rust/src/libstd/unstable/extfmt.rs
Daniel Micay 49c74524e2 vec: rm old_iter implementations, except BaseIter
The removed test for issue #2611 is well covered by the `std::iterator`
module itself.

This adds the `count` method to `IteratorUtil` to replace `EqIter`.
2013-06-21 03:20:22 -04:00

691 lines
20 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Support for fmt! expressions.
//!
//! The syntax is close to that of Posix format strings:
//!
//! ~~~~~~
//! Format := '%' Parameter? Flag* Width? Precision? Type
//! Parameter := [0-9]+ '$'
//! Flag := [ 0#+-]
//! Width := Parameter | [0-9]+
//! Precision := '.' [0-9]+
//! Type := [bcdfiostuxX?]
//! ~~~~~~
//!
//! * Parameter is the 1-based argument to apply the format to. Currently not
//! implemented.
//! * Flag 0 causes leading zeros to be used for padding when converting
//! numbers.
//! * Flag # causes the conversion to be done in an *alternative* manner.
//! Currently not implemented.
//! * Flag + causes signed numbers to always be prepended with a sign
//! character.
//! * Flag - left justifies the result
//! * Width specifies the minimum field width of the result. By default
//! leading spaces are added.
//! * Precision specifies the minimum number of digits for integral types
//! and the minimum number
//! of decimal places for float.
//!
//! The types currently supported are:
//!
//! * b - bool
//! * c - char
//! * d - int
//! * f - float
//! * i - int (same as d)
//! * o - uint as octal
//! * t - uint as binary
//! * u - uint
//! * x - uint as lower-case hexadecimal
//! * X - uint as upper-case hexadecimal
//! * s - str (any flavor)
//! * ? - arbitrary type (does not use the to_str trait)
/*
Syntax Extension: fmt
Format a string
The 'fmt' extension is modeled on the posix printf system.
A posix conversion ostensibly looks like this
> %~[parameter]~[flags]~[width]~[.precision]~[length]type
Given the different numeric type bestiary we have, we omit the 'length'
parameter and support slightly different conversions for 'type'
> %~[parameter]~[flags]~[width]~[.precision]type
we also only support translating-to-rust a tiny subset of the possible
combinations at the moment.
Example:
debug!("hello, %s!", "world");
*/
use prelude::*;
use iterator::IteratorUtil;
/*
* We have a 'ct' (compile-time) module that parses format strings into a
* sequence of conversions. From those conversions AST fragments are built
* that call into properly-typed functions in the 'rt' (run-time) module.
* Each of those run-time conversion functions accepts another conversion
* description that specifies how to format its output.
*
* The building of the AST is currently done in a module inside the compiler,
* but should migrate over here as the plugin interface is defined.
*/
// Functions used by the fmt extension at compile time
#[doc(hidden)]
pub mod ct {
use char;
use prelude::*;
use str;
#[deriving(Eq)]
pub enum Signedness { Signed, Unsigned, }
#[deriving(Eq)]
pub enum Caseness { CaseUpper, CaseLower, }
#[deriving(Eq)]
pub enum Ty {
TyBool,
TyStr,
TyChar,
TyInt(Signedness),
TyBits,
TyHex(Caseness),
TyOctal,
TyFloat,
TyPoly,
}
#[deriving(Eq)]
pub enum Flag {
FlagLeftJustify,
FlagLeftZeroPad,
FlagSpaceForSign,
FlagSignAlways,
FlagAlternate,
}
#[deriving(Eq)]
pub enum Count {
CountIs(uint),
CountIsParam(uint),
CountIsNextParam,
CountImplied,
}
#[deriving(Eq)]
struct Parsed<T> {
val: T,
next: uint
}
impl<T> Parsed<T> {
pub fn new(val: T, next: uint) -> Parsed<T> {
