2019-12-22 17:42:47 -05:00

1200 lines
44 KiB
Rust

//! This is the implementation of the pass which transforms generators into state machines.
//!
//! MIR generation for generators creates a function which has a self argument which
//! passes by value. This argument is effectively a generator type which only contains upvars and
//! is only used for this argument inside the MIR for the generator.
//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
//! MIR before this pass and creates drop flags for MIR locals.
//! It will also drop the generator argument (which only consists of upvars) if any of the upvars
//! are moved out of. This pass elaborates the drops of upvars / generator argument in the case
//! that none of the upvars were moved out of. This is because we cannot have any drops of this
//! generator in the MIR, since it is used to create the drop glue for the generator. We'd get
//! infinite recursion otherwise.
//!
//! This pass creates the implementation for the Generator::resume function and the drop shim
//! for the generator based on the MIR input. It converts the generator argument from Self to
//! &mut Self adding derefs in the MIR as needed. It computes the final layout of the generator
//! struct which looks like this:
//! First upvars are stored
//! It is followed by the generator state field.
//! Then finally the MIR locals which are live across a suspension point are stored.
//!
//! struct Generator {
//! upvars...,
//! state: u32,
//! mir_locals...,
//! }
//!
//! This pass computes the meaning of the state field and the MIR locals which are live
//! across a suspension point. There are however three hardcoded generator states:
//! 0 - Generator have not been resumed yet
//! 1 - Generator has returned / is completed
//! 2 - Generator has been poisoned
//!
//! It also rewrites `return x` and `yield y` as setting a new generator state and returning
//! GeneratorState::Complete(x) and GeneratorState::Yielded(y) respectively.
//! MIR locals which are live across a suspension point are moved to the generator struct
//! with references to them being updated with references to the generator struct.
//!
//! The pass creates two functions which have a switch on the generator state giving
//! the action to take.
//!
//! One of them is the implementation of Generator::resume.
//! For generators with state 0 (unresumed) it starts the execution of the generator.
//! For generators with state 1 (returned) and state 2 (poisoned) it panics.
//! Otherwise it continues the execution from the last suspension point.
//!
//! The other function is the drop glue for the generator.
//! For generators with state 0 (unresumed) it drops the upvars of the generator.
//! For generators with state 1 (returned) and state 2 (poisoned) it does nothing.
//! Otherwise it drops all the values in scope at the last suspension point.
use crate::dataflow::{do_dataflow, DataflowResultsCursor, DebugFormatted};
use crate::dataflow::{DataflowResults, DataflowResultsConsumer, FlowAtLocation};
use crate::dataflow::{HaveBeenBorrowedLocals, MaybeStorageLive, RequiresStorage};
use crate::transform::no_landing_pads::no_landing_pads;
use crate::transform::simplify;
use crate::transform::{MirPass, MirSource};
use crate::util::dump_mir;
use crate::util::liveness;
use rustc::hir;
use rustc::hir::def_id::DefId;
use rustc::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc::mir::*;
use rustc::ty::layout::VariantIdx;
use rustc::ty::subst::SubstsRef;
use rustc::ty::GeneratorSubsts;
use rustc::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_data_structures::fx::FxHashMap;
use rustc_index::bit_set::{BitMatrix, BitSet};
use rustc_index::vec::{Idx, IndexVec};
use std::borrow::Cow;
use std::iter;
pub struct StateTransform;
struct RenameLocalVisitor<'tcx> {
from: Local,
to: Local,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
if *local == self.from {
*local = self.to;
}
}
fn process_projection_elem(&mut self, elem: &PlaceElem<'tcx>) -> Option<PlaceElem<'tcx>> {
match elem {
PlaceElem::Index(local) if *local == self.from => Some(PlaceElem::Index(self.to)),
_ => None,
}
}
}
struct DerefArgVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for DerefArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, self_arg());
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.base == PlaceBase::Local(self_arg()) {
replace_base(
place,
Place {
base: PlaceBase::Local(self_arg()),
projection: self.tcx().intern_place_elems(&vec![ProjectionElem::Deref]),
},
self.tcx,
);
} else {
self.visit_place_base(&mut place.base, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(*local, self_arg());
}
}
}
}
}
struct PinArgVisitor<'tcx> {
ref_gen_ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for PinArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, self_arg());
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.base == PlaceBase::Local(self_arg()) {
replace_base(
place,
Place {
base: PlaceBase::Local(self_arg()),
projection: self.tcx().intern_place_elems(&vec![ProjectionElem::Field(
Field::new(0),
self.ref_gen_ty,
)]),
},
self.tcx,
);
} else {
self.visit_place_base(&mut place.base, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(*local, self_arg());
}
}
}
}
}
fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
place.base = new_base.base;
let mut new_projection = new_base.projection.to_vec();
new_projection.append(&mut place.projection.to_vec());
place.projection = tcx.intern_place_elems(&new_projection);
}
fn self_arg() -> Local {
Local::new(1)
}
/// Generator have not been resumed yet
const UNRESUMED: usize = GeneratorSubsts::UNRESUMED;
/// Generator has returned / is completed
const RETURNED: usize = GeneratorSubsts::RETURNED;
/// Generator has been poisoned
const POISONED: usize = GeneratorSubsts::POISONED;
struct SuspensionPoint {
state: usize,
resume: BasicBlock,
drop: Option<BasicBlock>,
storage_liveness: liveness::LiveVarSet,
}
struct TransformVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
state_adt_ref: &'tcx AdtDef,
state_substs: SubstsRef<'tcx>,
// The type of the discriminant in the generator struct
discr_ty: Ty<'tcx>,
// Mapping from Local to (type of local, generator struct index)
// FIXME(eddyb) This should use `IndexVec<Local, Option<_>>`.
