3055 lines
104 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// trans.rs: Translate the completed AST to the LLVM IR.
//
// Some functions here, such as trans_block and trans_expr, return a value --
// the result of the translation to LLVM -- while others, such as trans_fn,
// trans_impl, and trans_item, are called only for the side effect of adding a
// particular definition to the LLVM IR output we're producing.
//
// Hopefully useful general knowledge about trans:
//
// * There's no way to find out the ty::t type of a ValueRef. Doing so
// would be "trying to get the eggs out of an omelette" (credit:
// pcwalton). You can, instead, find out its TypeRef by calling val_ty,
// but many TypeRefs correspond to one ty::t; for instance, tup(int, int,
// int) and rec(x=int, y=int, z=int) will have the same TypeRef.
use back::link::{mangle_exported_name};
use back::{link, abi};
use driver::session;
use driver::session::Session;
use lib::llvm::{ContextRef, ModuleRef, ValueRef, BasicBlockRef};
use lib::llvm::{llvm, True};
use lib;
use metadata::common::LinkMeta;
use metadata::{csearch, cstore, encoder};
use middle::astencode;
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
use middle::lang_items::{MallocFnLangItem, ClosureExchangeMallocFnLangItem};
use middle::resolve;
use middle::trans::_match;
use middle::trans::adt;
use middle::trans::base;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::common::*;
use middle::trans::consts;
use middle::trans::controlflow;
use middle::trans::datum;
use middle::trans::debuginfo;
use middle::trans::expr;
use middle::trans::foreign;
use middle::trans::glue;
use middle::trans::inline;
use middle::trans::machine;
use middle::trans::machine::{llalign_of_min, llsize_of};
use middle::trans::meth;
use middle::trans::monomorphize;
use middle::trans::tvec;
use middle::trans::type_of;
use middle::trans::type_of::*;
use middle::ty;
use util::common::indenter;
use util::ppaux::{Repr, ty_to_str};
use middle::trans::type_::Type;
use std::hash;
use std::hashmap::{HashMap, HashSet};
use std::int;
use std::io;
use std::libc::c_uint;
use std::str;
use std::uint;
use std::vec;
use std::local_data;
use extra::time;
use extra::sort;
use syntax::ast::ident;
use syntax::ast_map::{path, path_elt_to_str, path_name};
use syntax::ast_util::{local_def};
use syntax::attr;
use syntax::codemap::span;
use syntax::parse::token;
use syntax::parse::token::{special_idents};
use syntax::print::pprust::stmt_to_str;
use syntax::visit;
use syntax::{ast, ast_util, codemap, ast_map};
use syntax::abi::{X86, X86_64, Arm, Mips};
pub use middle::trans::context::task_llcx;
#[cfg(not(stage0))]
static task_local_insn_key: local_data::Key<@~[&'static str]> = &local_data::Key;
#[cfg(stage0)]
fn task_local_insn_key(_: @~[&'static str]) {}
pub fn with_insn_ctxt(blk: &fn(&[&'static str])) {
let opt = local_data::get(task_local_insn_key, |k| k.map(|&k| *k));
if opt.is_some() {
blk(*opt.unwrap());
}
}
pub fn init_insn_ctxt() {
local_data::set(task_local_insn_key, @~[]);
}
pub struct _InsnCtxt { _x: () }
#[unsafe_destructor]
impl Drop for _InsnCtxt {
fn drop(&self) {
do local_data::modify(task_local_insn_key) |c| {
do c.map_consume |ctx| {
let mut ctx = (*ctx).clone();
ctx.pop();
@ctx
}
}
}
}
pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
debug!("new InsnCtxt: %s", s);
do local_data::modify(task_local_insn_key) |c| {
do c.map_consume |ctx| {
let mut ctx = (*ctx).clone();
ctx.push(s);
@ctx
}
}
_InsnCtxt { _x: () }
}
fn fcx_has_nonzero_span(fcx: fn_ctxt) -> bool {
match fcx.span {
None => true,
Some(span) => *span.lo != 0 || *span.hi != 0
}
}
struct StatRecorder<'self> {
ccx: @mut CrateContext,
name: &'self str,
start: u64,
istart: uint,
}
impl<'self> StatRecorder<'self> {
pub fn new(ccx: @mut CrateContext,
name: &'self str) -> StatRecorder<'self> {
let start = if ccx.sess.trans_stats() {
time::precise_time_ns()
} else {
0
};
let istart = ccx.stats.n_llvm_insns;
StatRecorder {
ccx: ccx,
name: name,
start: start,
istart: istart,
}
}
}
#[unsafe_destructor]
impl<'self> Drop for StatRecorder<'self> {
pub fn drop(&self) {
if self.ccx.sess.trans_stats() {
let end = time::precise_time_ns();
let elapsed = ((end - self.start) / 1_000_000) as uint;
let iend = self.ccx.stats.n_llvm_insns;
self.ccx.stats.fn_stats.push((self.name.to_owned(),
elapsed,
iend - self.istart));
self.ccx.stats.n_fns += 1;
// Reset LLVM insn count to avoid compound costs.
self.ccx.stats.n_llvm_insns = self.istart;
}
}
}
pub fn decl_fn(llmod: ModuleRef, name: &str, cc: lib::llvm::CallConv, ty: Type) -> ValueRef {
let llfn: ValueRef = do name.as_c_str |buf| {
unsafe {
llvm::LLVMGetOrInsertFunction(llmod, buf, ty.to_ref())
}
};
lib::llvm::SetFunctionCallConv(llfn, cc);
return llfn;
}
pub fn decl_cdecl_fn(llmod: ModuleRef, name: &str, ty: Type) -> ValueRef {
return decl_fn(llmod, name, lib::llvm::CCallConv, ty);
}
// Only use this if you are going to actually define the function. It's
// not valid to simply declare a function as internal.
pub fn decl_internal_cdecl_fn(llmod: ModuleRef, name: &str, ty: Type) -> ValueRef {
let llfn = decl_cdecl_fn(llmod, name, ty);
lib::llvm::SetLinkage(llfn, lib::llvm::InternalLinkage);
return llfn;
}
pub fn get_extern_fn(externs: &mut ExternMap, llmod: ModuleRef, name: @str,
cc: lib::llvm::CallConv, ty: Type) -> ValueRef {
match externs.find_copy(&name) {
Some(n) => return n,
None => ()
}
let f = decl_fn(llmod, name, cc, ty);
externs.insert(name, f);
return f;
}
pub fn get_extern_const(externs: &mut ExternMap, llmod: ModuleRef,
name: @str, ty: Type) -> ValueRef {
match externs.find_copy(&name) {
Some(n) => return n,
None => ()
}
unsafe {
let c = do name.as_c_str |buf| {
llvm::LLVMAddGlobal(llmod, ty.to_ref(), buf)
};
externs.insert(name, c);
return c;
}
}
pub fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let _icx = push_ctxt("umax");
let cond = ICmp(cx, lib::llvm::IntULT, a, b);
return Select(cx, cond, b, a);
}
pub fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let _icx = push_ctxt("umin");
let cond = ICmp(cx, lib::llvm::IntULT, a, b);
return Select(cx, cond, a, b);
}
// Given a pointer p, returns a pointer sz(p) (i.e., inc'd by sz bytes).
// The type of the returned pointer is always i8*. If you care about the
// return type, use bump_ptr().
pub fn ptr_offs(bcx: block, base: ValueRef, sz: ValueRef) -> ValueRef {
let _icx = push_ctxt("ptr_offs");
let raw = PointerCast(bcx, base, Type::i8p());
InBoundsGEP(bcx, raw, [sz])
}
// Increment a pointer by a given amount and then cast it to be a pointer
// to a given type.
pub fn bump_ptr(bcx: block, t: ty::t, base: ValueRef, sz: ValueRef) ->
ValueRef {
let _icx = push_ctxt("bump_ptr");
let ccx = bcx.ccx();
let bumped = ptr_offs(bcx, base, sz);
let typ = type_of(ccx, t).ptr_to();
PointerCast(bcx, bumped, typ)
}
// Returns a pointer to the body for the box. The box may be an opaque
// box. The result will be casted to the type of body_t, if it is statically
// known.
//
// The runtime equivalent is box_body() in "rust_internal.h".
pub fn opaque_box_body(bcx: block,
body_t: ty::t,
boxptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("opaque_box_body");
let ccx = bcx.ccx();
let ty = type_of(ccx, body_t);
let ty = Type::box(ccx, &ty);
let boxptr = PointerCast(bcx, boxptr, ty.ptr_to());
GEPi(bcx, boxptr, [0u, abi::box_field_body])
}
// malloc_raw_dyn: allocates a box to contain a given type, but with a
// potentially dynamic size.
pub fn malloc_raw_dyn(bcx: block,
t: ty::t,
heap: heap,
size: ValueRef) -> Result {
let _icx = push_ctxt("malloc_raw");
let ccx = bcx.ccx();
fn require_alloc_fn(bcx: block, t: ty::t, it: LangItem) -> ast::def_id {
let li = &bcx.tcx().lang_items;
match li.require(it) {
Ok(id) => id,
Err(s) => {
bcx.tcx().sess.fatal(fmt!("allocation of `%s` %s",
bcx.ty_to_str(t), s));
}
}
}
if heap == heap_exchange {
let llty_value = type_of::type_of(ccx, t);
// Allocate space:
let r = callee::trans_lang_call(
bcx,
require_alloc_fn(bcx, t, ExchangeMallocFnLangItem),
[size],
None);
rslt(r.bcx, PointerCast(r.bcx, r.val, llty_value.ptr_to()))
} else {
// we treat ~fn, @fn and @[] as @ here, which isn't ideal
let (mk_fn, langcall) = match heap {
heap_managed | heap_managed_unique => {
(ty::mk_imm_box,
require_alloc_fn(bcx, t, MallocFnLangItem))
}
heap_exchange_closure => {
(ty::mk_imm_box,
require_alloc_fn(bcx, t, ClosureExchangeMallocFnLangItem))
}
_ => fail!("heap_exchange already handled")
};
// Grab the TypeRef type of box_ptr_ty.
let box_ptr_ty = mk_fn(bcx.tcx(), t);
let llty = type_of(ccx, box_ptr_ty);
// Get the tydesc for the body:
let static_ti = get_tydesc(ccx, t);
glue::lazily_emit_all_tydesc_glue(ccx, static_ti);
// Allocate space:
let tydesc = PointerCast(bcx, static_ti.tydesc, Type::i8p());
let r = callee::trans_lang_call(
bcx,
langcall,
[tydesc, size],
None);
let r = rslt(r.bcx, PointerCast(r.bcx, r.val, llty));
maybe_set_managed_unique_rc(r.bcx, r.val, heap);
r
}
}
// malloc_raw: expects an unboxed type and returns a pointer to
// enough space for a box of that type. This includes a rust_opaque_box
// header.
pub fn malloc_raw(bcx: block, t: ty::t, heap: heap) -> Result {
let ty = type_of(bcx.ccx(), t);
let size = llsize_of(bcx.ccx(), ty);
malloc_raw_dyn(bcx, t, heap, size)
}
pub struct MallocResult {
bcx: block,
box: ValueRef,
body: ValueRef
}
// malloc_general_dyn: usefully wraps malloc_raw_dyn; allocates a box,
// and pulls out the body
pub fn malloc_general_dyn(bcx: block, t: ty::t, heap: heap, size: ValueRef)
-> MallocResult {
assert!(heap != heap_exchange);
let _icx = push_ctxt("malloc_general");
let Result {bcx: bcx, val: llbox} = malloc_raw_dyn(bcx, t, heap, size);
let body = GEPi(bcx, llbox, [0u, abi::box_field_body]);
MallocResult { bcx: bcx, box: llbox, body: body }
}
pub fn malloc_general(bcx: block, t: ty::t, heap: heap) -> MallocResult {
let ty = type_of(bcx.ccx(), t);
assert!(heap != heap_exchange);
malloc_general_dyn(bcx, t, heap, llsize_of(bcx.ccx(), ty))
}
pub fn malloc_boxed(bcx: block, t: ty::t)
-> MallocResult {
malloc_general(bcx, t, heap_managed)
}
pub fn heap_for_unique(bcx: block, t: ty::t) -> heap {
if ty::type_contents(bcx.tcx(), t).contains_managed() {
heap_managed_unique
} else {
heap_exchange
}
}
pub fn maybe_set_managed_unique_rc(bcx: block, bx: ValueRef, heap: heap) {
assert!(heap != heap_exchange);
if heap == heap_managed_unique {
// In cases where we are looking at a unique-typed allocation in the
// managed heap (thus have refcount 1 from the managed allocator),
// such as a ~(@foo) or such. These need to have their refcount forced
// to -2 so the annihilator ignores them.