Parsed {val: val, next: next}
}
}
// A formatted conversion from an expression to a string
#[deriving(Eq)]
pub struct Conv {
param: Option<uint>,
flags: ~[Flag],
width: Count,
precision: Count,
ty: Ty
}
// A fragment of the output sequence
#[deriving(Eq)]
pub enum Piece { PieceString(~str), PieceConv(Conv), }
pub type ErrorFn = @fn(&str) -> !;
pub fn parse_fmt_string(s: &str, err: ErrorFn) -> ~[Piece] {
fn push_slice(ps: &mut ~[Piece], s: &str, from: uint, to: uint) {
if to > from {
ps.push(PieceString(s.slice(from, to).to_owned()));
}
}
let lim = s.len();
let mut h = 0;
let mut i = 0;
let mut pieces = ~[];
while i < lim {
if s[i] == '%' as u8 {
i += 1;
if i >= lim {
err("unterminated conversion at end of string");
} else if s[i] == '%' as u8 {
push_slice(&mut pieces, s, h, i);
i += 1;
} else {
push_slice(&mut pieces, s, h, i - 1);
let Parsed {val, next} = parse_conversion(s, i, lim, err);
pieces.push(val);
i = next;
}
h = i;
} else {
i += str::utf8_char_width(s[i]);
}
}
push_slice(&mut pieces, s, h, i);
pieces
}
pub fn peek_num(s: &str, i: uint, lim: uint) -> Option<Parsed<uint>> {
let mut i = i;
let mut accum = 0;
let mut found = false;
while i < lim {
match char::to_digit(s[i] as char, 10) {
Some(x) => {
found = true;
accum *= 10;
accum += x;
i += 1;
}
None => break
}
}
if found {
Some(Parsed::new(accum, i))
} else {
None
}
}
pub fn parse_conversion(s: &str, i: uint, lim: uint, err: ErrorFn) ->
Parsed<Piece> {
let param = parse_parameter(s, i, lim);
// avoid copying ~[Flag] by destructuring
let Parsed {val: flags_val, next: flags_next} = parse_flags(s,
param.next, lim);
let width = parse_count(s, flags_next, lim);
let prec = parse_precision(s, width.next, lim);
let ty = parse_type(s, prec.next, lim, err);
Parsed::new(PieceConv(Conv {
param: param.val,
flags: flags_val,
width: width.val,
precision: prec.val,
ty: ty.val}), ty.next)
}
pub fn parse_parameter(s: &str, i: uint, lim: uint) ->
Parsed<Option<uint>> {
if i >= lim { return Parsed::new(None, i); }
match peek_num(s, i, lim) {
Some(num) if num.next < lim && s[num.next] == '$' as u8 =>
Parsed::new(Some(num.val), num.next + 1),
_ => Parsed::new(None, i)
}
}
pub fn parse_flags(s: &str, i: uint, lim: uint) -> Parsed<~[Flag]> {
let mut i = i;
let mut flags = ~[];
while i < lim {
let f = match s[i] as char {
'-' => FlagLeftJustify,
'0' => FlagLeftZeroPad,
' ' => FlagSpaceForSign,
'+' => FlagSignAlways,
'#' => FlagAlternate,
_ => break
};
flags.push(f);
i += 1;
}
Parsed::new(flags, i)
}
pub fn parse_count(s: &str, i: uint, lim: uint) -> Parsed<Count> {
if i >= lim {
Parsed::new(CountImplied, i)
} else if s[i] == '*' as u8 {
let param = parse_parameter(s, i + 1, lim);
let j = param.next;
match param.val {
None => Parsed::new(CountIsNextParam, j),
Some(n) => Parsed::new(CountIsParam(n), j)
}
} else {
match peek_num(s, i, lim) {
None => Parsed::new(CountImplied, i),
Some(num) => Parsed::new(CountIs(num.val), num.next)
}
}
}
pub fn parse_precision(s: &str, i: uint, lim: uint) -> Parsed<Count> {
if i < lim && s[i] == '.' as u8 {
let count = parse_count(s, i + 1, lim);
// If there were no digits specified, i.e. the precision
// was ".", then the precision is 0
match count.val {
CountImplied => Parsed::new(CountIs(0), count.next),
_ => count
}
} else {
Parsed::new(CountImplied, i)
}
}
pub fn parse_type(s: &str, i: uint, lim: uint, err: ErrorFn) ->
Parsed<Ty> {
if i >= lim { err("missing type in conversion"); }
// FIXME (#2249): Do we really want two signed types here?