remap: FxHashMap<Local, (Ty<'tcx>, VariantIdx, usize)>,
// A map from a suspension point in a block to the locals which have live storage at that point
// FIXME(eddyb) This should use `IndexVec<BasicBlock, Option<_>>`.
storage_liveness: FxHashMap<BasicBlock, liveness::LiveVarSet>,
// A list of suspension points, generated during the transform
suspension_points: Vec<SuspensionPoint>,
// The original RETURN_PLACE local
new_ret_local: Local,
}
impl TransformVisitor<'tcx> {
// Make a GeneratorState rvalue
fn make_state(&self, idx: VariantIdx, val: Operand<'tcx>) -> Rvalue<'tcx> {
let adt = AggregateKind::Adt(self.state_adt_ref, idx, self.state_substs, None, None);
Rvalue::Aggregate(box adt, vec![val])
}
// Create a Place referencing a generator struct field
fn make_field(&self, variant_index: VariantIdx, idx: usize, ty: Ty<'tcx>) -> Place<'tcx> {
let self_place = Place::from(self_arg());
let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
let mut projection = base.projection.to_vec();
projection.push(ProjectionElem::Field(Field::new(idx), ty));
Place { base: base.base, projection: self.tcx.intern_place_elems(&projection) }
}
// Create a statement which changes the discriminant
fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
let self_place = Place::from(self_arg());
Statement {
source_info,
kind: StatementKind::SetDiscriminant {
place: box self_place,
variant_index: state_disc,
},
}
}
// Create a statement which reads the discriminant into a temporary
fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
let temp_decl = LocalDecl::new_internal(self.tcx.types.isize, body.span);
let local_decls_len = body.local_decls.push(temp_decl);
let temp = Place::from(local_decls_len);
let self_place = Place::from(self_arg());
let assign = Statement {
source_info: source_info(body),
kind: StatementKind::Assign(box (temp.clone(), Rvalue::Discriminant(self_place))),
};
(assign, temp)
}
}
impl MutVisitor<'tcx> for TransformVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_eq!(self.remap.get(local), None);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if let PlaceBase::Local(l) = place.base {
// Replace an Local in the remap with a generator struct access
if let Some(&(ty, variant_index, idx)) = self.remap.get(&l) {
replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
}
} else {
self.visit_place_base(&mut place.base, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(*local, self_arg());
}
}
}
}
fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
// Remove StorageLive and StorageDead statements for remapped locals
data.retain_statements(|s| match s.kind {
StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
!self.remap.contains_key(&l)
}
_ => true,
});
let ret_val = match data.terminator().kind {
TerminatorKind::Return => Some((
VariantIdx::new(1),
None,
Operand::Move(Place::from(self.new_ret_local)),
None,
)),
TerminatorKind::Yield { ref value, resume, drop } => {
Some((VariantIdx::new(0), Some(resume), value.clone(), drop))
}
_ => None,
};
if let Some((state_idx, resume, v, drop)) = ret_val {
let source_info = data.terminator().source_info;
// We must assign the value first in case it gets declared dead below
data.statements.push(Statement {
source_info,
kind: StatementKind::Assign(box (
Place::return_place(),
self.make_state(state_idx, v),
)),
});
let state = if let Some(resume) = resume {
// Yield
let state = 3 + self.suspension_points.len();
self.suspension_points.push(SuspensionPoint {
state,
resume,
drop,
storage_liveness: self.storage_liveness.get(&block).unwrap().clone(),
});
VariantIdx::new(state)
} else {
// Return
VariantIdx::new(RETURNED) // state for returned
};
data.statements.push(self.set_discr(state, source_info));