let rc = GEPi(bcx, bx, [0u, abi::box_field_refcnt]);
let rc_val = C_int(bcx.ccx(), -2);
Store(bcx, rc_val, rc);
}
}
// Type descriptor and type glue stuff
pub fn get_tydesc_simple(ccx: &mut CrateContext, t: ty::t) -> ValueRef {
get_tydesc(ccx, t).tydesc
}
pub fn get_tydesc(ccx: &mut CrateContext, t: ty::t) -> @mut tydesc_info {
match ccx.tydescs.find(&t) {
Some(&inf) => {
return inf;
}
_ => { }
}
ccx.stats.n_static_tydescs += 1u;
let inf = glue::declare_tydesc(ccx, t);
ccx.tydescs.insert(t, inf);
return inf;
}
pub fn set_optimize_for_size(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::OptimizeForSizeAttribute
as c_uint,
0);
}
}
pub fn set_no_inline(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::NoInlineAttribute as c_uint,
0);
}
}
pub fn set_no_unwind(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::NoUnwindAttribute as c_uint,
0);
}
}
// Tell LLVM to emit the information necessary to unwind the stack for the
// function f.
pub fn set_uwtable(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::UWTableAttribute as c_uint,
0);
}
}
pub fn set_inline_hint(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::InlineHintAttribute as c_uint,
0);
}
}
pub fn set_inline_hint_if_appr(attrs: &[ast::attribute],
llfn: ValueRef) {
match attr::find_inline_attr(attrs) {
attr::ia_hint => set_inline_hint(llfn),
attr::ia_always => set_always_inline(llfn),
attr::ia_never => set_no_inline(llfn),
attr::ia_none => { /* fallthrough */ }
}
}
pub fn set_always_inline(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::AlwaysInlineAttribute as c_uint,
0);
}
}
pub fn set_fixed_stack_segment(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttr(f, 0, 1 << (39 - 32));
}
}
pub fn set_glue_inlining(f: ValueRef, t: ty::t) {
if ty::type_is_structural(t) {
set_optimize_for_size(f);
} else { set_always_inline(f); }
}
// Double-check that we never ask LLVM to declare the same symbol twice. It
// silently mangles such symbols, breaking our linkage model.
pub fn note_unique_llvm_symbol(ccx: &mut CrateContext, sym: @str) {
if ccx.all_llvm_symbols.contains(&sym) {
ccx.sess.bug(~"duplicate LLVM symbol: " + sym);
}
ccx.all_llvm_symbols.insert(sym);
}
pub fn get_res_dtor(ccx: @mut CrateContext,
did: ast::def_id,
parent_id: ast::def_id,
substs: &[ty::t])
-> ValueRef {
let _icx = push_ctxt("trans_res_dtor");
if !substs.is_empty() {
let did = if did.crate != ast::local_crate {
inline::maybe_instantiate_inline(ccx, did)
} else {
did
};
assert_eq!(did.crate, ast::local_crate);
let tsubsts = ty::substs { self_r: None, self_ty: None,
tps: /*bad*/ substs.to_owned() };
let (val, _) = monomorphize::monomorphic_fn(ccx,
did,
&tsubsts,
None,
None,
None,
None);
val
} else if did.crate == ast::local_crate {
get_item_val(ccx, did.node)
} else {
let tcx = ccx.tcx;
let name = csearch::get_symbol(ccx.sess.cstore, did);
let class_ty = ty::subst_tps(tcx,
substs,
None,
ty::lookup_item_type(tcx, parent_id).ty);
let llty = type_of_dtor(ccx, class_ty);
let name = name.to_managed(); // :-(
get_extern_fn(&mut ccx.externs,
ccx.llmod,
name,
lib::llvm::CCallConv,
llty)
}
}
// Structural comparison: a rather involved form of glue.
pub fn maybe_name_value(cx: &CrateContext, v: ValueRef, s: &str) {
if cx.sess.opts.save_temps {
let _: () = str::as_c_str(s, |buf| {
unsafe {
llvm::LLVMSetValueName(v, buf)
}
});
}
}
// Used only for creating scalar comparison glue.
pub enum scalar_type { nil_type, signed_int, unsigned_int, floating_point, }
// NB: This produces an i1, not a Rust bool (i8).
pub fn compare_scalar_types(cx: block,
lhs: ValueRef,
rhs: ValueRef,
t: ty::t,
op: ast::binop)
-> Result {
let f = |a| compare_scalar_values(cx, lhs, rhs, a, op);
match ty::get(t).sty {
ty::ty_nil => rslt(cx, f(nil_type)),
ty::ty_bool | ty::ty_ptr(_) => rslt(cx, f(unsigned_int)),
ty::ty_int(_) => rslt(cx, f(signed_int)),
ty::ty_uint(_) => rslt(cx, f(unsigned_int)),
ty::ty_float(_) => rslt(cx, f(floating_point)),
ty::ty_type => {
rslt(
controlflow::trans_fail(
cx, None,
@"attempt to compare values of type type"),
C_nil())
}
_ => {
// Should never get here, because t is scalar.
cx.sess().bug("non-scalar type passed to \
compare_scalar_types")
}
}
}
// A helper function to do the actual comparison of scalar values.
pub fn compare_scalar_values(cx: block,
lhs: ValueRef,
rhs: ValueRef,
nt: scalar_type,
op: ast::binop)
-> ValueRef {
let _icx = push_ctxt("compare_scalar_values");
fn die(cx: block) -> ! {
cx.tcx().sess.bug("compare_scalar_values: must be a\
comparison operator");
}
match nt {
nil_type => {
// We don't need to do actual comparisons for nil.
// () == () holds but () < () does not.
match op {
ast::eq | ast::le | ast::ge => return C_i1(true),
ast::ne | ast::lt | ast::gt => return C_i1(false),
// refinements would be nice
_ => die(cx)
}
}
floating_point => {
let cmp = match op {
ast::eq => lib::llvm::RealOEQ,
ast::ne => lib::llvm::RealUNE,
ast::lt => lib::llvm::RealOLT,
ast::le => lib::llvm::RealOLE,
ast::gt => lib::llvm::RealOGT,
ast::ge => lib::llvm::RealOGE,
_ => die(cx)
};
return FCmp(cx, cmp, lhs, rhs);
}
signed_int => {
let cmp = match op {
ast::eq => lib::llvm::IntEQ,
ast::ne => lib::llvm::IntNE,
ast::lt => lib::llvm::IntSLT,
ast::le => lib::llvm::IntSLE,
ast::gt => lib::llvm::IntSGT,
ast::ge => lib::llvm::IntSGE,
_ => die(cx)
};
return ICmp(cx, cmp, lhs, rhs);
}
unsigned_int => {
let cmp = match op {
ast::eq => lib::llvm::IntEQ,
ast::ne => lib::llvm::IntNE,
ast::lt => lib::llvm::IntULT,
ast::le => lib::llvm::IntULE,
ast::gt => lib::llvm::IntUGT,
ast::ge => lib::llvm::IntUGE,
_ => die(cx)
};
return ICmp(cx, cmp, lhs, rhs);
}
}
}
pub type val_and_ty_fn<'self> = &'self fn(block, ValueRef, ty::t) -> block;
pub fn load_inbounds(cx: block, p: ValueRef, idxs: &[uint]) -> ValueRef {
return Load(cx, GEPi(cx, p, idxs));
}
pub fn store_inbounds(cx: block, v: ValueRef, p: ValueRef, idxs: &[uint]) {
Store(cx, v, GEPi(cx, p, idxs));
}
// Iterates through the elements of a structural type.
pub fn iter_structural_ty(cx: block, av: ValueRef, t: ty::t,
f: val_and_ty_fn) -> block {
let _icx = push_ctxt("iter_structural_ty");
fn iter_variant(cx: block, repr: &adt::Repr, av: ValueRef,
variant: ty::VariantInfo,
tps: &[ty::t], f: val_and_ty_fn) -> block {
let _icx = push_ctxt("iter_variant");
let tcx = cx.tcx();
let mut cx = cx;
for variant.args.iter().enumerate().advance |(i, &arg)| {
cx = f(cx,
adt::trans_field_ptr(cx, repr, av, variant.disr_val, i),
ty::subst_tps(tcx, tps, None, arg));
}
return cx;
}
let mut cx = cx;
match ty::get(t).sty {
ty::ty_struct(*) => {
let repr = adt::represent_type(cx.ccx(), t);
do expr::with_field_tys(cx.tcx(), t, None) |discr, field_tys| {
for field_tys.iter().enumerate().advance |(i, field_ty)| {
let llfld_a = adt::trans_field_ptr(cx, repr, av, discr, i);
cx = f(cx, llfld_a, field_ty.mt.ty);
}
}
}
ty::ty_estr(ty::vstore_fixed(_)) |
ty::ty_evec(_, ty::vstore_fixed(_)) => {
let (base, len) = tvec::get_base_and_len(cx, av, t);
cx = tvec::iter_vec_raw(cx, base, t, len, f);
}
ty::ty_tup(ref args) => {
let repr = adt::represent_type(cx.ccx(), t);
for args.iter().enumerate().advance |(i, arg)| {
let llfld_a = adt::trans_field_ptr(cx, repr, av, 0, i);
cx = f(cx, llfld_a, *arg);
}
}
ty::ty_enum(tid, ref substs) => {
let ccx = cx.ccx();
let repr = adt::represent_type(ccx, t);
let variants = ty::enum_variants(ccx.tcx, tid);
let n_variants = (*variants).len();
// NB: we must hit the discriminant first so that structural
// comparison know not to proceed when the discriminants differ.
match adt::trans_switch(cx, repr, av) {
(_match::single, None) => {
cx = iter_variant(cx, repr, av, variants[0],
substs.tps, f);
}
(_match::switch, Some(lldiscrim_a)) => {
cx = f(cx, lldiscrim_a, ty::mk_int());
let unr_cx = sub_block(cx, "enum-iter-unr");
Unreachable(unr_cx);
let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb,
n_variants);
let next_cx = sub_block(cx, "enum-iter-next");
for (*variants).iter().advance |variant| {
let variant_cx =
sub_block(cx, ~"enum-iter-variant-" +
int::to_str(variant.disr_val));
let variant_cx =
iter_variant(variant_cx, repr, av, *variant,
substs.tps, |x,y,z| f(x,y,z));
match adt::trans_case(cx, repr, variant.disr_val) {
_match::single_result(r) => {
AddCase(llswitch, r.val, variant_cx.llbb)
}
_ => ccx.sess.unimpl("value from adt::trans_case \
in iter_structural_ty")
}
Br(variant_cx, next_cx.llbb);
}
cx = next_cx;
}
_ => ccx.sess.unimpl("value from adt::trans_switch \
in iter_structural_ty")
}
}
_ => cx.sess().unimpl("type in iter_structural_ty")
}
return cx;
}
pub fn cast_shift_expr_rhs(cx: block, op: ast::binop,
lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op, lhs, rhs,
|a,b| Trunc(cx, a, b),
|a,b| ZExt(cx, a, b))
}
pub fn cast_shift_const_rhs(op: ast::binop,
lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op, lhs, rhs,
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}
pub fn cast_shift_rhs(op: ast::binop,
lhs: ValueRef, rhs: ValueRef,
trunc: &fn(ValueRef, Type) -> ValueRef,
zext: &fn(ValueRef, Type) -> ValueRef)
-> ValueRef {
// Shifts may have any size int on the rhs
unsafe {
if ast_util::is_shift_binop(op) {
let rhs_llty = val_ty(rhs);
let lhs_llty = val_ty(lhs);
let rhs_sz = llvm::LLVMGetIntTypeWidth(rhs_llty.to_ref());
let lhs_sz = llvm::LLVMGetIntTypeWidth(lhs_llty.to_ref());
if lhs_sz < rhs_sz {
trunc(rhs, lhs_llty)
} else if lhs_sz > rhs_sz {
// FIXME (#1877: If shifting by negative
// values becomes not undefined then this is wrong.
