this.read_scalar(path_op)?.not_undef()?)?;
let fd = options.open(&path).map(|file| {
let fh = &mut this.machine.file_handler;
fh.insert_fd(FileHandle { file, writable })
});
this.try_unwrap_io_result(fd)
}
fn fcntl(
&mut self,
args: &[OpTy<'tcx, Tag>],
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("fcntl")?;
let (fd, cmd, start) = if args.len() == 2 {
let &[fd, cmd] = check_arg_count(args)?;
(fd, cmd, None)
} else {
// If args.len() isn't 2 or 3 this will error appropriately.
let &[fd, cmd, start] = check_arg_count(args)?;
(fd, cmd, Some(start))
};
let fd = this.read_scalar(fd)?.to_i32()?;
let cmd = this.read_scalar(cmd)?.to_i32()?;
// We only support getting the flags for a descriptor.
if cmd == this.eval_libc_i32("F_GETFD")? {
// Currently this is the only flag that `F_GETFD` returns. It is OK to just return the
// `FD_CLOEXEC` value without checking if the flag is set for the file because `std`
// always sets this flag when opening a file. However we still need to check that the
// file itself is open.
if this.machine.file_handler.handles.contains_key(&fd) {
Ok(this.eval_libc_i32("FD_CLOEXEC")?)
} else {
this.handle_not_found()
}
} else if cmd == this.eval_libc_i32("F_DUPFD")?
|| cmd == this.eval_libc_i32("F_DUPFD_CLOEXEC")?
{
// Note that we always assume the FD_CLOEXEC flag is set for every open file, in part
// because exec() isn't supported. The F_DUPFD and F_DUPFD_CLOEXEC commands only
// differ in whether the FD_CLOEXEC flag is pre-set on the new file descriptor,
// thus they can share the same implementation here.
if fd < MIN_NORMAL_FILE_FD {
throw_unsup_format!("duplicating file descriptors for stdin, stdout, or stderr is not supported")
}
let start = start.ok_or_else(|| {
err_unsup_format!(
"fcntl with command F_DUPFD or F_DUPFD_CLOEXEC requires a third argument"
)
})?;
let start = this.read_scalar(start)?.to_i32()?;
let fh = &mut this.machine.file_handler;
let (file_result, writable) = match fh.handles.get(&fd) {
Some(FileHandle { file, writable }) => (file.try_clone(), *writable),
None => return this.handle_not_found(),
};
let fd_result = file_result.map(|duplicated| {
fh.insert_fd_with_min_fd(FileHandle { file: duplicated, writable }, start)
});
this.try_unwrap_io_result(fd_result)
} else {
throw_unsup_format!("the {:#x} command is not supported for `fcntl`)", cmd);
}
}
fn close(&mut self, fd_op: OpTy<'tcx, Tag>) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("close")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
if let Some(FileHandle { file, writable }) = this.machine.file_handler.handles.remove(&fd) {
// We sync the file if it was opened in a mode different than read-only.
if writable {
// `File::sync_all` does the checks that are done when closing a file. We do this to
// to handle possible errors correctly.
let result = this.try_unwrap_io_result(file.sync_all().map(|_| 0i32));
// Now we actually close the file.
drop(file);
// And return the result.
result
} else {
// We drop the file, this closes it but ignores any errors produced when closing
// it. This is done because `File::sync_all` cannot be done over files like
// `/dev/urandom` which are read-only. Check
// https://github.com/rust-lang/miri/issues/999#issuecomment-568920439 for a deeper
// discussion.
drop(file);
Ok(0)
}
} else {
this.handle_not_found()
}
}
fn read(
&mut self,
fd_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
count_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i64> {
let this = self.eval_context_mut();
this.check_no_isolation("read")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
let buf = this.read_scalar(buf_op)?.not_undef()?;
let count = this.read_scalar(count_op)?.to_machine_usize(&*this.tcx)?;
// Check that the *entire* buffer is actually valid memory.
this.memory.check_ptr_access(
buf,
Size::from_bytes(count),
Align::from_bytes(1).unwrap(),
)?;
// We cap the number of read bytes to the largest value that we are able to fit in both the
// host's and target's `isize`. This saves us from having to handle overflows later.
let count = count.min(this.machine_isize_max() as u64).min(isize::MAX as u64);
if let Some(FileHandle { file, writable: _ }) = this.machine.file_handler.handles.get_mut(&fd) {
// This can never fail because `count` was capped to be smaller than
// `isize::MAX`.
let count = isize::try_from(count).unwrap();
// We want to read at most `count` bytes. We are sure that `count` is not negative
// because it was a target's `usize`. Also we are sure that its smaller than
// `usize::MAX` because it is a host's `isize`.
let mut bytes = vec![0; count as usize];
let result = file
.read(&mut bytes)
// `File::read` never returns a value larger than `count`, so this cannot fail.