// How important is it to be printf compatible?
let t = match s[i] as char {
'b' => TyBool,
's' => TyStr,
'c' => TyChar,
'd' | 'i' => TyInt(Signed),
'u' => TyInt(Unsigned),
'x' => TyHex(CaseLower),
'X' => TyHex(CaseUpper),
't' => TyBits,
'o' => TyOctal,
'f' => TyFloat,
'?' => TyPoly,
_ => err(fmt!("unknown type in conversion: %c", s.char_at(i)))
};
Parsed::new(t, i + 1)
}
#[cfg(test)]
fn die(s: &str) -> ! { fail!(s.to_owned()) }
#[test]
fn test_parse_count() {
fn test(s: &str, count: Count, next: uint) -> bool {
parse_count(s, 0, s.len()) == Parsed::new(count, next)
}
assert!(test("", CountImplied, 0));
assert!(test("*", CountIsNextParam, 1));
assert!(test("*1", CountIsNextParam, 1));
assert!(test("*1$", CountIsParam(1), 3));
assert!(test("123", CountIs(123), 3));
}
#[test]
fn test_parse_flags() {
fn pack(fs: &[Flag]) -> uint {
fs.iter().fold(0, |p, &f| p | (1 << f as uint))
}
fn test(s: &str, flags: &[Flag], next: uint) {
let f = parse_flags(s, 0, s.len());
assert_eq!(pack(f.val), pack(flags));
assert_eq!(f.next, next);
}
test("", [], 0);
test("!#-+ 0", [], 0);
test("#-+", [FlagAlternate, FlagLeftJustify, FlagSignAlways], 3);
test(" 0", [FlagSpaceForSign, FlagLeftZeroPad], 2);
}
#[test]
fn test_parse_fmt_string() {
assert!(parse_fmt_string("foo %s bar", die) == ~[
PieceString(~"foo "),
PieceConv(Conv {
param: None,
flags: ~[],
width: CountImplied,
precision: CountImplied,
ty: TyStr,
}),
PieceString(~" bar")]);
assert!(parse_fmt_string("%s", die) == ~[
PieceConv(Conv {
param: None,
flags: ~[],
width: CountImplied,
precision: CountImplied,
ty: TyStr,
})]);
assert!(parse_fmt_string("%%%%", die) == ~[
PieceString(~"%"), PieceString(~"%")]);
}
#[test]
fn test_parse_parameter() {
fn test(s: &str, param: Option<uint>, next: uint) -> bool {
parse_parameter(s, 0, s.len()) == Parsed::new(param, next)
}
assert!(test("", None, 0));
assert!(test("foo", None, 0));
assert!(test("123", None, 0));
assert!(test("123$", Some(123), 4));
}
#[test]
fn test_parse_precision() {
fn test(s: &str, count: Count, next: uint) -> bool {
parse_precision(s, 0, s.len()) == Parsed::new(count, next)
}
assert!(test("", CountImplied, 0));
assert!(test(".", CountIs(0), 1));
assert!(test(".*", CountIsNextParam, 2));
assert!(test(".*1", CountIsNextParam, 2));
assert!(test(".*1$", CountIsParam(1), 4));
assert!(test(".123", CountIs(123), 4));
}
#[test]
fn test_parse_type() {
fn test(s: &str, ty: Ty) -> bool {
parse_type(s, 0, s.len(), die) == Parsed::new(ty, 1)
}
assert!(test("b", TyBool));
assert!(test("c", TyChar));
assert!(test("d", TyInt(Signed)));
assert!(test("f", TyFloat));
assert!(test("i", TyInt(Signed)));
assert!(test("o", TyOctal));
assert!(test("s", TyStr));