data.terminator_mut().kind = TerminatorKind::Return;
}
self.super_basic_block_data(block, data);
}
}
fn make_generator_state_argument_indirect<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
body: &mut BodyAndCache<'tcx>,
) {
let gen_ty = body.local_decls.raw[1].ty;
let region = ty::ReFree(ty::FreeRegion { scope: def_id, bound_region: ty::BoundRegion::BrEnv });
let region = tcx.mk_region(region);
let ref_gen_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: gen_ty, mutbl: hir::Mutability::Mut });
// Replace the by value generator argument
body.local_decls.raw[1].ty = ref_gen_ty;
// Add a deref to accesses of the generator state
DerefArgVisitor { tcx }.visit_body(body);
}
fn make_generator_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut BodyAndCache<'tcx>) {
let ref_gen_ty = body.local_decls.raw[1].ty;
let pin_did = tcx.lang_items().pin_type().unwrap();
let pin_adt_ref = tcx.adt_def(pin_did);
let substs = tcx.intern_substs(&[ref_gen_ty.into()]);
let pin_ref_gen_ty = tcx.mk_adt(pin_adt_ref, substs);
// Replace the by ref generator argument
body.local_decls.raw[1].ty = pin_ref_gen_ty;
// Add the Pin field access to accesses of the generator state
PinArgVisitor { ref_gen_ty, tcx }.visit_body(body);
}
fn replace_result_variable<'tcx>(
ret_ty: Ty<'tcx>,
body: &mut BodyAndCache<'tcx>,
tcx: TyCtxt<'tcx>,
) -> Local {
let source_info = source_info(body);
let new_ret = LocalDecl {
mutability: Mutability::Mut,
ty: ret_ty,
user_ty: UserTypeProjections::none(),
source_info,
internal: false,
is_block_tail: None,
local_info: LocalInfo::Other,
};
let new_ret_local = Local::new(body.local_decls.len());
body.local_decls.push(new_ret);
body.local_decls.swap(RETURN_PLACE, new_ret_local);
RenameLocalVisitor { from: RETURN_PLACE, to: new_ret_local, tcx }.visit_body(body);
new_ret_local
}
struct StorageIgnored(liveness::LiveVarSet);
impl<'tcx> Visitor<'tcx> for StorageIgnored {
fn visit_statement(&mut self, statement: &Statement<'tcx>, _location: Location) {
match statement.kind {
StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
self.0.remove(l);
}
_ => (),
}
}
}
struct LivenessInfo {
/// Which locals are live across any suspension point.
///
/// GeneratorSavedLocal is indexed in terms of the elements in this set;
/// i.e. GeneratorSavedLocal::new(1) corresponds to the second local
/// included in this set.
live_locals: liveness::LiveVarSet,
/// The set of saved locals live at each suspension point.
live_locals_at_suspension_points: Vec<BitSet<GeneratorSavedLocal>>,
/// For every saved local, the set of other saved locals that are
/// storage-live at the same time as this local. We cannot overlap locals in
/// the layout which have conflicting storage.
storage_conflicts: BitMatrix<GeneratorSavedLocal, GeneratorSavedLocal>,
/// For every suspending block, the locals which are storage-live across
/// that suspension point.
storage_liveness: FxHashMap<BasicBlock, liveness::LiveVarSet>,
}
fn locals_live_across_suspend_points(
tcx: TyCtxt<'tcx>,
body: ReadOnlyBodyAndCache<'_, 'tcx>,
source: MirSource<'tcx>,
movable: bool,
) -> LivenessInfo {
let dead_unwinds = BitSet::new_empty(body.basic_blocks().len());
let def_id = source.def_id();
let body_ref: &Body<'_> = &body;
// Calculate when MIR locals have live storage. This gives us an upper bound of their
// lifetimes.
let storage_live_analysis = MaybeStorageLive::new(body_ref);
let storage_live_results =
do_dataflow(tcx, body_ref, def_id, &[], &dead_unwinds, storage_live_analysis, |bd, p| {
DebugFormatted::new(&bd.body().local_decls[p])
});
let mut storage_live_cursor = DataflowResultsCursor::new(&storage_live_results, body_ref);
// Find the MIR locals which do not use StorageLive/StorageDead statements.
