rust/src/libstd/task.rs
Alex Crichton 7858065113 std: Rename Chan/Port types and constructor
* Chan<T> => Sender<T>
* Port<T> => Receiver<T>
* Chan::new() => channel()
* constructor returns (Sender, Receiver) instead of (Receiver, Sender)
* local variables named `port` renamed to `rx`
* local variables named `chan` renamed to `tx`

Closes #11765
2014-03-13 13:23:29 -07:00

555 lines
14 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Utilities for managing and scheduling tasks
*
* An executing Rust program consists of a collection of tasks, each with their
* own stack, and sole ownership of their allocated heap data. Tasks communicate
* with each other using channels (see `std::comm` for more info about how
* communication works).
*
* Failure in one task does not propagate to any others (not to parent, not to
* child). Failure propagation is instead handled by using the channel send()
* and recv() methods which will fail if the other end has hung up already.
*
* Task Scheduling:
*
* By default, every task is created with the same "flavor" as the calling task.
* This flavor refers to the scheduling mode, with two possibilities currently
* being 1:1 and M:N modes. Green (M:N) tasks are cooperatively scheduled and
* native (1:1) tasks are scheduled by the OS kernel.
*
* # Example
*
* ```rust
* spawn(proc() {
* println!("Hello, World!");
* })
* ```
*/
use any::Any;
use comm::{Sender, Receiver, channel};
use io::Writer;
use kinds::{Send, marker};
use logging::Logger;
use option::{None, Some, Option};
use result::{Result, Ok, Err};
use rt::local::Local;
use rt::task::Task;
use str::{Str, SendStr, IntoMaybeOwned};
#[cfg(test)] use any::{AnyOwnExt, AnyRefExt};
#[cfg(test)] use result;
/// Indicates the manner in which a task exited.
///
/// A task that completes without failing is considered to exit successfully.
///
/// If you wish for this result's delivery to block until all
/// children tasks complete, recommend using a result future.
pub type TaskResult = Result<(), ~Any>;
/// Task configuration options
pub struct TaskOpts {
/// Enable lifecycle notifications on the given channel
notify_chan: Option<Sender<TaskResult>>,
/// A name for the task-to-be, for identification in failure messages
name: Option<SendStr>,
/// The size of the stack for the spawned task
stack_size: Option<uint>,
/// Task-local logger (see std::logging)
logger: Option<~Logger>,
/// Task-local stdout
stdout: Option<~Writer>,
/// Task-local stderr
stderr: Option<~Writer>,
}
/**
* The task builder type.
*
* Provides detailed control over the properties and behavior of new tasks.
*/
// NB: Builders are designed to be single-use because they do stateful
// things that get weird when reusing - e.g. if you create a result future
// it only applies to a single task, so then you have to maintain Some
// potentially tricky state to ensure that everything behaves correctly
// when you try to reuse the builder to spawn a new task. We'll just
// sidestep that whole issue by making builders uncopyable and making
// the run function move them in.
pub struct TaskBuilder {
/// Options to spawn the new task with
opts: TaskOpts,
priv gen_body: Option<proc(v: proc()) -> proc()>,
priv nopod: Option<marker::NoPod>,
}
/**
* Generate the base configuration for spawning a task, off of which more
* configuration methods can be chained.
*/
pub fn task() -> TaskBuilder {
TaskBuilder {
opts: TaskOpts::new(),
gen_body: None,
nopod: None,
}
}
impl TaskBuilder {
/// Get a future representing the exit status of the task.
///
/// Taking the value of the future will block until the child task
/// terminates. The future result return value will be created *before* the task is
/// spawned; as such, do not invoke .get() on it directly;
/// rather, store it in an outer variable/list for later use.