assert!(test("t", TyBits));
assert!(test("x", TyHex(CaseLower)));
assert!(test("X", TyHex(CaseUpper)));
assert!(test("?", TyPoly));
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_parse_type_missing() {
parse_type("", 0, 0, die);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_parse_type_unknown() {
parse_type("!", 0, 1, die);
}
#[test]
fn test_peek_num() {
let s1 = "";
assert!(peek_num(s1, 0, s1.len()).is_none());
let s2 = "foo";
assert!(peek_num(s2, 0, s2.len()).is_none());
let s3 = "123";
assert_eq!(peek_num(s3, 0, s3.len()), Some(Parsed::new(123, 3)));
let s4 = "123foo";
assert_eq!(peek_num(s4, 0, s4.len()), Some(Parsed::new(123, 3)));
}
}
// Functions used by the fmt extension at runtime. For now there are a lot of
// decisions made a runtime. If it proves worthwhile then some of these
// conditions can be evaluated at compile-time. For now though it's cleaner to
// implement it this way, I think.
#[doc(hidden)]
pub mod rt {
use float;
use str;
use sys;
use int;
use uint;
use vec;
use option::{Some, None, Option};
pub static flag_none : u32 = 0u32;
pub static flag_left_justify : u32 = 0b00000000000001u32;
pub static flag_left_zero_pad : u32 = 0b00000000000010u32;
pub static flag_space_for_sign : u32 = 0b00000000000100u32;
pub static flag_sign_always : u32 = 0b00000000001000u32;
pub static flag_alternate : u32 = 0b00000000010000u32;
pub enum Count { CountIs(uint), CountImplied, }
pub enum Ty { TyDefault, TyBits, TyHexUpper, TyHexLower, TyOctal, }
pub struct Conv {
flags: u32,
width: Count,
precision: Count,
ty: Ty,
}
pub fn conv_int(cv: Conv, i: int, buf: &mut ~str) {
let radix = 10;
let prec = get_int_precision(cv);
let s : ~str = uint_to_str_prec(int::abs(i) as uint, radix, prec);
let head = if i >= 0 {
if have_flag(cv.flags, flag_sign_always) {
Some('+')
} else if have_flag(cv.flags, flag_space_for_sign) {
Some(' ')
} else {
None
}
} else { Some('-') };
pad(cv, s, head, PadSigned, buf);
}
pub fn conv_uint(cv: Conv, u: uint, buf: &mut ~str) {
let prec = get_int_precision(cv);
let rs =
match cv.ty {
TyDefault => uint_to_str_prec(u, 10, prec),
TyHexLower => uint_to_str_prec(u, 16, prec),
// FIXME: #4318 Instead of to_ascii and to_str_ascii, could use
// to_ascii_consume and to_str_consume to not do a unnecessary copy.
TyHexUpper => {
let s = uint_to_str_prec(u, 16, prec);
s.to_ascii().to_upper().to_str_ascii()
}
TyBits => uint_to_str_prec(u, 2, prec),
TyOctal => uint_to_str_prec(u, 8, prec)
};
pad(cv, rs, None, PadUnsigned, buf);
}
pub fn conv_bool(cv: Conv, b: bool, buf: &mut ~str) {
let s = if b { "true" } else { "false" };
// run the boolean conversion through the string conversion logic,
// giving it the same rules for precision, etc.