// The storage of these locals are always live.
let mut ignored = StorageIgnored(BitSet::new_filled(body.local_decls.len()));
ignored.visit_body(body);
// Calculate the MIR locals which have been previously
// borrowed (even if they are still active).
let borrowed_locals_analysis = HaveBeenBorrowedLocals::new(body_ref);
let borrowed_locals_results = do_dataflow(
tcx,
body_ref,
def_id,
&[],
&dead_unwinds,
borrowed_locals_analysis,
|bd, p| DebugFormatted::new(&bd.body().local_decls[p]),
);
let mut borrowed_locals_cursor = DataflowResultsCursor::new(&borrowed_locals_results, body_ref);
// Calculate the MIR locals that we actually need to keep storage around
// for.
let requires_storage_analysis = RequiresStorage::new(body, &borrowed_locals_results);
let requires_storage_results = do_dataflow(
tcx,
body_ref,
def_id,
&[],
&dead_unwinds,
requires_storage_analysis,
|bd, p| DebugFormatted::new(&bd.body().local_decls[p]),
);
let mut requires_storage_cursor =
DataflowResultsCursor::new(&requires_storage_results, body_ref);
// Calculate the liveness of MIR locals ignoring borrows.
let mut live_locals = liveness::LiveVarSet::new_empty(body.local_decls.len());
let mut liveness = liveness::liveness_of_locals(body);
liveness::dump_mir(tcx, "generator_liveness", source, body_ref, &liveness);
let mut storage_liveness_map = FxHashMap::default();
let mut live_locals_at_suspension_points = Vec::new();
for (block, data) in body.basic_blocks().iter_enumerated() {
if let TerminatorKind::Yield { .. } = data.terminator().kind {
let loc = Location { block: block, statement_index: data.statements.len() };
if !movable {
// The `liveness` variable contains the liveness of MIR locals ignoring borrows.
// This is correct for movable generators since borrows cannot live across
// suspension points. However for immovable generators we need to account for
// borrows, so we conseratively assume that all borrowed locals are live until
// we find a StorageDead statement referencing the locals.
// To do this we just union our `liveness` result with `borrowed_locals`, which
// contains all the locals which has been borrowed before this suspension point.
// If a borrow is converted to a raw reference, we must also assume that it lives
// forever. Note that the final liveness is still bounded by the storage liveness
// of the local, which happens using the `intersect` operation below.
borrowed_locals_cursor.seek(loc);
liveness.outs[block].union(borrowed_locals_cursor.get());
}
storage_live_cursor.seek(loc);
let storage_liveness = storage_live_cursor.get();
// Store the storage liveness for later use so we can restore the state
// after a suspension point
storage_liveness_map.insert(block, storage_liveness.clone());
requires_storage_cursor.seek(loc);
let storage_required = requires_storage_cursor.get().clone();
// Locals live are live at this point only if they are used across
// suspension points (the `liveness` variable)
// and their storage is required (the `storage_required` variable)
let mut live_locals_here = storage_required;
live_locals_here.intersect(&liveness.outs[block]);
// The generator argument is ignored
live_locals_here.remove(self_arg());
debug!("loc = {:?}, live_locals_here = {:?}", loc, live_locals_here);
// Add the locals live at this suspension point to the set of locals which live across
// any suspension points
live_locals.union(&live_locals_here);
live_locals_at_suspension_points.push(live_locals_here);
}
}
debug!("live_locals = {:?}", live_locals);
// Renumber our liveness_map bitsets to include only the locals we are
// saving.
let live_locals_at_suspension_points = live_locals_at_suspension_points
.iter()
.map(|live_here| renumber_bitset(&live_here, &live_locals))
.collect();
let storage_conflicts =
compute_storage_conflicts(body_ref, &live_locals, &ignored, requires_storage_results);
LivenessInfo {
live_locals,
live_locals_at_suspension_points,
storage_conflicts,
storage_liveness: storage_liveness_map,
}
}
/// Renumbers the items present in `stored_locals` and applies the renumbering
/// to 'input`.