.map(|c| i64::try_from(c).unwrap());
match result {
Ok(read_bytes) => {
// If reading to `bytes` did not fail, we write those bytes to the buffer.
this.memory.write_bytes(buf, bytes)?;
Ok(read_bytes)
}
Err(e) => {
this.set_last_error_from_io_error(e)?;
Ok(-1)
}
}
} else {
this.handle_not_found()
}
}
fn write(
&mut self,
fd_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
count_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i64> {
let this = self.eval_context_mut();
this.check_no_isolation("write")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
let buf = this.read_scalar(buf_op)?.not_undef()?;
let count = this.read_scalar(count_op)?.to_machine_usize(&*this.tcx)?;
// Check that the *entire* buffer is actually valid memory.
this.memory.check_ptr_access(
buf,
Size::from_bytes(count),
Align::from_bytes(1).unwrap(),
)?;
// We cap the number of written bytes to the largest value that we are able to fit in both the
// host's and target's `isize`. This saves us from having to handle overflows later.
let count = count.min(this.machine_isize_max() as u64).min(isize::MAX as u64);
if let Some(FileHandle { file, writable: _ }) = this.machine.file_handler.handles.get_mut(&fd) {
let bytes = this.memory.read_bytes(buf, Size::from_bytes(count))?;
let result = file.write(&bytes).map(|c| i64::try_from(c).unwrap());
this.try_unwrap_io_result(result)
} else {
this.handle_not_found()
}
}
fn lseek64(
&mut self,
fd_op: OpTy<'tcx, Tag>,
offset_op: OpTy<'tcx, Tag>,
whence_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i64> {
let this = self.eval_context_mut();
this.check_no_isolation("lseek64")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
let offset = this.read_scalar(offset_op)?.to_i64()?;
let whence = this.read_scalar(whence_op)?.to_i32()?;
let seek_from = if whence == this.eval_libc_i32("SEEK_SET")? {
SeekFrom::Start(u64::try_from(offset).unwrap())
} else if whence == this.eval_libc_i32("SEEK_CUR")? {
SeekFrom::Current(offset)
} else if whence == this.eval_libc_i32("SEEK_END")? {
SeekFrom::End(offset)
} else {
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
return Ok(-1);
};
if let Some(FileHandle { file, writable: _ }) = this.machine.file_handler.handles.get_mut(&fd) {
let result = file.seek(seek_from).map(|offset| i64::try_from(offset).unwrap());
this.try_unwrap_io_result(result)
} else {
this.handle_not_found()
}
}
fn unlink(&mut self, path_op: OpTy<'tcx, Tag>) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("unlink")?;
let path = this.read_path_from_c_str(this.read_scalar(path_op)?.not_undef()?)?;
let result = remove_file(path).map(|_| 0);
this.try_unwrap_io_result(result)
}
fn symlink(
&mut self,
target_op: OpTy<'tcx, Tag>,
linkpath_op: OpTy<'tcx, Tag>
) -> InterpResult<'tcx, i32> {
#[cfg(target_family = "unix")]
fn create_link(src: &Path, dst: &Path) -> std::io::Result<()> {
std::os::unix::fs::symlink(src, dst)
}
#[cfg(target_family = "windows")]
fn create_link(src: &Path, dst: &Path) -> std::io::Result<()> {
use std::os::windows::fs;
if src.is_dir() {
fs::symlink_dir(src, dst)
} else {
fs::symlink_file(src, dst)
}
}
let this = self.eval_context_mut();
this.check_no_isolation("symlink")?;
let target = this.read_path_from_c_str(this.read_scalar(target_op)?.not_undef()?)?;
let linkpath = this.read_path_from_c_str(this.read_scalar(linkpath_op)?.not_undef()?)?;
let result = create_link(&target, &linkpath).map(|_| 0);
this.try_unwrap_io_result(result)
}
fn macos_stat(
&mut self,
path_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "stat");
this.check_no_isolation("stat")?;
// `stat` always follows symlinks.