zext(rhs, lhs_llty)
} else {
rhs
}
} else {
rhs
}
}
}
pub fn fail_if_zero(cx: block, span: span, divrem: ast::binop,
rhs: ValueRef, rhs_t: ty::t) -> block {
let text = if divrem == ast::div {
@"attempted to divide by zero"
} else {
@"attempted remainder with a divisor of zero"
};
let is_zero = match ty::get(rhs_t).sty {
ty::ty_int(t) => {
let zero = C_integral(Type::int_from_ty(cx.ccx(), t), 0u64, false);
ICmp(cx, lib::llvm::IntEQ, rhs, zero)
}
ty::ty_uint(t) => {
let zero = C_integral(Type::uint_from_ty(cx.ccx(), t), 0u64, false);
ICmp(cx, lib::llvm::IntEQ, rhs, zero)
}
_ => {
cx.tcx().sess.bug(~"fail-if-zero on unexpected type: " +
ty_to_str(cx.ccx().tcx, rhs_t));
}
};
do with_cond(cx, is_zero) |bcx| {
controlflow::trans_fail(bcx, Some(span), text)
}
}
pub fn null_env_ptr(bcx: block) -> ValueRef {
C_null(Type::opaque_box(bcx.ccx()).ptr_to())
}
pub fn trans_external_path(ccx: &mut CrateContext, did: ast::def_id, t: ty::t)
-> ValueRef {
let name = csearch::get_symbol(ccx.sess.cstore, did).to_managed(); // Sad
match ty::get(t).sty {
ty::ty_bare_fn(_) | ty::ty_closure(_) => {
let llty = type_of_fn_from_ty(ccx, t);
return get_extern_fn(&mut ccx.externs, ccx.llmod, name,
lib::llvm::CCallConv, llty);
}
_ => {
let llty = type_of(ccx, t);
return get_extern_const(&mut ccx.externs, ccx.llmod, name, llty);
}
};
}
pub fn invoke(bcx: block, llfn: ValueRef, llargs: ~[ValueRef])
-> (ValueRef, block) {
let _icx = push_ctxt("invoke_");
if bcx.unreachable {
return (C_null(Type::i8()), bcx);
}
match bcx.node_info {
None => debug!("invoke at ???"),
Some(node_info) => {
debug!("invoke at %s",
bcx.sess().codemap.span_to_str(node_info.span));
}
}
if need_invoke(bcx) {
unsafe {
debug!("invoking %x at %x",
::std::cast::transmute(llfn),
::std::cast::transmute(bcx.llbb));
for llargs.iter().advance |&llarg| {
debug!("arg: %x", ::std::cast::transmute(llarg));
}
}
let normal_bcx = sub_block(bcx, "normal return");
let llresult = Invoke(bcx,
llfn,
llargs,
normal_bcx.llbb,
get_landing_pad(bcx));
return (llresult, normal_bcx);
} else {
unsafe {
debug!("calling %x at %x",
::std::cast::transmute(llfn),
::std::cast::transmute(bcx.llbb));
for llargs.iter().advance |&llarg| {
debug!("arg: %x", ::std::cast::transmute(llarg));
}
}
let llresult = Call(bcx, llfn, llargs);
return (llresult, bcx);
}
}
pub fn need_invoke(bcx: block) -> bool {
if (bcx.ccx().sess.opts.debugging_opts & session::no_landing_pads != 0) {
return false;
}
// Avoid using invoke if we are already inside a landing pad.
if bcx.is_lpad {
return false;
}
if have_cached_lpad(bcx) {
return true;
}
// Walk the scopes to look for cleanups
let mut cur = bcx;
let mut cur_scope = cur.scope;
loop {
cur_scope = match cur_scope {
Some(inf) => {
for inf.cleanups.iter().advance |cleanup| {
match *cleanup {
clean(_, cleanup_type) | clean_temp(_, _, cleanup_type) => {
if cleanup_type == normal_exit_and_unwind {
return true;
}
}
}
}
inf.parent
}
None => {
cur = match cur.parent {
Some(next) => next,
None => return false
};
cur.scope
}
}
}
}
pub fn have_cached_lpad(bcx: block) -> bool {
let mut res = false;
do in_lpad_scope_cx(bcx) |inf| {
match inf.landing_pad {
Some(_) => res = true,
None => res = false
}
}
return res;
}
pub fn in_lpad_scope_cx(bcx: block, f: &fn(si: &mut scope_info)) {
let mut bcx = bcx;
let mut cur_scope = bcx.scope;
loop {
cur_scope = match cur_scope {
Some(inf) => {
if !inf.empty_cleanups() || (inf.parent.is_none() && bcx.parent.is_none()) {
f(inf);
return;
}
inf.parent
}
None => {
bcx = block_parent(bcx);
bcx.scope
}
}
}
}
pub fn get_landing_pad(bcx: block) -> BasicBlockRef {
let _icx = push_ctxt("get_landing_pad");
let mut cached = None;
let mut pad_bcx = bcx; // Guaranteed to be set below
do in_lpad_scope_cx(bcx) |inf| {
// If there is a valid landing pad still around, use it
match inf.landing_pad {
Some(target) => cached = Some(target),
None => {
pad_bcx = lpad_block(bcx, "unwind");
inf.landing_pad = Some(pad_bcx.llbb);
}
}
}
// Can't return from block above
match cached { Some(b) => return b, None => () }
// The landing pad return type (the type being propagated). Not sure what
// this represents but it's determined by the personality function and
// this is what the EH proposal example uses.
let llretty = Type::struct_([Type::i8p(), Type::i32()], false);
// The exception handling personality function. This is the C++
// personality function __gxx_personality_v0, wrapped in our naming
// convention.
let personality = bcx.ccx().upcalls.rust_personality;
// The only landing pad clause will be 'cleanup'
let llretval = LandingPad(pad_bcx, llretty, personality, 1u);
// The landing pad block is a cleanup
SetCleanup(pad_bcx, llretval);
// Because we may have unwound across a stack boundary, we must call into
// the runtime to figure out which stack segment we are on and place the
// stack limit back into the TLS.
Call(pad_bcx, bcx.ccx().upcalls.reset_stack_limit, []);
// We store the retval in a function-central alloca, so that calls to
// Resume can find it.
match bcx.fcx.personality {
Some(addr) => Store(pad_bcx, llretval, addr),
None => {
let addr = alloca(pad_bcx, val_ty(llretval), "");
bcx.fcx.personality = Some(addr);
Store(pad_bcx, llretval, addr);
}
}
// Unwind all parent scopes, and finish with a Resume instr
cleanup_and_leave(pad_bcx, None, None);
return pad_bcx.llbb;
}
pub fn find_bcx_for_scope(bcx: block, scope_id: ast::node_id) -> block {
let mut bcx_sid = bcx;
let mut cur_scope = bcx_sid.scope;
loop {
cur_scope = match cur_scope {
Some(inf) => {
match inf.node_info {
Some(NodeInfo { id, _ }) if id == scope_id => {
return bcx_sid
}
// FIXME(#6268, #6248) hacky cleanup for nested method calls
Some(NodeInfo { callee_id: Some(id), _ }) if id == scope_id => {
return bcx_sid
}
_ => inf.parent
}
}
None => {
bcx_sid = match bcx_sid.parent {
None => bcx.tcx().sess.bug(fmt!("no enclosing scope with id %d", scope_id)),
Some(bcx_par) => bcx_par
};
bcx_sid.scope
}
}
}
}
pub fn do_spill(bcx: block, v: ValueRef, t: ty::t) -> ValueRef {
if ty::type_is_bot(t) {
return C_null(Type::i8p());
}
let llptr = alloc_ty(bcx, t, "");
Store(bcx, v, llptr);
return llptr;
}
// Since this function does *not* root, it is the caller's responsibility to
// ensure that the referent is pointed to by a root.
pub fn do_spill_noroot(cx: block, v: ValueRef) -> ValueRef {
let llptr = alloca(cx, val_ty(v), "");
Store(cx, v, llptr);
return llptr;
}
pub fn spill_if_immediate(cx: block, v: ValueRef, t: ty::t) -> ValueRef {
let _icx = push_ctxt("spill_if_immediate");
if ty::type_is_immediate(cx.tcx(), t) { return do_spill(cx, v, t); }
return v;
}
pub fn load_if_immediate(cx: block, v: ValueRef, t: ty::t) -> ValueRef {
let _icx = push_ctxt("load_if_immediate");
if ty::type_is_immediate(cx.tcx(), t) { return Load(cx, v); }
return v;
}
pub fn trans_trace(bcx: block, sp_opt: Option<span>, trace_str: @str) {
if !bcx.sess().trace() { return; }
let _icx = push_ctxt("trans_trace");
add_comment(bcx, trace_str);
let V_trace_str = C_cstr(bcx.ccx(), trace_str);
let (V_filename, V_line) = match sp_opt {
Some(sp) => {
let sess = bcx.sess();
let loc = sess.parse_sess.cm.lookup_char_pos(sp.lo);
(C_cstr(bcx.ccx(), loc.file.name), loc.line as int)
}
None => {
(C_cstr(bcx.ccx(), @"<runtime>"), 0)
}
};
let ccx = bcx.ccx();
let V_trace_str = PointerCast(bcx, V_trace_str, Type::i8p());
let V_filename = PointerCast(bcx, V_filename, Type::i8p());
let args = ~[V_trace_str, V_filename, C_int(ccx, V_line)];
Call(bcx, ccx.upcalls.trace, args);
}
pub fn ignore_lhs(_bcx: block, local: &ast::local) -> bool {
match local.node.pat.node {
ast::pat_wild => true, _ => false
}
}
pub fn init_local(bcx: block, local: &ast::local) -> block {
debug!("init_local(bcx=%s, local.id=%?)",
bcx.to_str(), local.node.id);
let _indenter = indenter();
let _icx = push_ctxt("init_local");
if ignore_lhs(bcx, local) {
// Handle let _ = e; just like e;
match local.node.init {
Some(init) => {
return expr::trans_into(bcx, init, expr::Ignore);
}
None => { return bcx; }
}
}
_match::store_local(bcx, local.node.pat, local.node.init)
}
pub fn trans_stmt(cx: block, s: &ast::stmt) -> block {
let _icx = push_ctxt("trans_stmt");
debug!("trans_stmt(%s)", stmt_to_str(s, cx.tcx().sess.intr()));
if cx.sess().asm_comments() {
add_span_comment(cx, s.span, stmt_to_str(s, cx.ccx().sess.intr()));
}
let mut bcx = cx;
debuginfo::update_source_pos(cx, s.span);
match s.node {
ast::stmt_expr(e, _) | ast::stmt_semi(e, _) => {
bcx = expr::trans_into(cx, e, expr::Ignore);
}
ast::stmt_decl(d, _) => {
match d.node {
ast::decl_local(ref local) => {
bcx = init_local(bcx, *local);
if cx.sess().opts.extra_debuginfo
&& fcx_has_nonzero_span(bcx.fcx) {
debuginfo::create_local_var(bcx, *local);
}
}
ast::decl_item(i) => trans_item(cx.fcx.ccx, i)
}
}
ast::stmt_mac(*) => cx.tcx().sess.bug("unexpanded macro")
}
return bcx;
}
// You probably don't want to use this one. See the
// next three functions instead.
pub fn new_block(cx: fn_ctxt, parent: Option<block>, scope: Option<@mut scope_info>,
is_lpad: bool, name: &str, opt_node_info: Option<NodeInfo>)
-> block {
unsafe {
let llbb = do name.as_c_str |buf| {
llvm::LLVMAppendBasicBlockInContext(cx.ccx.llcx, cx.llfn, buf)
};
let bcx = mk_block(llbb,
parent,
is_lpad,
opt_node_info,
cx);
bcx.scope = scope;
for parent.iter().advance |cx| {
if cx.unreachable {
Unreachable(bcx);
break;
}
}
bcx
}
}
pub fn simple_block_scope(parent: Option<@mut scope_info>,
node_info: Option<NodeInfo>) -> @mut scope_info {
@mut scope_info {
parent: parent,
loop_break: None,
loop_label: None,
cleanups: ~[],
cleanup_paths: ~[],
landing_pad: None,
node_info: node_info,
}
}
// Use this when you're at the top block of a function or the like.
pub fn top_scope_block(fcx: fn_ctxt, opt_node_info: Option<NodeInfo>)
-> block {
return new_block(fcx, None, Some(simple_block_scope(None, opt_node_info)), false,
"function top level", opt_node_info);
}
pub fn scope_block(bcx: block,
opt_node_info: Option<NodeInfo>,
n: &str) -> block {
return new_block(bcx.fcx, Some(bcx), Some(simple_block_scope(None, opt_node_info)), bcx.is_lpad,
n, opt_node_info);
}
pub fn loop_scope_block(bcx: block,
loop_break: block,
loop_label: Option<ident>,
n: &str,
opt_node_info: Option<NodeInfo>) -> block {
return new_block(bcx.fcx, Some(bcx), Some(@mut scope_info {
parent: None,
loop_break: Some(loop_break),
loop_label: loop_label,
cleanups: ~[],
cleanup_paths: ~[],
landing_pad: None,
node_info: opt_node_info,
}), bcx.is_lpad, n, opt_node_info);
}
// Use this when creating a block for the inside of a landing pad.
pub fn lpad_block(bcx: block, n: &str) -> block {
new_block(bcx.fcx, Some(bcx), None, true, n, None)
}
// Use this when you're making a general CFG BB within a scope.
pub fn sub_block(bcx: block, n: &str) -> block {
new_block(bcx.fcx, Some(bcx), None, bcx.is_lpad, n, None)
}
pub fn raw_block(fcx: fn_ctxt, is_lpad: bool, llbb: BasicBlockRef) -> block {
mk_block(llbb, None, is_lpad, None, fcx)
}
// trans_block_cleanups: Go through all the cleanups attached to this
// block and execute them.