///
/// For example, if `stored_locals = [1, 3, 5]`, this would be renumbered to
/// `[0, 1, 2]`. Thus, if `input = [3, 5]` we would return `[1, 2]`.
fn renumber_bitset(
input: &BitSet<Local>,
stored_locals: &liveness::LiveVarSet,
) -> BitSet<GeneratorSavedLocal> {
assert!(stored_locals.superset(&input), "{:?} not a superset of {:?}", stored_locals, input);
let mut out = BitSet::new_empty(stored_locals.count());
for (idx, local) in stored_locals.iter().enumerate() {
let saved_local = GeneratorSavedLocal::from(idx);
if input.contains(local) {
out.insert(saved_local);
}
}
debug!("renumber_bitset({:?}, {:?}) => {:?}", input, stored_locals, out);
out
}
/// For every saved local, looks for which locals are StorageLive at the same
/// time. Generates a bitset for every local of all the other locals that may be
/// StorageLive simultaneously with that local. This is used in the layout
/// computation; see `GeneratorLayout` for more.
fn compute_storage_conflicts(
body: &'mir Body<'tcx>,
stored_locals: &liveness::LiveVarSet,
ignored: &StorageIgnored,
requires_storage: DataflowResults<'tcx, RequiresStorage<'mir, 'tcx>>,
) -> BitMatrix<GeneratorSavedLocal, GeneratorSavedLocal> {
assert_eq!(body.local_decls.len(), ignored.0.domain_size());
assert_eq!(body.local_decls.len(), stored_locals.domain_size());
debug!("compute_storage_conflicts({:?})", body.span);
debug!("ignored = {:?}", ignored.0);
// Storage ignored locals are not eligible for overlap, since their storage
// is always live.
let mut ineligible_locals = ignored.0.clone();
ineligible_locals.intersect(&stored_locals);
// Compute the storage conflicts for all eligible locals.
let mut visitor = StorageConflictVisitor {
body,
stored_locals: &stored_locals,
local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
};
let mut state = FlowAtLocation::new(requires_storage);
visitor.analyze_results(&mut state);
let local_conflicts = visitor.local_conflicts;
// Compress the matrix using only stored locals (Local -> GeneratorSavedLocal).
//
// NOTE: Today we store a full conflict bitset for every local. Technically
// this is twice as many bits as we need, since the relation is symmetric.
// However, in practice these bitsets are not usually large. The layout code
// also needs to keep track of how many conflicts each local has, so it's
// simpler to keep it this way for now.
let mut storage_conflicts = BitMatrix::new(stored_locals.count(), stored_locals.count());
for (idx_a, local_a) in stored_locals.iter().enumerate() {
let saved_local_a = GeneratorSavedLocal::new(idx_a);
if ineligible_locals.contains(local_a) {
// Conflicts with everything.
storage_conflicts.insert_all_into_row(saved_local_a);
} else {
// Keep overlap information only for stored locals.
for (idx_b, local_b) in stored_locals.iter().enumerate() {
let saved_local_b = GeneratorSavedLocal::new(idx_b);
if local_conflicts.contains(local_a, local_b) {
storage_conflicts.insert(saved_local_a, saved_local_b);
}
}
}
}
storage_conflicts
}
struct StorageConflictVisitor<'body, 'tcx, 's> {
body: &'body Body<'tcx>,
stored_locals: &'s liveness::LiveVarSet,
// FIXME(tmandry): Consider using sparse bitsets here once we have good
// benchmarks for generators.
local_conflicts: BitMatrix<Local, Local>,
}
impl<'body, 'tcx, 's> DataflowResultsConsumer<'body, 'tcx>
for StorageConflictVisitor<'body, 'tcx, 's>
{
type FlowState = FlowAtLocation<'tcx, RequiresStorage<'body, 'tcx>>;
fn body(&self) -> &'body Body<'tcx> {
self.body
}
fn visit_block_entry(&mut self, block: BasicBlock, flow_state: &Self::FlowState) {
// statement_index is only used for logging, so this is fine.
self.apply_state(flow_state, Location { block, statement_index: 0 });
}
fn visit_statement_entry(
&mut self,
loc: Location,
_stmt: &Statement<'tcx>,
flow_state: &Self::FlowState,
) {
self.apply_state(flow_state, loc);
}
fn visit_terminator_entry(
&mut self,
loc: Location,
_term: &Terminator<'tcx>,
flow_state: &Self::FlowState,
) {
self.apply_state(flow_state, loc);
}
}
impl<'body, 'tcx, 's> StorageConflictVisitor<'body, 'tcx, 's> {
fn apply_state(
&mut self,
flow_state: &FlowAtLocation<'tcx, RequiresStorage<'body, 'tcx>>,
loc: Location,
) {
// Ignore unreachable blocks.