this.macos_stat_or_lstat(true, path_op, buf_op)
}
// `lstat` is used to get symlink metadata.
fn macos_lstat(
&mut self,
path_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "lstat");
this.check_no_isolation("lstat")?;
this.macos_stat_or_lstat(false, path_op, buf_op)
}
fn macos_fstat(
&mut self,
fd_op: OpTy<'tcx, Tag>,
buf_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "fstat");
this.check_no_isolation("fstat")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
let metadata = match FileMetadata::from_fd(this, fd)? {
Some(metadata) => metadata,
None => return Ok(-1),
};
this.macos_stat_write_buf(metadata, buf_op)
}
fn linux_statx(
&mut self,
dirfd_op: OpTy<'tcx, Tag>, // Should be an `int`
pathname_op: OpTy<'tcx, Tag>, // Should be a `const char *`
flags_op: OpTy<'tcx, Tag>, // Should be an `int`
_mask_op: OpTy<'tcx, Tag>, // Should be an `unsigned int`
statxbuf_op: OpTy<'tcx, Tag>, // Should be a `struct statx *`
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("linux", "statx");
this.check_no_isolation("statx")?;
let statxbuf_scalar = this.read_scalar(statxbuf_op)?.not_undef()?;
let pathname_scalar = this.read_scalar(pathname_op)?.not_undef()?;
// If the statxbuf or pathname pointers are null, the function fails with `EFAULT`.
if this.is_null(statxbuf_scalar)? || this.is_null(pathname_scalar)? {
let efault = this.eval_libc("EFAULT")?;
this.set_last_error(efault)?;
return Ok(-1);
}
// Under normal circumstances, we would use `deref_operand(statxbuf_op)` to produce a
// proper `MemPlace` and then write the results of this function to it. However, the
// `syscall` function is untyped. This means that all the `statx` parameters are provided
// as `isize`s instead of having the proper types. Thus, we have to recover the layout of
// `statxbuf_op` by using the `libc::statx` struct type.
let statxbuf_place = {
// FIXME: This long path is required because `libc::statx` is an struct and also a
// function and `resolve_path` is returning the latter.
let statx_ty = this
.resolve_path(&["libc", "unix", "linux_like", "linux", "gnu", "statx"])
.monomorphic_ty(*this.tcx);
let statxbuf_ty = this.tcx.mk_mut_ptr(statx_ty);
let statxbuf_layout = this.layout_of(statxbuf_ty)?;
let statxbuf_imm = ImmTy::from_scalar(statxbuf_scalar, statxbuf_layout);
this.ref_to_mplace(statxbuf_imm)?
};
let path = this.read_path_from_c_str(pathname_scalar)?.into_owned();
// `flags` should be a `c_int` but the `syscall` function provides an `isize`.
let flags: i32 =
this.read_scalar(flags_op)?.to_machine_isize(&*this.tcx)?.try_into().map_err(|e| {
err_unsup_format!("failed to convert pointer sized operand to integer: {}", e)
})?;
let empty_path_flag = flags & this.eval_libc("AT_EMPTY_PATH")?.to_i32()? != 0;
// `dirfd` should be a `c_int` but the `syscall` function provides an `isize`.
let dirfd: i32 =
this.read_scalar(dirfd_op)?.to_machine_isize(&*this.tcx)?.try_into().map_err(|e| {
err_unsup_format!("failed to convert pointer sized operand to integer: {}", e)
})?;
// We only support:
// * interpreting `path` as an absolute directory,
// * interpreting `path` as a path relative to `dirfd` when the latter is `AT_FDCWD`, or
// * interpreting `dirfd` as any file descriptor when `path` is empty and AT_EMPTY_PATH is
// set.
// Other behaviors cannot be tested from `libstd` and thus are not implemented. If you
// found this error, please open an issue reporting it.
if !(
path.is_absolute() ||
dirfd == this.eval_libc_i32("AT_FDCWD")? ||
(path.as_os_str().is_empty() && empty_path_flag)
) {
throw_unsup_format!(
"using statx is only supported with absolute paths, relative paths with the file \
descriptor `AT_FDCWD`, and empty paths with the `AT_EMPTY_PATH` flag set and any \
file descriptor"
)
}
// the `_mask_op` paramter specifies the file information that the caller requested.