//
// When translating a block that introduces new variables during its scope, we
// need to make sure those variables go out of scope when the block ends. We
// do that by running a 'cleanup' function for each variable.
// trans_block_cleanups runs all the cleanup functions for the block.
pub fn trans_block_cleanups(bcx: block, cleanups: ~[cleanup]) -> block {
trans_block_cleanups_(bcx, cleanups, false)
}
pub fn trans_block_cleanups_(bcx: block,
cleanups: &[cleanup],
/* cleanup_cx: block, */
is_lpad: bool) -> block {
let _icx = push_ctxt("trans_block_cleanups");
// NB: Don't short-circuit even if this block is unreachable because
// GC-based cleanup needs to the see that the roots are live.
let no_lpads =
bcx.ccx().sess.opts.debugging_opts & session::no_landing_pads != 0;
if bcx.unreachable && !no_lpads { return bcx; }
let mut bcx = bcx;
for cleanups.rev_iter().advance |cu| {
match *cu {
clean(cfn, cleanup_type) | clean_temp(_, cfn, cleanup_type) => {
// Some types don't need to be cleaned up during
// landing pads because they can be freed en mass later
if cleanup_type == normal_exit_and_unwind || !is_lpad {
bcx = cfn(bcx);
}
}
}
}
return bcx;
}
// In the last argument, Some(block) mean jump to this block, and none means
// this is a landing pad and leaving should be accomplished with a resume
// instruction.
pub fn cleanup_and_leave(bcx: block,
upto: Option<BasicBlockRef>,
leave: Option<BasicBlockRef>) {
let _icx = push_ctxt("cleanup_and_leave");
let mut cur = bcx;
let mut bcx = bcx;
let is_lpad = leave == None;
loop {
debug!("cleanup_and_leave: leaving %s", cur.to_str());
if bcx.sess().trace() {
trans_trace(
bcx, None,
(fmt!("cleanup_and_leave(%s)", cur.to_str())).to_managed());
}
let mut cur_scope = cur.scope;
loop {
cur_scope = match cur_scope {
Some (inf) if !inf.empty_cleanups() => {
let (sub_cx, dest, inf_cleanups) = {
let inf = &mut *inf;
let mut skip = 0;
let mut dest = None;
{
let r = (*inf).cleanup_paths.rev_iter().find_(|cp| cp.target == leave);
for r.iter().advance |cp| {
if cp.size == inf.cleanups.len() {
Br(bcx, cp.dest);
return;
}
skip = cp.size;
dest = Some(cp.dest);
}
}
let sub_cx = sub_block(bcx, "cleanup");
Br(bcx, sub_cx.llbb);
inf.cleanup_paths.push(cleanup_path {
target: leave,
size: inf.cleanups.len(),
dest: sub_cx.llbb
});
(sub_cx, dest, inf.cleanups.tailn(skip).to_owned())
};
bcx = trans_block_cleanups_(sub_cx,
inf_cleanups,
is_lpad);
for dest.iter().advance |&dest| {
Br(bcx, dest);
return;
}
inf.parent
}
Some(inf) => inf.parent,
None => break
}
}
match upto {
Some(bb) => { if cur.llbb == bb { break; } }
_ => ()
}
cur = match cur.parent {
Some(next) => next,
None => { assert!(upto.is_none()); break; }
};
}
match leave {
Some(target) => Br(bcx, target),
None => { Resume(bcx, Load(bcx, bcx.fcx.personality.get())); }
}
}
pub fn cleanup_block(bcx: block, upto: Option<BasicBlockRef>) -> block{
let _icx = push_ctxt("cleanup_block");
let mut cur = bcx;
let mut bcx = bcx;
loop {
debug!("cleanup_block: %s", cur.to_str());
if bcx.sess().trace() {
trans_trace(
bcx, None,
(fmt!("cleanup_block(%s)", cur.to_str())).to_managed());
}
let mut cur_scope = cur.scope;
loop {
cur_scope = match cur_scope {
Some (inf) => {
bcx = trans_block_cleanups_(bcx, inf.cleanups.to_owned(), false);
inf.parent
}
None => break
}
}
match upto {
Some(bb) => { if cur.llbb == bb { break; } }
_ => ()
}
cur = match cur.parent {
Some(next) => next,
None => { assert!(upto.is_none()); break; }
};
}
bcx
}
pub fn cleanup_and_Br(bcx: block, upto: block, target: BasicBlockRef) {
let _icx = push_ctxt("cleanup_and_Br");
cleanup_and_leave(bcx, Some(upto.llbb), Some(target));
}
pub fn leave_block(bcx: block, out_of: block) -> block {
let _icx = push_ctxt("leave_block");
let next_cx = sub_block(block_parent(out_of), "next");
if bcx.unreachable { Unreachable(next_cx); }
cleanup_and_Br(bcx, out_of, next_cx.llbb);
next_cx
}
pub fn with_scope(bcx: block,
opt_node_info: Option<NodeInfo>,
name: &str,
f: &fn(block) -> block) -> block {
let _icx = push_ctxt("with_scope");
debug!("with_scope(bcx=%s, opt_node_info=%?, name=%s)",
bcx.to_str(), opt_node_info, name);
let _indenter = indenter();
let scope = simple_block_scope(bcx.scope, opt_node_info);
bcx.scope = Some(scope);
let ret = f(bcx);
let ret = trans_block_cleanups_(ret, (scope.cleanups).clone(), false);
bcx.scope = scope.parent;
ret
}
pub fn with_scope_result(bcx: block,
opt_node_info: Option<NodeInfo>,
_name: &str,
f: &fn(block) -> Result) -> Result {
let _icx = push_ctxt("with_scope_result");
let scope = simple_block_scope(bcx.scope, opt_node_info);
bcx.scope = Some(scope);
let Result { bcx: out_bcx, val } = f(bcx);
let out_bcx = trans_block_cleanups_(out_bcx,
(scope.cleanups).clone(),
false);
bcx.scope = scope.parent;
rslt(out_bcx, val)
}
pub fn with_scope_datumblock(bcx: block, opt_node_info: Option<NodeInfo>,
name: &str, f: &fn(block) -> datum::DatumBlock)
-> datum::DatumBlock {
use middle::trans::datum::DatumBlock;
let _icx = push_ctxt("with_scope_result");
let scope_cx = scope_block(bcx, opt_node_info, name);
Br(bcx, scope_cx.llbb);
let DatumBlock {bcx, datum} = f(scope_cx);
DatumBlock {bcx: leave_block(bcx, scope_cx), datum: datum}
}
pub fn block_locals(b: &ast::blk, it: &fn(@ast::local)) {
for b.stmts.iter().advance |s| {
match s.node {
ast::stmt_decl(d, _) => {
match d.node {
ast::decl_local(ref local) => it(*local),
_ => {} /* fall through */
}
}
_ => {} /* fall through */
}
}
}
pub fn with_cond(bcx: block, val: ValueRef, f: &fn(block) -> block) -> block {
let _icx = push_ctxt("with_cond");
let next_cx = base::sub_block(bcx, "next");
let cond_cx = base::sub_block(bcx, "cond");
CondBr(bcx, val, cond_cx.llbb, next_cx.llbb);
let after_cx = f(cond_cx);
if !after_cx.terminated { Br(after_cx, next_cx.llbb); }
next_cx
}
pub fn call_memcpy(cx: block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef, align: u32) {
let _icx = push_ctxt("call_memcpy");
let ccx = cx.ccx();
let key = match ccx.sess.targ_cfg.arch {
X86 | Arm | Mips => "llvm.memcpy.p0i8.p0i8.i32",
X86_64 => "llvm.memcpy.p0i8.p0i8.i64"
};
let memcpy = ccx.intrinsics.get_copy(&key);
let src_ptr = PointerCast(cx, src, Type::i8p());
let dst_ptr = PointerCast(cx, dst, Type::i8p());
let size = IntCast(cx, n_bytes, ccx.int_type);
let align = C_i32(align as i32);
let volatile = C_i1(false);
Call(cx, memcpy, [dst_ptr, src_ptr, size, align, volatile]);
}
pub fn memcpy_ty(bcx: block, dst: ValueRef, src: ValueRef, t: ty::t) {
let _icx = push_ctxt("memcpy_ty");
let ccx = bcx.ccx();
if ty::type_is_structural(t) {
let llty = type_of::type_of(ccx, t);
let llsz = llsize_of(ccx, llty);
let llalign = llalign_of_min(ccx, llty);
call_memcpy(bcx, dst, src, llsz, llalign as u32);
} else {
Store(bcx, Load(bcx, src), dst);
}
}
pub fn zero_mem(cx: block, llptr: ValueRef, t: ty::t) {
let _icx = push_ctxt("zero_mem");
let bcx = cx;
let ccx = cx.ccx();
let llty = type_of::type_of(ccx, t);
memzero(bcx, llptr, llty);
}
// Always use this function instead of storing a zero constant to the memory
// in question. If you store a zero constant, LLVM will drown in vreg
// allocation for large data structures, and the generated code will be
// awful. (A telltale sign of this is large quantities of
// `mov [byte ptr foo],0` in the generated code.)
pub fn memzero(cx: block, llptr: ValueRef, ty: Type) {
let _icx = push_ctxt("memzero");
let ccx = cx.ccx();
let intrinsic_key = match ccx.sess.targ_cfg.arch {
X86 | Arm | Mips => "llvm.memset.p0i8.i32",
X86_64 => "llvm.memset.p0i8.i64"
};
let llintrinsicfn = ccx.intrinsics.get_copy(&intrinsic_key);
let llptr = PointerCast(cx, llptr, Type::i8().ptr_to());
let llzeroval = C_u8(0);
let size = IntCast(cx, machine::llsize_of(ccx, ty), ccx.int_type);
let align = C_i32(llalign_of_min(ccx, ty) as i32);
let volatile = C_i1(false);
Call(cx, llintrinsicfn, [llptr, llzeroval, size, align, volatile]);
}
pub fn alloc_ty(bcx: block, t: ty::t, name: &str) -> ValueRef {
let _icx = push_ctxt("alloc_ty");
let ccx = bcx.ccx();
let ty = type_of::type_of(ccx, t);
assert!(!ty::type_has_params(t), "Type has params: %s", ty_to_str(ccx.tcx, t));
let val = alloca(bcx, ty, name);
return val;
}
pub fn alloca(cx: block, ty: Type, name: &str) -> ValueRef {
alloca_maybe_zeroed(cx, ty, name, false)
}
pub fn alloca_maybe_zeroed(cx: block, ty: Type, name: &str, zero: bool) -> ValueRef {
let _icx = push_ctxt("alloca");
if cx.unreachable {
unsafe {
return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
}
}
let initcx = base::raw_block(cx.fcx, false, cx.fcx.get_llstaticallocas());
let p = Alloca(initcx, ty, name);
if zero { memzero(initcx, p, ty); }
p
}
pub fn arrayalloca(cx: block, ty: Type, v: ValueRef) -> ValueRef {
let _icx = push_ctxt("arrayalloca");
if cx.unreachable {
unsafe {
return llvm::LLVMGetUndef(ty.to_ref());
}
}
return ArrayAlloca(base::raw_block(cx.fcx, false, cx.fcx.get_llstaticallocas()), ty, v);
}
pub struct BasicBlocks {
sa: BasicBlockRef,
}
pub fn mk_staticallocas_basic_block(llfn: ValueRef) -> BasicBlockRef {
unsafe {
let cx = task_llcx();
str::as_c_str("static_allocas",
|buf| llvm::LLVMAppendBasicBlockInContext(cx, llfn, buf))
}
}
pub fn mk_return_basic_block(llfn: ValueRef) -> BasicBlockRef {
unsafe {
let cx = task_llcx();
str::as_c_str("return",
|buf| llvm::LLVMAppendBasicBlockInContext(cx, llfn, buf))
}
}
// Creates and returns space for, or returns the argument representing, the
// slot where the return value of the function must go.