///
/// # Failure
/// Fails if a future_result was already set for this task.
pub fn future_result(&mut self) -> Receiver<TaskResult> {
// FIXME (#3725): Once linked failure and notification are
// handled in the library, I can imagine implementing this by just
// registering an arbitrary number of task::on_exit handlers and
// sending out messages.
if self.opts.notify_chan.is_some() {
fail!("Can't set multiple future_results for one task!");
}
// Construct the future and give it to the caller.
let (tx, rx) = channel();
// Reconfigure self to use a notify channel.
self.opts.notify_chan = Some(tx);
rx
}
/// Name the task-to-be. Currently the name is used for identification
/// only in failure messages.
pub fn named<S: IntoMaybeOwned<'static>>(mut self, name: S) -> TaskBuilder {
self.opts.name = Some(name.into_maybe_owned());
self
}
/**
* Add a wrapper to the body of the spawned task.
*
* Before the task is spawned it is passed through a 'body generator'
* function that may perform local setup operations as well as wrap
* the task body in remote setup operations. With this the behavior
* of tasks can be extended in simple ways.
*
* This function augments the current body generator with a new body
* generator by applying the task body which results from the
* existing body generator to the new body generator.
*/
pub fn with_wrapper(mut self, wrapper: proc(v: proc()) -> proc()) -> TaskBuilder {
let prev_gen_body = self.gen_body.take();
let prev_gen_body = match prev_gen_body {
Some(gen) => gen,
None => {
let f: proc(proc()) -> proc() = proc(body) body;
f
}
};
let next_gen_body = {
let f: proc(proc()) -> proc() = proc(body) {
wrapper(prev_gen_body(body))
};
f
};
self.gen_body = Some(next_gen_body);
self
}
/**
* Creates and executes a new child task
*
* Sets up a new task with its own call stack and schedules it to run
* the provided unique closure. The task has the properties and behavior
* specified by the task_builder.
*/
pub fn spawn(mut self, f: proc()) {
let gen_body = self.gen_body.take();
let f = match gen_body {
Some(gen) => gen(f),
None => f
};
let t: ~Task = Local::take();
t.spawn_sibling(self.opts, f);
}
/**
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* # Return value
*
* If the function executed successfully then try returns result::ok
* containing the value returned by the function. If the function fails
* then try returns result::err containing nil.
*
* # Failure
* Fails if a future_result was already set for this task.
*/
pub fn try<T:Send>(mut self, f: proc() -> T) -> Result<T, ~Any> {
let (tx, rx) = channel();
let result = self.future_result();
self.spawn(proc() {
tx.send(f());
});
match result.recv() {
Ok(()) => Ok(rx.recv()),
Err(cause) => Err(cause)
}
}
}
/* Task construction */
impl TaskOpts {
pub fn new() -> TaskOpts {
/*!
* The default task options
*/
TaskOpts {
notify_chan: None,
name: None,
stack_size: None,
logger: None,
stdout: None,
stderr: None,
}
}
}
/* Spawn convenience functions */
/// Creates and executes a new child task
///
/// Sets up a new task with its own call stack and schedules it to run
/// the provided unique closure.
///
/// This function is equivalent to `task().spawn(f)`.
pub fn spawn(f: proc()) {
let task = task();
task.spawn(f)
}
pub fn try<T:Send>(f: proc() -> T) -> Result<T, ~Any> {
/*!
* Execute a function in another task and return either the return value
* of the function or result::err.
*
* This is equivalent to task().try.
*/
let task = task();
task.try(f)
}
/* Lifecycle functions */
/// Read the name of the current task.
pub fn with_task_name<U>(blk: |Option<&str>| -> U) -> U {
use rt::task::Task;
let mut task = Local::borrow(None::<Task>);
match task.get().name {
Some(ref name) => blk(Some(name.as_slice())),
None => blk(None)
}
}
pub fn deschedule() {
//! Yield control to the task scheduler
use rt::local::Local;
// FIXME(#7544): Optimize this, since we know we won't block.
let task: ~Task = Local::take();
task.yield_now();
}
pub fn failing() -> bool {
//! True if the running task has failed
use rt::task::Task;
let mut local = Local::borrow(None::<Task>);
local.get().unwinder.unwinding()
}
// The following 8 tests test the following 2^3 combinations:
// {un,}linked {un,}supervised failure propagation {up,down}wards.