// However `statx` is allowed to return information that was not requested or to not
// return information that was requested. This `mask` represents the information we can
// actually provide for any target.
let mut mask =
this.eval_libc("STATX_TYPE")?.to_u32()? | this.eval_libc("STATX_SIZE")?.to_u32()?;
// If the `AT_SYMLINK_NOFOLLOW` flag is set, we query the file's metadata without following
// symbolic links.
let follow_symlink = flags & this.eval_libc("AT_SYMLINK_NOFOLLOW")?.to_i32()? == 0;
// If the path is empty, and the AT_EMPTY_PATH flag is set, we query the open file
// represented by dirfd, whether it's a directory or otherwise.
let metadata = if path.as_os_str().is_empty() && empty_path_flag {
FileMetadata::from_fd(this, dirfd)?
} else {
FileMetadata::from_path(this, &path, follow_symlink)?
};
let metadata = match metadata {
Some(metadata) => metadata,
None => return Ok(-1),
};
// The `mode` field specifies the type of the file and the permissions over the file for
// the owner, its group and other users. Given that we can only provide the file type
// without using platform specific methods, we only set the bits corresponding to the file
// type. This should be an `__u16` but `libc` provides its values as `u32`.
let mode: u16 = metadata
.mode
.to_u32()?
.try_into()
.unwrap_or_else(|_| bug!("libc contains bad value for constant"));
// We need to set the corresponding bits of `mask` if the access, creation and modification
// times were available. Otherwise we let them be zero.
let (access_sec, access_nsec) = metadata.accessed.map(|tup| {
mask |= this.eval_libc("STATX_ATIME")?.to_u32()?;
InterpResult::Ok(tup)
}).unwrap_or(Ok((0, 0)))?;
let (created_sec, created_nsec) = metadata.created.map(|tup| {
mask |= this.eval_libc("STATX_BTIME")?.to_u32()?;
InterpResult::Ok(tup)
}).unwrap_or(Ok((0, 0)))?;
let (modified_sec, modified_nsec) = metadata.modified.map(|tup| {
mask |= this.eval_libc("STATX_MTIME")?.to_u32()?;
InterpResult::Ok(tup)
}).unwrap_or(Ok((0, 0)))?;
let __u32_layout = this.libc_ty_layout("__u32")?;
let __u64_layout = this.libc_ty_layout("__u64")?;
let __u16_layout = this.libc_ty_layout("__u16")?;
// Now we transform all this fields into `ImmTy`s and write them to `statxbuf`. We write a
// zero for the unavailable fields.
let imms = [
immty_from_uint_checked(mask, __u32_layout)?, // stx_mask
immty_from_uint_checked(0u128, __u32_layout)?, // stx_blksize
immty_from_uint_checked(0u128, __u64_layout)?, // stx_attributes
immty_from_uint_checked(0u128, __u32_layout)?, // stx_nlink
immty_from_uint_checked(0u128, __u32_layout)?, // stx_uid
immty_from_uint_checked(0u128, __u32_layout)?, // stx_gid
immty_from_uint_checked(mode, __u16_layout)?, // stx_mode
immty_from_uint_checked(0u128, __u16_layout)?, // statx padding
immty_from_uint_checked(0u128, __u64_layout)?, // stx_ino
immty_from_uint_checked(metadata.size, __u64_layout)?, // stx_size
immty_from_uint_checked(0u128, __u64_layout)?, // stx_blocks
immty_from_uint_checked(0u128, __u64_layout)?, // stx_attributes
immty_from_uint_checked(access_sec, __u64_layout)?, // stx_atime.tv_sec
immty_from_uint_checked(access_nsec, __u32_layout)?, // stx_atime.tv_nsec
immty_from_uint_checked(0u128, __u32_layout)?, // statx_timestamp padding
immty_from_uint_checked(created_sec, __u64_layout)?, // stx_btime.tv_sec
immty_from_uint_checked(created_nsec, __u32_layout)?, // stx_btime.tv_nsec
immty_from_uint_checked(0u128, __u32_layout)?, // statx_timestamp padding
immty_from_uint_checked(0u128, __u64_layout)?, // stx_ctime.tv_sec