pub fn make_return_pointer(fcx: fn_ctxt, output_type: ty::t) -> ValueRef {
unsafe {
if !ty::type_is_immediate(fcx.ccx.tcx, output_type) {
llvm::LLVMGetParam(fcx.llfn, 0)
} else {
let lloutputtype = type_of::type_of(fcx.ccx, output_type);
alloca(raw_block(fcx, false, fcx.get_llstaticallocas()), lloutputtype,
"__make_return_pointer")
}
}
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
pub fn new_fn_ctxt_w_id(ccx: @mut CrateContext,
path: path,
llfndecl: ValueRef,
id: ast::node_id,
output_type: ty::t,
skip_retptr: bool,
param_substs: Option<@param_substs>,
sp: Option<span>)
-> fn_ctxt {
for param_substs.iter().advance |p| { p.validate(); }
debug!("new_fn_ctxt_w_id(path=%s, id=%?, \
param_substs=%s)",
path_str(ccx.sess, path),
id,
param_substs.repr(ccx.tcx));
let substd_output_type = match param_substs {
None => output_type,
Some(substs) => {
ty::subst_tps(ccx.tcx, substs.tys, substs.self_ty, output_type)
}
};
let is_immediate = ty::type_is_immediate(ccx.tcx, substd_output_type);
let fcx = @mut fn_ctxt_ {
llfn: llfndecl,
llenv: unsafe {
llvm::LLVMGetUndef(Type::i8p().to_ref())
},
llretptr: None,
llstaticallocas: None,
llloadenv: None,
llreturn: None,
llself: None,
personality: None,
loop_ret: None,
has_immediate_return_value: is_immediate,
llargs: @mut HashMap::new(),
lllocals: @mut HashMap::new(),
llupvars: @mut HashMap::new(),
id: id,
param_substs: param_substs,
span: sp,
path: path,
ccx: ccx
};
fcx.llenv = unsafe {
llvm::LLVMGetParam(llfndecl, fcx.env_arg_pos() as c_uint)
};
if !ty::type_is_nil(substd_output_type) && !(is_immediate && skip_retptr) {
fcx.llretptr = Some(make_return_pointer(fcx, substd_output_type));
}
fcx
}
pub fn new_fn_ctxt(ccx: @mut CrateContext,
path: path,
llfndecl: ValueRef,
output_type: ty::t,
sp: Option<span>)
-> fn_ctxt {
new_fn_ctxt_w_id(ccx, path, llfndecl, -1, output_type, false, None, sp)
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
// create_llargs_for_fn_args: Creates a mapping from incoming arguments to
// allocas created for them.
//
// When we translate a function, we need to map its incoming arguments to the
// spaces that have been created for them (by code in the llallocas field of
// the function's fn_ctxt). create_llargs_for_fn_args populates the llargs
// field of the fn_ctxt with
pub fn create_llargs_for_fn_args(cx: fn_ctxt,
self_arg: self_arg,
args: &[ast::arg])
-> ~[ValueRef] {
let _icx = push_ctxt("create_llargs_for_fn_args");
match self_arg {
impl_self(tt, self_mode) => {
cx.llself = Some(ValSelfData {
v: cx.llenv,
t: tt,
is_copy: self_mode == ty::ByCopy
});
}
no_self => ()
}
// Return an array containing the ValueRefs that we get from
// llvm::LLVMGetParam for each argument.
vec::from_fn(args.len(), |i| {
unsafe {
let arg_n = cx.arg_pos(i);
let arg = &args[i];
let llarg = llvm::LLVMGetParam(cx.llfn, arg_n as c_uint);
// FIXME #7260: aliasing should be determined by monomorphized ty::t
match arg.ty.node {
// `~` pointers never alias other parameters, because ownership was transferred
ast::ty_uniq(_) => {
llvm::LLVMAddAttribute(llarg, lib::llvm::NoAliasAttribute as c_uint);
}
// FIXME: #6785: `&mut` can only alias `&const` and `@mut`, we should check for
// those in the other parameters and then mark it as `noalias` if there aren't any
_ => {}
}
llarg
}
})
}
pub fn copy_args_to_allocas(fcx: fn_ctxt,
bcx: block,
args: &[ast::arg],
raw_llargs: &[ValueRef],
arg_tys: &[ty::t]) -> block {
let _icx = push_ctxt("copy_args_to_allocas");
let mut bcx = bcx;
match fcx.llself {
Some(slf) => {
let self_val = if slf.is_copy
&& datum::appropriate_mode(bcx.tcx(), slf.t).is_by_value() {
let tmp = BitCast(bcx, slf.v, type_of(bcx.ccx(), slf.t));
let alloc = alloc_ty(bcx, slf.t, "__self");
Store(bcx, tmp, alloc);
alloc
} else {
PointerCast(bcx, slf.v, type_of(bcx.ccx(), slf.t).ptr_to())
};
fcx.llself = Some(ValSelfData {v: self_val, ..slf});
add_clean(bcx, self_val, slf.t);
}
_ => {}
}
for uint::range(0, arg_tys.len()) |arg_n| {
let arg_ty = arg_tys[arg_n];
let raw_llarg = raw_llargs[arg_n];
// For certain mode/type combinations, the raw llarg values are passed
// by value. However, within the fn body itself, we want to always
// have all locals and arguments be by-ref so that we can cancel the
// cleanup and for better interaction with LLVM's debug info. So, if
// the argument would be passed by value, we store it into an alloca.
// This alloca should be optimized away by LLVM's mem-to-reg pass in
// the event it's not truly needed.
// only by value if immediate:
let llarg = if datum::appropriate_mode(bcx.tcx(), arg_ty).is_by_value() {
let alloc = alloc_ty(bcx, arg_ty, "__arg");
Store(bcx, raw_llarg, alloc);
alloc
} else {
raw_llarg
};
bcx = _match::store_arg(bcx, args[arg_n].pat, llarg);
if fcx.ccx.sess.opts.extra_debuginfo && fcx_has_nonzero_span(fcx) {
debuginfo::create_arg(bcx, &args[arg_n], args[arg_n].ty.span);
}
}
return bcx;
}
// Ties up the llstaticallocas -> llloadenv -> lltop edges,
// and builds the return block.
pub fn finish_fn(fcx: fn_ctxt, lltop: BasicBlockRef, last_bcx: block) {
let _icx = push_ctxt("finish_fn");
tie_up_header_blocks(fcx, lltop);
let ret_cx = match fcx.llreturn {
Some(llreturn) => {
if !last_bcx.terminated {
Br(last_bcx, llreturn);
}
raw_block(fcx, false, llreturn)
}
None => last_bcx
};
build_return_block(fcx, ret_cx);
}
// Builds the return block for a function.
pub fn build_return_block(fcx: fn_ctxt, ret_cx: block) {
// Return the value if this function immediate; otherwise, return void.
if fcx.llretptr.is_some() && fcx.has_immediate_return_value {
Ret(ret_cx, Load(ret_cx, fcx.llretptr.get()))
} else {
RetVoid(ret_cx)
}
}
pub fn tie_up_header_blocks(fcx: fn_ctxt, lltop: BasicBlockRef) {
let _icx = push_ctxt("tie_up_header_blocks");
let llnext = match fcx.llloadenv {
Some(ll) => {
unsafe {
llvm::LLVMMoveBasicBlockBefore(ll, lltop);
}
Br(raw_block(fcx, false, ll), lltop);
ll
}
None => lltop
};
match fcx.llstaticallocas {
Some(ll) => {
unsafe {
llvm::LLVMMoveBasicBlockBefore(ll, llnext);
}
Br(raw_block(fcx, false, ll), llnext);
}
None => ()
}
}
pub enum self_arg { impl_self(ty::t, ty::SelfMode), no_self, }
// trans_closure: Builds an LLVM function out of a source function.
// If the function closes over its environment a closure will be
// returned.
pub fn trans_closure(ccx: @mut CrateContext,
path: path,
decl: &ast::fn_decl,
body: &ast::blk,
llfndecl: ValueRef,
self_arg: self_arg,
param_substs: Option<@param_substs>,
id: ast::node_id,
attributes: &[ast::attribute],
output_type: ty::t,
maybe_load_env: &fn(fn_ctxt),
finish: &fn(block)) {
ccx.stats.n_closures += 1;
let _icx = push_ctxt("trans_closure");
set_uwtable(llfndecl);
debug!("trans_closure(..., param_substs=%s)",
param_substs.repr(ccx.tcx));
// Set up arguments to the function.
let fcx = new_fn_ctxt_w_id(ccx,
path,
llfndecl,
id,
output_type,
false,
param_substs,
Some(body.span));
let raw_llargs = create_llargs_for_fn_args(fcx, self_arg, decl.inputs);
// Set the fixed stack segment flag if necessary.
if attr::attrs_contains_name(attributes, "fixed_stack_segment") {
set_no_inline(fcx.llfn);
set_fixed_stack_segment(fcx.llfn);
}
// Create the first basic block in the function and keep a handle on it to
// pass to finish_fn later.
let bcx_top = top_scope_block(fcx, body.info());
let mut bcx = bcx_top;
let lltop = bcx.llbb;
let block_ty = node_id_type(bcx, body.id);
let arg_tys = ty::ty_fn_args(node_id_type(bcx, id));
bcx = copy_args_to_allocas(fcx, bcx, decl.inputs, raw_llargs, arg_tys);
maybe_load_env(fcx);
// This call to trans_block is the place where we bridge between
// translation calls that don't have a return value (trans_crate,
// trans_mod, trans_item, et cetera) and those that do
// (trans_block, trans_expr, et cetera).
if body.expr.is_none() || ty::type_is_bot(block_ty) ||
ty::type_is_nil(block_ty)
{
bcx = controlflow::trans_block(bcx, body, expr::Ignore);
} else {
let dest = expr::SaveIn(fcx.llretptr.get());
bcx = controlflow::trans_block(bcx, body, dest);
}
finish(bcx);
match fcx.llreturn {
Some(llreturn) => cleanup_and_Br(bcx, bcx_top, llreturn),
None => bcx = cleanup_block(bcx, Some(bcx_top.llbb))
};
// Put return block after all other blocks.
// This somewhat improves single-stepping experience in debugger.
unsafe {
for fcx.llreturn.iter().advance |&llreturn| {
llvm::LLVMMoveBasicBlockAfter(llreturn, bcx.llbb);
}
}
// Insert the mandatory first few basic blocks before lltop.
finish_fn(fcx, lltop, bcx);
}
// trans_fn: creates an LLVM function corresponding to a source language
// function.
pub fn trans_fn(ccx: @mut CrateContext,
path: path,
decl: &ast::fn_decl,
body: &ast::blk,
llfndecl: ValueRef,
self_arg: self_arg,
param_substs: Option<@param_substs>,
id: ast::node_id,
attrs: &[ast::attribute]) {
let the_path_str = path_str(ccx.sess, path);
let _s = StatRecorder::new(ccx, the_path_str);
debug!("trans_fn(self_arg=%?, param_substs=%s)",
self_arg,
param_substs.repr(ccx.tcx));
let _icx = push_ctxt("trans_fn");
let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx, id));
trans_closure(ccx,
path.clone(),
decl,
body,
llfndecl,
self_arg,
param_substs,
id,
attrs,
output_type,
|fcx| {
if ccx.sess.opts.extra_debuginfo
&& fcx_has_nonzero_span(fcx) {
debuginfo::create_function(fcx);
}
},
|_bcx| { });
}
fn insert_synthetic_type_entries(bcx: block,
fn_args: &[ast::arg],
arg_tys: &[ty::t])
{
/*!
* For tuple-like structs and enum-variants, we generate
* synthetic AST nodes for the arguments. These have no types
* in the type table and no entries in the moves table,
* so the code in `copy_args_to_allocas` and `bind_irrefutable_pat`
* gets upset. This hack of a function bridges the gap by inserting types.