// !!! These tests are dangerous. If Something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[test]
fn test_unnamed_task() {
spawn(proc() {
with_task_name(|name| {
assert!(name.is_none());
})
})
}
#[test]
fn test_owned_named_task() {
task().named(~"ada lovelace").spawn(proc() {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
})
}
#[test]
fn test_static_named_task() {
task().named("ada lovelace").spawn(proc() {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
})
}
#[test]
fn test_send_named_task() {
task().named("ada lovelace".into_maybe_owned()).spawn(proc() {
with_task_name(|name| {
assert!(name.unwrap() == "ada lovelace");
})
})
}
#[test]
fn test_run_basic() {
let (tx, rx) = channel();
task().spawn(proc() {
tx.send(());
});
rx.recv();
}
#[test]
fn test_with_wrapper() {
let (tx, rx) = channel();
task().with_wrapper(proc(body) {
let result: proc() = proc() {
body();
tx.send(());
};
result
}).spawn(proc() { });
rx.recv();
}
#[test]
fn test_future_result() {
let mut builder = task();
let result = builder.future_result();
builder.spawn(proc() {});
assert!(result.recv().is_ok());
let mut builder = task();
let result = builder.future_result();
builder.spawn(proc() {
fail!();
});
assert!(result.recv().is_err());
}
#[test] #[should_fail]
fn test_back_to_the_future_result() {
let mut builder = task();
builder.future_result();
builder.future_result();
}
#[test]
fn test_try_success() {
match try(proc() {
~"Success!"
}).as_ref().map(|s| s.as_slice()) {
result::Ok("Success!") => (),
_ => fail!()
}
}
#[test]
fn test_try_fail() {
match try(proc() {
fail!()
}) {
result::Err(_) => (),
result::Ok(()) => fail!()
}
}
#[test]
fn test_spawn_sched() {
use clone::Clone;
let (tx, rx) = channel();
fn f(i: int, tx: Sender<()>) {
let tx = tx.clone();
spawn(proc() {
if i == 0 {
tx.send(());
} else {
f(i - 1, tx);
}
});
}
f(10, tx);
rx.recv();
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
let (tx, rx) = channel();
spawn(proc() {
spawn(proc() {
tx.send(());
});
});
rx.recv();
}
#[cfg(test)]
fn avoid_copying_the_body(spawnfn: |v: proc()|) {
let (tx, rx) = channel::<uint>();
let x = ~1;
let x_in_parent = (&*x) as *int as uint;
spawnfn(proc() {
let x_in_child = (&*x) as *int as uint;
tx.send(x_in_child);
});
let x_in_child = rx.recv();
assert_eq!(x_in_parent, x_in_child);
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(spawn);
}
#[test]
fn test_avoid_copying_the_body_task_spawn() {
avoid_copying_the_body(|f| {
let builder = task();
builder.spawn(proc() {
f();
});
})
}
#[test]
fn test_avoid_copying_the_body_try() {
avoid_copying_the_body(|f| {
let _ = try(proc() {
f()
});
})
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static generations: uint = 16;
fn child_no(x: uint) -> proc() {
return proc() {
if x < generations {
task().spawn(child_no(x+1));
}
}
}
task().spawn(child_no(0));
}
#[test]
fn test_simple_newsched_spawn() {
spawn(proc()())
}
#[test]
fn test_try_fail_message_static_str() {
match try(proc() {
fail!("static string");
}) {
Err(e) => {
type T = &'static str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), "static string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_owned_str() {
match try(proc() {
fail!(~"owned string");
}) {
Err(e) => {
type T = ~str;
assert!(e.is::<T>());
assert_eq!(*e.move::<T>().unwrap(), ~"owned string");
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_any() {
match try(proc() {
fail!(~413u16 as ~Any);
}) {
Err(e) => {
type T = ~Any;
assert!(e.is::<T>());
let any = e.move::<T>().unwrap();
assert!(any.is::<u16>());
assert_eq!(*any.move::<u16>().unwrap(), 413u16);
}
Ok(()) => fail!()
}
}
#[test]
fn test_try_fail_message_unit_struct() {
struct Juju;
match try(proc() {
fail!(Juju)
}) {
Err(ref e) if e.is::<Juju>() => {}
Err(_) | Ok(()) => fail!()
}
}