immty_from_uint_checked(0u128, __u32_layout)?, // stx_ctime.tv_nsec
immty_from_uint_checked(0u128, __u32_layout)?, // statx_timestamp padding
immty_from_uint_checked(modified_sec, __u64_layout)?, // stx_mtime.tv_sec
immty_from_uint_checked(modified_nsec, __u32_layout)?, // stx_mtime.tv_nsec
immty_from_uint_checked(0u128, __u32_layout)?, // statx_timestamp padding
immty_from_uint_checked(0u128, __u64_layout)?, // stx_rdev_major
immty_from_uint_checked(0u128, __u64_layout)?, // stx_rdev_minor
immty_from_uint_checked(0u128, __u64_layout)?, // stx_dev_major
immty_from_uint_checked(0u128, __u64_layout)?, // stx_dev_minor
];
this.write_packed_immediates(statxbuf_place, &imms)?;
Ok(0)
}
fn rename(
&mut self,
oldpath_op: OpTy<'tcx, Tag>,
newpath_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("rename")?;
let oldpath_scalar = this.read_scalar(oldpath_op)?.not_undef()?;
let newpath_scalar = this.read_scalar(newpath_op)?.not_undef()?;
if this.is_null(oldpath_scalar)? || this.is_null(newpath_scalar)? {
let efault = this.eval_libc("EFAULT")?;
this.set_last_error(efault)?;
return Ok(-1);
}
let oldpath = this.read_path_from_c_str(oldpath_scalar)?;
let newpath = this.read_path_from_c_str(newpath_scalar)?;
let result = rename(oldpath, newpath).map(|_| 0);
this.try_unwrap_io_result(result)
}
fn mkdir(
&mut self,
path_op: OpTy<'tcx, Tag>,
mode_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("mkdir")?;
let _mode = if this.tcx.sess.target.target.target_os == "macos" {
u32::from(this.read_scalar(mode_op)?.not_undef()?.to_u16()?)
} else {
this.read_scalar(mode_op)?.to_u32()?
};
let path = this.read_path_from_c_str(this.read_scalar(path_op)?.not_undef()?)?;
let mut builder = DirBuilder::new();
// If the host supports it, forward on the mode of the directory
// (i.e. permission bits and the sticky bit)
#[cfg(target_family = "unix")]
{
use std::os::unix::fs::DirBuilderExt;
builder.mode(_mode.into());
}
let result = builder.create(path).map(|_| 0i32);
this.try_unwrap_io_result(result)
}
fn rmdir(
&mut self,
path_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("rmdir")?;
let path = this.read_path_from_c_str(this.read_scalar(path_op)?.not_undef()?)?;
let result = remove_dir(path).map(|_| 0i32);
this.try_unwrap_io_result(result)
}
fn opendir(&mut self, name_op: OpTy<'tcx, Tag>) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
this.check_no_isolation("opendir")?;
let name = this.read_path_from_c_str(this.read_scalar(name_op)?.not_undef()?)?;
let result = read_dir(name);
match result {
Ok(dir_iter) => {
let id = this.machine.dir_handler.insert_new(dir_iter);
// The libc API for opendir says that this method returns a pointer to an opaque
// structure, but we are returning an ID number. Thus, pass it as a scalar of
// pointer width.
Ok(Scalar::from_machine_usize(id, this))
}
Err(e) => {
this.set_last_error_from_io_error(e)?;
Ok(Scalar::null_ptr(this))
}
}
}
fn linux_readdir64_r(
&mut self,
dirp_op: OpTy<'tcx, Tag>,
entry_op: OpTy<'tcx, Tag>,
result_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("linux", "readdir64_r");
this.check_no_isolation("readdir64_r")?;
let dirp = this.read_scalar(dirp_op)?.to_machine_usize(this)?;
let dir_iter = this.machine.dir_handler.streams.get_mut(&dirp).ok_or_else(|| {
err_unsup_format!("the DIR pointer passed to readdir64_r did not come from opendir")
})?;
match dir_iter.next() {
Some(Ok(dir_entry)) => {
// Write into entry, write pointer to result, return 0 on success.
// The name is written with write_os_str_to_c_str, while the rest of the
// dirent64 struct is written using write_packed_immediates.