*
* This feels horrible. I think we should just have a special path
* for these functions and not try to use the generic code, but
* that's not the problem I'm trying to solve right now. - nmatsakis
*/
let tcx = bcx.tcx();
for uint::range(0, fn_args.len()) |i| {
debug!("setting type of argument %u (pat node %d) to %s",
i, fn_args[i].pat.id, bcx.ty_to_str(arg_tys[i]));
let pat_id = fn_args[i].pat.id;
let arg_ty = arg_tys[i];
tcx.node_types.insert(pat_id as uint, arg_ty);
}
}
pub fn trans_enum_variant(ccx: @mut CrateContext,
_enum_id: ast::node_id,
variant: &ast::variant,
args: &[ast::variant_arg],
disr: int,
param_substs: Option<@param_substs>,
llfndecl: ValueRef) {
let _icx = push_ctxt("trans_enum_variant");
trans_enum_variant_or_tuple_like_struct(
ccx,
variant.node.id,
args,
disr,
param_substs,
llfndecl);
}
pub fn trans_tuple_struct(ccx: @mut CrateContext,
fields: &[@ast::struct_field],
ctor_id: ast::node_id,
param_substs: Option<@param_substs>,
llfndecl: ValueRef) {
let _icx = push_ctxt("trans_tuple_struct");
trans_enum_variant_or_tuple_like_struct(
ccx,
ctor_id,
fields,
0,
param_substs,
llfndecl);
}
trait IdAndTy {
fn id(&self) -> ast::node_id;
fn ty<'a>(&'a self) -> &'a ast::Ty;
}
impl IdAndTy for ast::variant_arg {
fn id(&self) -> ast::node_id { self.id }
fn ty<'a>(&'a self) -> &'a ast::Ty { &self.ty }
}
impl IdAndTy for @ast::struct_field {
fn id(&self) -> ast::node_id { self.node.id }
fn ty<'a>(&'a self) -> &'a ast::Ty { &self.node.ty }
}
pub fn trans_enum_variant_or_tuple_like_struct<A:IdAndTy>(
ccx: @mut CrateContext,
ctor_id: ast::node_id,
args: &[A],
disr: int,
param_substs: Option<@param_substs>,
llfndecl: ValueRef)
{
// Translate variant arguments to function arguments.
let fn_args = do args.map |varg| {
ast::arg {
is_mutbl: false,
ty: (*varg.ty()).clone(),
pat: ast_util::ident_to_pat(
ccx.tcx.sess.next_node_id(),
codemap::dummy_sp(),
special_idents::arg),
id: varg.id(),
}
};
let no_substs: &[ty::t] = [];
let ty_param_substs = match param_substs {
Some(ref substs) => {
let v: &[ty::t] = substs.tys;
v
}
None => {
let v: &[ty::t] = no_substs;
v
}
};
let ctor_ty = ty::subst_tps(ccx.tcx,
ty_param_substs,
None,
ty::node_id_to_type(ccx.tcx, ctor_id));
let result_ty = match ty::get(ctor_ty).sty {
ty::ty_bare_fn(ref bft) => bft.sig.output,
_ => ccx.sess.bug(
fmt!("trans_enum_variant_or_tuple_like_struct: \
unexpected ctor return type %s",
ty_to_str(ccx.tcx, ctor_ty)))
};
let fcx = new_fn_ctxt_w_id(ccx,
~[],
llfndecl,
ctor_id,
result_ty,
false,
param_substs,
None);
let raw_llargs = create_llargs_for_fn_args(fcx, no_self, fn_args);
let bcx = top_scope_block(fcx, None);
let lltop = bcx.llbb;
let arg_tys = ty::ty_fn_args(ctor_ty);
insert_synthetic_type_entries(bcx, fn_args, arg_tys);
let bcx = copy_args_to_allocas(fcx, bcx, fn_args, raw_llargs, arg_tys);
let repr = adt::represent_type(ccx, result_ty);
adt::trans_start_init(bcx, repr, fcx.llretptr.get(), disr);
for fn_args.iter().enumerate().advance |(i, fn_arg)| {
let lldestptr = adt::trans_field_ptr(bcx,
repr,
fcx.llretptr.get(),
disr,
i);
let llarg = fcx.llargs.get_copy(&fn_arg.pat.id);
let arg_ty = arg_tys[i];
memcpy_ty(bcx, lldestptr, llarg, arg_ty);
}
finish_fn(fcx, lltop, bcx);
}
pub fn trans_enum_def(ccx: @mut CrateContext, enum_definition: &ast::enum_def,
id: ast::node_id, vi: @~[ty::VariantInfo],
i: &mut uint) {
for enum_definition.variants.iter().advance |variant| {
let disr_val = vi[*i].disr_val;
*i += 1;
match variant.node.kind {
ast::tuple_variant_kind(ref args) if args.len() > 0 => {
let llfn = get_item_val(ccx, variant.node.id);
trans_enum_variant(ccx, id, variant, *args,
disr_val, None, llfn);
}
ast::tuple_variant_kind(_) => {
// Nothing to do.
}
ast::struct_variant_kind(struct_def) => {
trans_struct_def(ccx, struct_def);
}
}
}
}
pub fn trans_item(ccx: @mut CrateContext, item: &ast::item) {
let _icx = push_ctxt("trans_item");
let path = match ccx.tcx.items.get_copy(&item.id) {
ast_map::node_item(_, p) => p,
// tjc: ?
_ => fail!("trans_item"),
};
match item.node {
ast::item_fn(ref decl, purity, _abis, ref generics, ref body) => {
if purity == ast::extern_fn {
let llfndecl = get_item_val(ccx, item.id);
foreign::trans_foreign_fn(ccx,
vec::append((*path).clone(),
[path_name(item.ident)]),
decl,
body,
llfndecl,
item.id);
} else if !generics.is_type_parameterized() {
let llfndecl = get_item_val(ccx, item.id);
trans_fn(ccx,
vec::append((*path).clone(), [path_name(item.ident)]),
decl,
body,
llfndecl,
no_self,
None,
item.id,
item.attrs);
} else {
for body.stmts.iter().advance |stmt| {
match stmt.node {
ast::stmt_decl(@codemap::spanned { node: ast::decl_item(i),
_ }, _) => {
trans_item(ccx, i);
}
_ => ()
}
}
}
}
ast::item_impl(ref generics, _, _, ref ms) => {
meth::trans_impl(ccx,
(*path).clone(),
item.ident,
*ms,
generics,
item.id);
}
ast::item_mod(ref m) => {
trans_mod(ccx, m);
}
ast::item_enum(ref enum_definition, ref generics) => {
if !generics.is_type_parameterized() {
let vi = ty::enum_variants(ccx.tcx, local_def(item.id));
let mut i = 0;
trans_enum_def(ccx, enum_definition, item.id, vi, &mut i);
}
}
ast::item_static(_, m, expr) => {
consts::trans_const(ccx, m, item.id);
// Do static_assert checking. It can't really be done much earlier because we need to get
// the value of the bool out of LLVM
for item.attrs.iter().advance |attr| {
match attr.node.value.node {
ast::meta_word(x) => {
if x.slice(0, x.len()) == "static_assert" {
if m == ast::m_mutbl {
ccx.sess.span_fatal(expr.span,
"cannot have static_assert \
on a mutable static");
}
let v = ccx.const_values.get_copy(&item.id);
unsafe {
if !(llvm::LLVMConstIntGetZExtValue(v) as bool) {
ccx.sess.span_fatal(expr.span, "static assertion failed");
}
}
}
},
_ => ()
}
}
},
ast::item_foreign_mod(ref foreign_mod) => {
foreign::trans_foreign_mod(ccx, path, foreign_mod);
}
ast::item_struct(struct_def, ref generics) => {
if !generics.is_type_parameterized() {
trans_struct_def(ccx, struct_def);
}
}
_ => {/* fall through */ }
}
}
pub fn trans_struct_def(ccx: @mut CrateContext, struct_def: @ast::struct_def) {
// If this is a tuple-like struct, translate the constructor.
match struct_def.ctor_id {
// We only need to translate a constructor if there are fields;
// otherwise this is a unit-like struct.
Some(ctor_id) if struct_def.fields.len() > 0 => {
let llfndecl = get_item_val(ccx, ctor_id);
trans_tuple_struct(ccx, struct_def.fields,
ctor_id, None, llfndecl);
}
Some(_) | None => {}
}
}
// Translate a module. Doing this amounts to translating the items in the
// module; there ends up being no artifact (aside from linkage names) of
// separate modules in the compiled program. That's because modules exist
// only as a convenience for humans working with the code, to organize names
// and control visibility.
pub fn trans_mod(ccx: @mut CrateContext, m: &ast::_mod) {
let _icx = push_ctxt("trans_mod");
for m.items.iter().advance |item| {
trans_item(ccx, *item);
}
}
pub fn register_fn(ccx: @mut CrateContext,
sp: span,
path: path,
node_id: ast::node_id,
attrs: &[ast::attribute])
-> ValueRef {
let t = ty::node_id_to_type(ccx.tcx, node_id);
register_fn_full(ccx, sp, path, node_id, attrs, t)
}
pub fn register_fn_full(ccx: @mut CrateContext,
sp: span,
path: path,
node_id: ast::node_id,
attrs: &[ast::attribute],
node_type: ty::t)
-> ValueRef {
let llfty = type_of_fn_from_ty(ccx, node_type);
register_fn_fuller(ccx, sp, path, node_id, attrs, node_type,
lib::llvm::CCallConv, llfty)
}
pub fn register_fn_fuller(ccx: @mut CrateContext,
sp: span,
path: path,
node_id: ast::node_id,
attrs: &[ast::attribute],
node_type: ty::t,
cc: lib::llvm::CallConv,
fn_ty: Type)
-> ValueRef {
debug!("register_fn_fuller creating fn for item %d with path %s",
node_id,
ast_map::path_to_str(path, token::get_ident_interner()));
let ps = if attr::attrs_contains_name(attrs, "no_mangle") {
path_elt_to_str(*path.last(), token::get_ident_interner())
} else {
mangle_exported_name(ccx, path, node_type)
};
let llfn = decl_fn(ccx.llmod, ps, cc, fn_ty);
ccx.item_symbols.insert(node_id, ps);
// FIXME #4404 android JNI hacks
let is_entry = is_entry_fn(&ccx.sess, node_id) && (!*ccx.sess.building_library ||
(*ccx.sess.building_library &&
ccx.sess.targ_cfg.os == session::os_android));
if is_entry {
create_entry_wrapper(ccx, sp, llfn);
}
llfn
}
pub fn is_entry_fn(sess: &Session, node_id: ast::node_id) -> bool {
match *sess.entry_fn {
Some((entry_id, _)) => node_id == entry_id,
None => false
}
}
// Create a _rust_main(args: ~[str]) function which will be called from the
// runtime rust_start function
pub fn create_entry_wrapper(ccx: @mut CrateContext,
_sp: span, main_llfn: ValueRef) {
let et = ccx.sess.entry_type.unwrap();
if et == session::EntryMain {
let llfn = create_main(ccx, main_llfn);
create_entry_fn(ccx, llfn, true);
} else {
create_entry_fn(ccx, main_llfn, false);
}
fn create_main(ccx: @mut CrateContext, main_llfn: ValueRef) -> ValueRef {
let nt = ty::mk_nil();
let llfty = type_of_fn(ccx, [], nt);
let llfdecl = decl_fn(ccx.llmod, "_rust_main",
lib::llvm::CCallConv, llfty);
let fcx = new_fn_ctxt(ccx, ~[], llfdecl, nt, None);
// the args vector built in create_entry_fn will need
// be updated if this assertion starts to fail.
assert!(fcx.has_immediate_return_value);
let bcx = top_scope_block(fcx, None);
let lltop = bcx.llbb;
// Call main.