conv_str(cv, s, buf);
}
pub fn conv_char(cv: Conv, c: char, buf: &mut ~str) {
pad(cv, "", Some(c), PadNozero, buf);
}
pub fn conv_str(cv: Conv, s: &str, buf: &mut ~str) {
// For strings, precision is the maximum characters
// displayed
let unpadded = match cv.precision {
CountImplied => s,
CountIs(max) => if (max as uint) < s.char_len() {
s.slice(0, max as uint)
} else {
s
}
};
pad(cv, unpadded, None, PadNozero, buf);
}
pub fn conv_float(cv: Conv, f: float, buf: &mut ~str) {
let (to_str, digits) = match cv.precision {
CountIs(c) => (float::to_str_exact, c as uint),
CountImplied => (float::to_str_digits, 6u)
};
let s = to_str(f, digits);
let head = if 0.0 <= f {
if have_flag(cv.flags, flag_sign_always) {
Some('+')
} else if have_flag(cv.flags, flag_space_for_sign) {
Some(' ')
} else {
None
}
} else { None };
pad(cv, s, head, PadFloat, buf);
}
pub fn conv_poly<T>(cv: Conv, v: &T, buf: &mut ~str) {
let s = sys::log_str(v);
conv_str(cv, s, buf);
}
// Convert a uint to string with a minimum number of digits. If precision
// is 0 and num is 0 then the result is the empty string. Could move this
// to uint: but it doesn't seem all that useful.
pub fn uint_to_str_prec(num: uint, radix: uint, prec: uint) -> ~str {
return if prec == 0u && num == 0u {
~""
} else {
let s = uint::to_str_radix(num, radix);
let len = s.char_len();
if len < prec {
let diff = prec - len;
let pad = str::from_chars(vec::from_elem(diff, '0'));
pad + s
} else { s }
};
}
pub fn get_int_precision(cv: Conv) -> uint {
return match cv.precision {
CountIs(c) => c as uint,
CountImplied => 1u
};
}
#[deriving(Eq)]
pub enum PadMode { PadSigned, PadUnsigned, PadNozero, PadFloat }
pub fn pad(cv: Conv, s: &str, head: Option<char>, mode: PadMode,
buf: &mut ~str) {
let headsize = match head { Some(_) => 1, _ => 0 };
let uwidth : uint = match cv.width {
CountImplied => {
for head.iter().advance |&c| {
buf.push_char(c);
}
return buf.push_str(s);
}
CountIs(width) => { width as uint }
};
let strlen = s.char_len() + headsize;
if uwidth <= strlen {
for head.iter().advance |&c| {
buf.push_char(c);
}
return buf.push_str(s);
}
let mut padchar = ' ';
let diff = uwidth - strlen;
if have_flag(cv.flags, flag_left_justify) {
for head.iter().advance |&c| {
buf.push_char(c);
}
buf.push_str(s);
for diff.times {
buf.push_char(padchar);
}
return;
}
let (might_zero_pad, signed) = match mode {
PadNozero => (false, true),
PadSigned => (true, true),
PadFloat => (true, true),
PadUnsigned => (true, false)
};
fn have_precision(cv: Conv) -> bool {
return match cv.precision { CountImplied => false, _ => true };
}
let zero_padding = {
if might_zero_pad && have_flag(cv.flags, flag_left_zero_pad) &&
(!have_precision(cv) || mode == PadFloat) {
padchar = '0';
true
} else {
false
}
};
let padstr = str::from_chars(vec::from_elem(diff, padchar));
// This is completely heinous. If we have a signed value then
// potentially rip apart the intermediate result and insert some
// zeros. It may make sense to convert zero padding to a precision
// instead.
if signed && zero_padding {
for head.iter().advance |&head| {
if head == '+' || head == '-' || head == ' ' {
buf.push_char(head);
buf.push_str(padstr);
buf.push_str(s);
return;
}
}
}
buf.push_str(padstr);
for head.iter().advance |&c| {
buf.push_char(c);
}
buf.push_str(s);
}
#[inline]
pub fn have_flag(flags: u32, f: u32) -> bool {
flags & f != 0
}
}
// Bulk of the tests are in src/test/run-pass/syntax-extension-fmt.rs
#[cfg(test)]
mod test {
#[test]
fn fmt_slice() {
let s = "abc";
let _s = fmt!("%s", s);
}
}