// For reference:
// pub struct dirent64 {
// pub d_ino: ino64_t,
// pub d_off: off64_t,
// pub d_reclen: c_ushort,
// pub d_type: c_uchar,
// pub d_name: [c_char; 256],
// }
let entry_place = this.deref_operand(entry_op)?;
let name_place = this.mplace_field(entry_place, 4)?;
let file_name = dir_entry.file_name(); // not a Path as there are no separators!
let (name_fits, _) = this.write_os_str_to_c_str(
&file_name,
name_place.ptr,
name_place.layout.size.bytes(),
)?;
if !name_fits {
throw_unsup_format!("a directory entry had a name too large to fit in libc::dirent64");
}
let entry_place = this.deref_operand(entry_op)?;
let ino64_t_layout = this.libc_ty_layout("ino64_t")?;
let off64_t_layout = this.libc_ty_layout("off64_t")?;
let c_ushort_layout = this.libc_ty_layout("c_ushort")?;
let c_uchar_layout = this.libc_ty_layout("c_uchar")?;
// If the host is a Unix system, fill in the inode number with its real value.
// If not, use 0 as a fallback value.
#[cfg(unix)]
let ino = std::os::unix::fs::DirEntryExt::ino(&dir_entry);
#[cfg(not(unix))]
let ino = 0u64;
let file_type = this.file_type_to_d_type(dir_entry.file_type())?;
let imms = [
immty_from_uint_checked(ino, ino64_t_layout)?, // d_ino
immty_from_uint_checked(0u128, off64_t_layout)?, // d_off
immty_from_uint_checked(0u128, c_ushort_layout)?, // d_reclen
immty_from_int_checked(file_type, c_uchar_layout)?, // d_type
];
this.write_packed_immediates(entry_place, &imms)?;
let result_place = this.deref_operand(result_op)?;
this.write_scalar(this.read_scalar(entry_op)?, result_place.into())?;
Ok(0)
}
None => {
// end of stream: return 0, assign *result=NULL
this.write_null(this.deref_operand(result_op)?.into())?;
Ok(0)
}
Some(Err(e)) => match e.raw_os_error() {
// return positive error number on error
Some(error) => Ok(error),
None => {
throw_unsup_format!("the error {} couldn't be converted to a return value", e)
}
},
}
}
fn macos_readdir_r(
&mut self,
dirp_op: OpTy<'tcx, Tag>,
entry_op: OpTy<'tcx, Tag>,
result_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "readdir_r");
this.check_no_isolation("readdir_r")?;
let dirp = this.read_scalar(dirp_op)?.to_machine_usize(this)?;
let dir_iter = this.machine.dir_handler.streams.get_mut(&dirp).ok_or_else(|| {
err_unsup_format!("the DIR pointer passed to readdir_r did not come from opendir")
})?;
match dir_iter.next() {
Some(Ok(dir_entry)) => {
// Write into entry, write pointer to result, return 0 on success.
// The name is written with write_os_str_to_c_str, while the rest of the
// dirent struct is written using write_packed_Immediates.
// For reference:
// pub struct dirent {
// pub d_ino: u64,
// pub d_seekoff: u64,
// pub d_reclen: u16,
// pub d_namlen: u16,
// pub d_type: u8,
// pub d_name: [c_char; 1024],
// }
let entry_place = this.deref_operand(entry_op)?;
let name_place = this.mplace_field(entry_place, 5)?;
let file_name = dir_entry.file_name(); // not a Path as there are no separators!
let (name_fits, file_name_len) = this.write_os_str_to_c_str(
&file_name,
name_place.ptr,
name_place.layout.size.bytes(),
)?;
if !name_fits {
throw_unsup_format!("a directory entry had a name too large to fit in libc::dirent");
}
let entry_place = this.deref_operand(entry_op)?;
let ino_t_layout = this.libc_ty_layout("ino_t")?;
let off_t_layout = this.libc_ty_layout("off_t")?;
let c_ushort_layout = this.libc_ty_layout("c_ushort")?;
let c_uchar_layout = this.libc_ty_layout("c_uchar")?;
// If the host is a Unix system, fill in the inode number with its real value.
// If not, use 0 as a fallback value.