let llenvarg = unsafe {
let env_arg = fcx.env_arg_pos();
llvm::LLVMGetParam(llfdecl, env_arg as c_uint)
};
let args = ~[llenvarg];
Call(bcx, main_llfn, args);
finish_fn(fcx, lltop, bcx);
return llfdecl;
}
fn create_entry_fn(ccx: @mut CrateContext,
rust_main: ValueRef,
use_start_lang_item: bool) {
let llfty = Type::func([ccx.int_type, Type::i8().ptr_to().ptr_to()],
&ccx.int_type);
// FIXME #4404 android JNI hacks
let llfn = if *ccx.sess.building_library {
decl_cdecl_fn(ccx.llmod, "amain", llfty)
} else {
let main_name = match ccx.sess.targ_cfg.os {
session::os_win32 => ~"WinMain@16",
_ => ~"main",
};
decl_cdecl_fn(ccx.llmod, main_name, llfty)
};
let llbb = str::as_c_str("top", |buf| {
unsafe {
llvm::LLVMAppendBasicBlockInContext(ccx.llcx, llfn, buf)
}
});
let bld = ccx.builder.B;
unsafe {
llvm::LLVMPositionBuilderAtEnd(bld, llbb);
let crate_map = ccx.crate_map;
let opaque_crate_map = do "crate_map".as_c_str |buf| {
llvm::LLVMBuildPointerCast(bld, crate_map, Type::i8p().to_ref(), buf)
};
let (start_fn, args) = if use_start_lang_item {
let start_def_id = match ccx.tcx.lang_items.require(StartFnLangItem) {
Ok(id) => id,
Err(s) => { ccx.tcx.sess.fatal(s); }
};
let start_fn = if start_def_id.crate == ast::local_crate {
get_item_val(ccx, start_def_id.node)
} else {
let start_fn_type = csearch::get_type(ccx.tcx,
start_def_id).ty;
trans_external_path(ccx, start_def_id, start_fn_type)
};
let args = {
let opaque_rust_main = do "rust_main".as_c_str |buf| {
llvm::LLVMBuildPointerCast(bld, rust_main, Type::i8p().to_ref(), buf)
};
~[
C_null(Type::opaque_box(ccx).ptr_to()),
opaque_rust_main,
llvm::LLVMGetParam(llfn, 0),
llvm::LLVMGetParam(llfn, 1),
opaque_crate_map
]
};
(start_fn, args)
} else {
debug!("using user-defined start fn");
let args = ~[
C_null(Type::opaque_box(ccx).ptr_to()),
llvm::LLVMGetParam(llfn, 0 as c_uint),
llvm::LLVMGetParam(llfn, 1 as c_uint),
opaque_crate_map
];
(rust_main, args)
};
let result = llvm::LLVMBuildCall(bld,
start_fn,
&args[0],
args.len() as c_uint,
noname());
llvm::LLVMBuildRet(bld, result);
}
}
}
pub fn fill_fn_pair(bcx: block, pair: ValueRef, llfn: ValueRef,
llenvptr: ValueRef) {
let ccx = bcx.ccx();
let code_cell = GEPi(bcx, pair, [0u, abi::fn_field_code]);
Store(bcx, llfn, code_cell);
let env_cell = GEPi(bcx, pair, [0u, abi::fn_field_box]);
let llenvblobptr = PointerCast(bcx, llenvptr, Type::opaque_box(ccx).ptr_to());
Store(bcx, llenvblobptr, env_cell);
}
pub fn item_path(ccx: &CrateContext, i: &ast::item) -> path {
let base = match ccx.tcx.items.get_copy(&i.id) {
ast_map::node_item(_, p) => p,
// separate map for paths?
_ => fail!("item_path")
};
vec::append((*base).clone(), [path_name(i.ident)])
}
pub fn get_item_val(ccx: @mut CrateContext, id: ast::node_id) -> ValueRef {
debug!("get_item_val(id=`%?`)", id);
let val = ccx.item_vals.find_copy(&id);
match val {
Some(v) => v,
None => {
let mut exprt = false;
let item = ccx.tcx.items.get_copy(&id);
let val = match item {
ast_map::node_item(i, pth) => {
let my_path = vec::append((*pth).clone(), [path_name(i.ident)]);
match i.node {
ast::item_static(_, m, expr) => {
let typ = ty::node_id_to_type(ccx.tcx, i.id);
let s = mangle_exported_name(ccx, my_path, typ);
// We need the translated value here, because for enums the
// LLVM type is not fully determined by the Rust type.
let v = consts::const_expr(ccx, expr);
ccx.const_values.insert(id, v);
exprt = m == ast::m_mutbl;
unsafe {
let llty = llvm::LLVMTypeOf(v);
let g = str::as_c_str(s, |buf| {
llvm::LLVMAddGlobal(ccx.llmod, llty, buf)
});
ccx.item_symbols.insert(i.id, s);
g
}
}
ast::item_fn(_, purity, _, _, _) => {
let llfn = if purity != ast::extern_fn {
register_fn(ccx, i.span, my_path, i.id, i.attrs)
} else {
foreign::register_foreign_fn(ccx,
i.span,
my_path,
i.id,
i.attrs)
};
set_inline_hint_if_appr(i.attrs, llfn);
llfn
}
_ => fail!("get_item_val: weird result in table")
}
}
ast_map::node_trait_method(trait_method, _, pth) => {
debug!("get_item_val(): processing a node_trait_method");
match *trait_method {
ast::required(_) => {
ccx.sess.bug("unexpected variant: required trait method in \
get_item_val()");
}
ast::provided(m) => {
exprt = true;
register_method(ccx, id, pth, m)
}
}
}
ast_map::node_method(m, _, pth) => {
register_method(ccx, id, pth, m)
}
ast_map::node_foreign_item(ni, _, _, pth) => {
exprt = true;
match ni.node {
ast::foreign_item_fn(*) => {
register_fn(ccx, ni.span,
vec::append((*pth).clone(),
[path_name(ni.ident)]),
ni.id,
ni.attrs)
}
ast::foreign_item_static(*) => {
let typ = ty::node_id_to_type(ccx.tcx, ni.id);
let ident = token::ident_to_str(&ni.ident);
let g = do str::as_c_str(ident) |buf| {
unsafe {
let ty = type_of(ccx, typ);
llvm::LLVMAddGlobal(ccx.llmod, ty.to_ref(), buf)
}
};
g
}
}
}
ast_map::node_variant(ref v, enm, pth) => {
let llfn;
match v.node.kind {
ast::tuple_variant_kind(ref args) => {
assert!(args.len() != 0u);
let pth = vec::append((*pth).clone(),
[path_name(enm.ident),
path_name((*v).node.name)]);
llfn = match enm.node {
ast::item_enum(_, _) => {
register_fn(ccx, (*v).span, pth, id, enm.attrs)
}
_ => fail!("node_variant, shouldn't happen")
};
}
ast::struct_variant_kind(_) => {
fail!("struct variant kind unexpected in get_item_val")
}
}
set_inline_hint(llfn);
llfn
}
ast_map::node_struct_ctor(struct_def, struct_item, struct_path) => {
// Only register the constructor if this is a tuple-like struct.
match struct_def.ctor_id {
None => {
ccx.tcx.sess.bug("attempt to register a constructor of \
a non-tuple-like struct")
}
Some(ctor_id) => {
let llfn = register_fn(ccx,
struct_item.span,
(*struct_path).clone(),
ctor_id,
struct_item.attrs);
set_inline_hint(llfn);
llfn
}
}
}
ref variant => {
ccx.sess.bug(fmt!("get_item_val(): unexpected variant: %?",
variant))
}
};
if !exprt && !ccx.reachable.contains(&id) {
lib::llvm::SetLinkage(val, lib::llvm::InternalLinkage);
}
ccx.item_vals.insert(id, val);
val
}
}
}
pub fn register_method(ccx: @mut CrateContext,
id: ast::node_id,
path: @ast_map::path,
m: @ast::method) -> ValueRef {
let mty = ty::node_id_to_type(ccx.tcx, id);
let mut path = (*path).clone();
path.push(path_name(gensym_name("meth")));
path.push(path_name(m.ident));
let llfn = register_fn_full(ccx, m.span, path, id, m.attrs, mty);
set_inline_hint_if_appr(m.attrs, llfn);
llfn
}
// The constant translation pass.
pub fn trans_constant(ccx: &mut CrateContext, it: @ast::item) {
let _icx = push_ctxt("trans_constant");
match it.node {
ast::item_enum(ref enum_definition, _) => {
let vi = ty::enum_variants(ccx.tcx,
ast::def_id { crate: ast::local_crate,
node: it.id });
let mut i = 0;
let path = item_path(ccx, it);
for (*enum_definition).variants.iter().advance |variant| {
let p = vec::append(path.clone(), [
path_name(variant.node.name),
path_name(special_idents::descrim)
]);
let s = mangle_exported_name(ccx, p, ty::mk_int()).to_managed();
let disr_val = vi[i].disr_val;
note_unique_llvm_symbol(ccx, s);
let discrim_gvar = str::as_c_str(s, |buf| {
unsafe {
llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type.to_ref(), buf)
}
});
unsafe {
llvm::LLVMSetInitializer(discrim_gvar, C_int(ccx, disr_val));
llvm::LLVMSetGlobalConstant(discrim_gvar, True);
}
ccx.discrims.insert(
local_def(variant.node.id), discrim_gvar);
ccx.discrim_symbols.insert(variant.node.id, s);
i += 1;
}
}
_ => ()
}
}
pub fn trans_constants(ccx: @mut CrateContext, crate: &ast::crate) {
visit::visit_crate(
crate, ((),
visit::mk_simple_visitor(@visit::SimpleVisitor {
visit_item: |a| trans_constant(ccx, a),
..*visit::default_simple_visitor()
})));
}
pub fn vp2i(cx: block, v: ValueRef) -> ValueRef {
let ccx = cx.ccx();
return PtrToInt(cx, v, ccx.int_type);
}
pub fn p2i(ccx: &CrateContext, v: ValueRef) -> ValueRef {
unsafe {
return llvm::LLVMConstPtrToInt(v, ccx.int_type.to_ref());
}
}
macro_rules! ifn (
($name:expr, $args:expr, $ret:expr) => ({
let name = $name;
let f = decl_cdecl_fn(llmod, name, Type::func($args, &$ret));
intrinsics.insert(name, f);
})
)
pub fn declare_intrinsics(llmod: ModuleRef) -> HashMap<&'static str, ValueRef> {
let i8p = Type::i8p();
let mut intrinsics = HashMap::new();
ifn!("llvm.memcpy.p0i8.p0i8.i32",
[i8p, i8p, Type::i32(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.memcpy.p0i8.p0i8.i64",
[i8p, i8p, Type::i64(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.memmove.p0i8.p0i8.i32",
[i8p, i8p, Type::i32(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.memmove.p0i8.p0i8.i64",
[i8p, i8p, Type::i64(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.memset.p0i8.i32",
[i8p, Type::i8(), Type::i32(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.memset.p0i8.i64",
[i8p, Type::i8(), Type::i64(), Type::i32(), Type::i1()], Type::void());
ifn!("llvm.trap", [], Type::void());
ifn!("llvm.frameaddress", [Type::i32()], i8p);
ifn!("llvm.powi.f32", [Type::f32(), Type::i32()], Type::f32());
ifn!("llvm.powi.f64", [Type::f64(), Type::i32()], Type::f64());
ifn!("llvm.pow.f32", [Type::f32(), Type::f32()], Type::f32());
ifn!("llvm.pow.f64", [Type::f64(), Type::f64()], Type::f64());
ifn!("llvm.sqrt.f32", [Type::f32()], Type::f32());
ifn!("llvm.sqrt.f64", [Type::f64()], Type::f64());
ifn!("llvm.sin.f32", [Type::f32()], Type::f32());
ifn!("llvm.sin.f64", [Type::f64()], Type::f64());
ifn!("llvm.cos.f32", [Type::f32()], Type::f32());
ifn!("llvm.cos.f64", [Type::f64()], Type::f64());
ifn!("llvm.exp.f32", [Type::f32()], Type::f32());
ifn!("llvm.exp.f64", [Type::f64()], Type::f64());
ifn!("llvm.exp2.f32", [Type::f32()], Type::f32());
ifn!("llvm.exp2.f64", [Type::f64()], Type::f64());
ifn!("llvm.log.f32", [Type::f32()], Type::f32());
ifn!("llvm.log.f64", [Type::f64()], Type::f64());
ifn!("llvm.log10.f32",[Type::f32()], Type::f32());
ifn!("llvm.log10.f64",[Type::f64()], Type::f64());
ifn!("llvm.log2.f32", [Type::f32()], Type::f32());
ifn!("llvm.log2.f64", [Type::f64()], Type::f64());
ifn!("llvm.fma.f32", [Type::f32(), Type::f32(), Type::f32()], Type::f32());
ifn!("llvm.fma.f64", [Type::f64(), Type::f64(), Type::f64()], Type::f64());
ifn!("llvm.fabs.f32", [Type::f32()], Type::f32());
ifn!("llvm.fabs.f64", [Type::f64()], Type::f64());
ifn!("llvm.floor.f32",[Type::f32()], Type::f32());
ifn!("llvm.floor.f64",[Type::f64()], Type::f64());
ifn!("llvm.ceil.f32", [Type::f32()], Type::f32());
ifn!("llvm.ceil.f64", [Type::f64()], Type::f64());
ifn!("llvm.trunc.f32",[Type::f32()], Type::f32());
ifn!("llvm.trunc.f64",[Type::f64()], Type::f64());
ifn!("llvm.ctpop.i8", [Type::i8()], Type::i8());
ifn!("llvm.ctpop.i16",[Type::i16()], Type::i16());
ifn!("llvm.ctpop.i32",[Type::i32()], Type::i32());
ifn!("llvm.ctpop.i64",[Type::i64()], Type::i64());
ifn!("llvm.ctlz.i8", [Type::i8() , Type::i1()], Type::i8());
ifn!("llvm.ctlz.i16", [Type::i16(), Type::i1()], Type::i16());
ifn!("llvm.ctlz.i32", [Type::i32(), Type::i1()], Type::i32());
ifn!("llvm.ctlz.i64", [Type::i64(), Type::i1()], Type::i64());
ifn!("llvm.cttz.i8", [Type::i8() , Type::i1()], Type::i8());
ifn!("llvm.cttz.i16", [Type::i16(), Type::i1()], Type::i16());
ifn!("llvm.cttz.i32", [Type::i32(), Type::i1()], Type::i32());
ifn!("llvm.cttz.i64", [Type::i64(), Type::i1()], Type::i64());
ifn!("llvm.bswap.i16",[Type::i16()], Type::i16());
ifn!("llvm.bswap.i32",[Type::i32()], Type::i32());
ifn!("llvm.bswap.i64",[Type::i64()], Type::i64());
return intrinsics;
}
pub fn declare_dbg_intrinsics(llmod: ModuleRef, intrinsics: &mut HashMap<&'static str, ValueRef>) {
ifn!("llvm.dbg.declare", [Type::metadata(), Type::metadata()], Type::void());
ifn!("llvm.dbg.value", [Type::metadata(), Type::i64(), Type::metadata()], Type::void());
}
pub fn trap(bcx: block) {
match bcx.ccx().intrinsics.find_equiv(& &"llvm.trap") {
Some(&x) => { Call(bcx, x, []); },
_ => bcx.sess().bug("unbound llvm.trap in trap")
}
}
pub fn decl_gc_metadata(ccx: &mut CrateContext, llmod_id: &str) {
if !ccx.sess.opts.gc || !ccx.uses_gc {
return;
}
let gc_metadata_name = ~"_gc_module_metadata_" + llmod_id;
let gc_metadata = do str::as_c_str(gc_metadata_name) |buf| {
unsafe {
llvm::LLVMAddGlobal(ccx.llmod, Type::i32().to_ref(), buf)
}
};
unsafe {
llvm::LLVMSetGlobalConstant(gc_metadata, True);
lib::llvm::SetLinkage(gc_metadata, lib::llvm::ExternalLinkage);
ccx.module_data.insert(~"_gc_module_metadata", gc_metadata);
}
}
pub fn create_module_map(ccx: &mut CrateContext) -> ValueRef {
let elttype = Type::struct_([ccx.int_type, ccx.int_type], false);
let maptype = Type::array(&elttype, (ccx.module_data.len() + 1) as u64);
let map = do "_rust_mod_map".as_c_str |buf| {
unsafe {
llvm::LLVMAddGlobal(ccx.llmod, maptype.to_ref(), buf)
}
};
lib::llvm::SetLinkage(map, lib::llvm::InternalLinkage);
let mut elts: ~[ValueRef] = ~[];
// This is not ideal, but the borrow checker doesn't
// like the multiple borrows. At least, it doesn't
// like them on the current snapshot. (2013-06-14)
let mut keys = ~[];
for ccx.module_data.each_key |k| {
keys.push(k.to_managed());
}
for keys.iter().advance |key| {
let val = *ccx.module_data.find_equiv(key).get();
let s_const = C_cstr(ccx, *key);
let s_ptr = p2i(ccx, s_const);
let v_ptr = p2i(ccx, val);
let elt = C_struct([s_ptr, v_ptr]);
elts.push(elt);
}
let term = C_struct([C_int(ccx, 0), C_int(ccx, 0)]);
elts.push(term);
unsafe {
llvm::LLVMSetInitializer(map, C_array(elttype, elts));
}
return map;
}
pub fn decl_crate_map(sess: session::Session, mapmeta: LinkMeta,
llmod: ModuleRef) -> ValueRef {
let targ_cfg = sess.targ_cfg;
let int_type = Type::int(targ_cfg.arch);
let mut n_subcrates = 1;
let cstore = sess.cstore;
while cstore::have_crate_data(cstore, n_subcrates) { n_subcrates += 1; }
let mapname = if *sess.building_library {
fmt!("%s_%s_%s", mapmeta.name, mapmeta.vers, mapmeta.extras_hash)
} else {
~"toplevel"
};
let sym_name = ~"_rust_crate_map_" + mapname;
let arrtype = Type::array(&int_type, n_subcrates as u64);
let maptype = Type::struct_([Type::i32(), Type::i8p(), int_type, arrtype], false);
let map = str::as_c_str(sym_name, |buf| {
unsafe {
llvm::LLVMAddGlobal(llmod, maptype.to_ref(), buf)
}
});
lib::llvm::SetLinkage(map, lib::llvm::ExternalLinkage);
return map;
}
pub fn fill_crate_map(ccx: @mut CrateContext, map: ValueRef) {
let mut subcrates: ~[ValueRef] = ~[];
let mut i = 1;
let cstore = ccx.sess.cstore;
while cstore::have_crate_data(cstore, i) {
let cdata = cstore::get_crate_data(cstore, i);
let nm = fmt!("_rust_crate_map_%s_%s_%s",
cdata.name,
cstore::get_crate_vers(cstore, i),
cstore::get_crate_hash(cstore, i));
let cr = str::as_c_str(nm, |buf| {
unsafe {
llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type.to_ref(), buf)
}
});
subcrates.push(p2i(ccx, cr));
i += 1;
}
subcrates.push(C_int(ccx, 0));
let llannihilatefn = match ccx.tcx.lang_items.annihilate_fn() {
Some(annihilate_def_id) => {
if annihilate_def_id.crate == ast::local_crate {
get_item_val(ccx, annihilate_def_id.node)
} else {
let annihilate_fn_type = csearch::get_type(ccx.tcx,
annihilate_def_id).ty;
trans_external_path(ccx, annihilate_def_id, annihilate_fn_type)
}
}
None => { C_null(Type::i8p()) }
};
unsafe {
let mod_map = create_module_map(ccx);
llvm::LLVMSetInitializer(map, C_struct(
[C_i32(1),
lib::llvm::llvm::LLVMConstPointerCast(llannihilatefn, Type::i8p().to_ref()),
p2i(ccx, mod_map),
C_array(ccx.int_type, subcrates)]));
}
}
pub fn crate_ctxt_to_encode_parms<'r>(cx: &'r CrateContext, ie: encoder::encode_inlined_item<'r>)
-> encoder::EncodeParams<'r> {
let diag = cx.sess.diagnostic();
let item_symbols = &cx.item_symbols;
let discrim_symbols = &cx.discrim_symbols;
let link_meta = &cx.link_meta;
encoder::EncodeParams {
diag: diag,
tcx: cx.tcx,
reexports2: cx.exp_map2,
item_symbols: item_symbols,
discrim_symbols: discrim_symbols,
link_meta: link_meta,
cstore: cx.sess.cstore,
encode_inlined_item: ie,
reachable: cx.reachable,
}
}
pub fn write_metadata(cx: &mut CrateContext, crate: &ast::crate) {
if !*cx.sess.building_library { return; }
let encode_inlined_item: encoder::encode_inlined_item =
|ecx, ebml_w, path, ii|
astencode::encode_inlined_item(ecx, ebml_w, path, ii, cx.maps);
let encode_parms = crate_ctxt_to_encode_parms(cx, encode_inlined_item);
let llmeta = C_bytes(encoder::encode_metadata(encode_parms, crate));
let llconst = C_struct([llmeta]);
let mut llglobal = str::as_c_str("rust_metadata", |buf| {
unsafe {
llvm::LLVMAddGlobal(cx.llmod, val_ty(llconst).to_ref(), buf)
}
});
unsafe {
llvm::LLVMSetInitializer(llglobal, llconst);
str::as_c_str(cx.sess.targ_cfg.target_strs.meta_sect_name, |buf| {
llvm::LLVMSetSection(llglobal, buf)
});
lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage);
let t_ptr_i8 = Type::i8p();
llglobal = llvm::LLVMConstBitCast(llglobal, t_ptr_i8.to_ref());
let llvm_used = do "llvm.used".as_c_str |buf| {
llvm::LLVMAddGlobal(cx.llmod, Type::array(&t_ptr_i8, 1).to_ref(), buf)
};
lib::llvm::SetLinkage(llvm_used, lib::llvm::AppendingLinkage);
llvm::LLVMSetInitializer(llvm_used, C_array(t_ptr_i8, [llglobal]));
}
}
fn mk_global(ccx: &CrateContext,
name: &str,
llval: ValueRef,
internal: bool)
-> ValueRef {
unsafe {
let llglobal = do str::as_c_str(name) |buf| {
llvm::LLVMAddGlobal(ccx.llmod, val_ty(llval).to_ref(), buf)
};
llvm::LLVMSetInitializer(llglobal, llval);
llvm::LLVMSetGlobalConstant(llglobal, True);
if internal {
lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage);
}
return llglobal;
}
}
// Writes the current ABI version into the crate.
pub fn write_abi_version(ccx: &mut CrateContext) {
mk_global(ccx, "rust_abi_version", C_uint(ccx, abi::abi_version), false);
}
pub fn trans_crate(sess: session::Session,
crate: &ast::crate,
tcx: ty::ctxt,
output: &Path,
emap2: resolve::ExportMap2,
reachable_map: @mut HashSet<ast::node_id>,
maps: astencode::Maps)
-> (ContextRef, ModuleRef, LinkMeta) {
// Before we touch LLVM, make sure that multithreading is enabled.
if unsafe { !llvm::LLVMRustStartMultithreading() } {
//sess.bug("couldn't enable multi-threaded LLVM");
}
let mut symbol_hasher = hash::default_state();
let link_meta = link::build_link_meta(sess, crate, output, &mut symbol_hasher);
// Append ".rc" to crate name as LLVM module identifier.
//
// LLVM code generator emits a ".file filename" directive
// for ELF backends. Value of the "filename" is set as the
// LLVM module identifier. Due to a LLVM MC bug[1], LLVM
// crashes if the module identifer is same as other symbols
// such as a function name in the module.
// 1. http://llvm.org/bugs/show_bug.cgi?id=11479
let llmod_id = link_meta.name.to_owned() + ".rc";
let ccx = @mut CrateContext::new(sess,
llmod_id,
tcx,
emap2,
maps,
symbol_hasher,
link_meta,
reachable_map);
{
let _icx = push_ctxt("data");
trans_constants(ccx, crate);
}
{
let _icx = push_ctxt("text");
trans_mod(ccx, &crate.node.module);
}
decl_gc_metadata(ccx, llmod_id);
fill_crate_map(ccx, ccx.crate_map);
glue::emit_tydescs(ccx);
write_abi_version(ccx);
if ccx.sess.opts.debuginfo {
debuginfo::finalize(ccx);
}
// Translate the metadata.
write_metadata(ccx, crate);
if ccx.sess.trans_stats() {
io::println("--- trans stats ---");
io::println(fmt!("n_static_tydescs: %u",
ccx.stats.n_static_tydescs));
io::println(fmt!("n_glues_created: %u",
ccx.stats.n_glues_created));
io::println(fmt!("n_null_glues: %u", ccx.stats.n_null_glues));
io::println(fmt!("n_real_glues: %u", ccx.stats.n_real_glues));
io::println(fmt!("n_fns: %u", ccx.stats.n_fns));
io::println(fmt!("n_monos: %u", ccx.stats.n_monos));
io::println(fmt!("n_inlines: %u", ccx.stats.n_inlines));
io::println(fmt!("n_closures: %u", ccx.stats.n_closures));
io::println("fn stats:");
do sort::quick_sort(ccx.stats.fn_stats) |&(_, _, insns_a), &(_, _, insns_b)| {
insns_a > insns_b
}
for ccx.stats.fn_stats.iter().advance |tuple| {
match *tuple {
(ref name, ms, insns) => {
io::println(fmt!("%u insns, %u ms, %s", insns, ms, *name));
}
}
}
}
if ccx.sess.count_llvm_insns() {
for ccx.stats.llvm_insns.iter().advance |(k, v)| {
io::println(fmt!("%-7u %s", *v, *k));
}
}
let llcx = ccx.llcx;
let link_meta = ccx.link_meta;
let llmod = ccx.llmod;
return (llcx, llmod, link_meta);
}