#[cfg(unix)]
let ino = std::os::unix::fs::DirEntryExt::ino(&dir_entry);
#[cfg(not(unix))]
let ino = 0u64;
let file_type = this.file_type_to_d_type(dir_entry.file_type())?;
let imms = [
immty_from_uint_checked(ino, ino_t_layout)?, // d_ino
immty_from_uint_checked(0u128, off_t_layout)?, // d_seekoff
immty_from_uint_checked(0u128, c_ushort_layout)?, // d_reclen
immty_from_uint_checked(file_name_len, c_ushort_layout)?, // d_namlen
immty_from_int_checked(file_type, c_uchar_layout)?, // d_type
];
this.write_packed_immediates(entry_place, &imms)?;
let result_place = this.deref_operand(result_op)?;
this.write_scalar(this.read_scalar(entry_op)?, result_place.into())?;
Ok(0)
}
None => {
// end of stream: return 0, assign *result=NULL
this.write_null(this.deref_operand(result_op)?.into())?;
Ok(0)
}
Some(Err(e)) => match e.raw_os_error() {
// return positive error number on error
Some(error) => Ok(error),
None => {
throw_unsup_format!("the error {} couldn't be converted to a return value", e)
}
},
}
}
fn closedir(&mut self, dirp_op: OpTy<'tcx, Tag>) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("closedir")?;
let dirp = this.read_scalar(dirp_op)?.to_machine_usize(this)?;
if let Some(dir_iter) = this.machine.dir_handler.streams.remove(&dirp) {
drop(dir_iter);
Ok(0)
} else {
this.handle_not_found()
}
}
fn ftruncate64(
&mut self,
fd_op: OpTy<'tcx, Tag>,
length_op: OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.check_no_isolation("ftruncate64")?;
let fd = this.read_scalar(fd_op)?.to_i32()?;
let length = this.read_scalar(length_op)?.to_i64()?;
if let Some(FileHandle { file, writable }) = this.machine.file_handler.handles.get_mut(&fd) {
if *writable {
if let Ok(length) = length.try_into() {
let result = file.set_len(length);
this.try_unwrap_io_result(result.map(|_| 0i32))
} else {
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
Ok(-1)
}
} else {
// The file is not writable
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
Ok(-1)
}
} else {
this.handle_not_found()
}
}
}
/// Extracts the number of seconds and nanoseconds elapsed between `time` and the unix epoch when
/// `time` is Ok. Returns `None` if `time` is an error. Fails if `time` happens before the unix
/// epoch.
fn extract_sec_and_nsec<'tcx>(
time: std::io::Result<SystemTime>
) -> InterpResult<'tcx, Option<(u64, u32)>> {
time.ok().map(|time| {
let duration = system_time_to_duration(&time)?;
Ok((duration.as_secs(), duration.subsec_nanos()))
}).transpose()
}
/// Stores a file's metadata in order to avoid code duplication in the different metadata related
/// shims.
struct FileMetadata {
mode: Scalar<Tag>,
size: u64,
created: Option<(u64, u32)>,
accessed: Option<(u64, u32)>,
modified: Option<(u64, u32)>,
}
impl FileMetadata {
fn from_path<'tcx, 'mir>(
ecx: &mut MiriEvalContext<'mir, 'tcx>,
path: &Path,
follow_symlink: bool
) -> InterpResult<'tcx, Option<FileMetadata>> {
let metadata = if follow_symlink {
std::fs::metadata(path)
} else {
std::fs::symlink_metadata(path)
};
FileMetadata::from_meta(ecx, metadata)
}
fn from_fd<'tcx, 'mir>(
ecx: &mut MiriEvalContext<'mir, 'tcx>,
fd: i32,
) -> InterpResult<'tcx, Option<FileMetadata>> {
let option = ecx.machine.file_handler.handles.get(&fd);
let file = match option {
Some(FileHandle { file, writable: _ }) => file,
None => return ecx.handle_not_found().map(|_: i32| None),
};
let metadata = file.metadata();
FileMetadata::from_meta(ecx, metadata)
}
fn from_meta<'tcx, 'mir>(
ecx: &mut MiriEvalContext<'mir, 'tcx>,
metadata: Result<std::fs::Metadata, std::io::Error>,
) -> InterpResult<'tcx, Option<FileMetadata>> {
let metadata = match metadata {
Ok(metadata) => metadata,
Err(e) => {
ecx.set_last_error_from_io_error(e)?;
return Ok(None);
}
};
let file_type = metadata.file_type();
let mode_name = if file_type.is_file() {
"S_IFREG"
} else if file_type.is_dir() {
"S_IFDIR"
} else {
"S_IFLNK"
};
let mode = ecx.eval_libc(mode_name)?;
let size = metadata.len();
let created = extract_sec_and_nsec(metadata.created())?;
let accessed = extract_sec_and_nsec(metadata.accessed())?;
let modified = extract_sec_and_nsec(metadata.modified())?;
// FIXME: Provide more fields using platform specific methods.
Ok(Some(FileMetadata { mode, size, created, accessed, modified }))
}
}