match self.body.basic_blocks()[loc.block].terminator().kind {
TerminatorKind::Unreachable => return,
_ => (),
};
let mut eligible_storage_live = flow_state.as_dense().clone();
eligible_storage_live.intersect(&self.stored_locals);
for local in eligible_storage_live.iter() {
self.local_conflicts.union_row_with(&eligible_storage_live, local);
}
if eligible_storage_live.count() > 1 {
trace!("at {:?}, eligible_storage_live={:?}", loc, eligible_storage_live);
}
}
}
fn compute_layout<'tcx>(
tcx: TyCtxt<'tcx>,
source: MirSource<'tcx>,
upvars: &Vec<Ty<'tcx>>,
interior: Ty<'tcx>,
movable: bool,
body: &mut BodyAndCache<'tcx>,
) -> (
FxHashMap<Local, (Ty<'tcx>, VariantIdx, usize)>,
GeneratorLayout<'tcx>,
FxHashMap<BasicBlock, liveness::LiveVarSet>,
) {
// Use a liveness analysis to compute locals which are live across a suspension point
let LivenessInfo {
live_locals,
live_locals_at_suspension_points,
storage_conflicts,
storage_liveness,
} = locals_live_across_suspend_points(tcx, read_only!(body), source, movable);
// Erase regions from the types passed in from typeck so we can compare them with
// MIR types
let allowed_upvars = tcx.erase_regions(upvars);
let allowed = match interior.kind {
ty::GeneratorWitness(s) => tcx.erase_late_bound_regions(&s),
_ => bug!(),
};
for (local, decl) in body.local_decls.iter_enumerated() {
// Ignore locals which are internal or not live
if !live_locals.contains(local) || decl.internal {
continue;
}
// Sanity check that typeck knows about the type of locals which are
// live across a suspension point
if !allowed.contains(&decl.ty) && !allowed_upvars.contains(&decl.ty) {
span_bug!(
body.span,
"Broken MIR: generator contains type {} in MIR, \
but typeck only knows about {}",
decl.ty,
interior
);
}
}
// Gather live local types and their indices.
let mut locals = IndexVec::<GeneratorSavedLocal, _>::new();
let mut tys = IndexVec::<GeneratorSavedLocal, _>::new();
for (idx, local) in live_locals.iter().enumerate() {
locals.push(local);
tys.push(body.local_decls[local].ty);
debug!("generator saved local {:?} => {:?}", GeneratorSavedLocal::from(idx), local);
}
// Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
const RESERVED_VARIANTS: usize = 3;
// Build the generator variant field list.
// Create a map from local indices to generator struct indices.
let mut variant_fields: IndexVec<VariantIdx, IndexVec<Field, GeneratorSavedLocal>> =
iter::repeat(IndexVec::new()).take(RESERVED_VARIANTS).collect();
let mut remap = FxHashMap::default();
for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
let variant_index = VariantIdx::from(RESERVED_VARIANTS + suspension_point_idx);
let mut fields = IndexVec::new();
for (idx, saved_local) in live_locals.iter().enumerate() {
fields.push(saved_local);
// Note that if a field is included in multiple variants, we will
// just use the first one here. That's fine; fields do not move
// around inside generators, so it doesn't matter which variant
// index we access them by.
remap.entry(locals[saved_local]).or_insert((tys[saved_local], variant_index, idx));
}
variant_fields.push(fields);
}
debug!("generator variant_fields = {:?}", variant_fields);
debug!("generator storage_conflicts = {:#?}", storage_conflicts);
let layout = GeneratorLayout { field_tys: tys, variant_fields, storage_conflicts };
(remap, layout, storage_liveness)
}
fn insert_switch<'tcx>(
body: &mut BodyAndCache<'tcx>,
cases: Vec<(usize, BasicBlock)>,
transform: &TransformVisitor<'tcx>,
default: TerminatorKind<'tcx>,
) {
let default_block = insert_term_block(body, default);
let (assign, discr) = transform.get_discr(body);
let switch = TerminatorKind::SwitchInt {
discr: Operand::Move(discr),
switch_ty: transform.discr_ty,
values: Cow::from(cases.iter().map(|&(i, _)| i as u128).collect::<Vec<_>>()),
targets: cases.iter().map(|&(_, d)| d).chain(iter::once(default_block)).collect(),
};
let source_info = source_info(body);
body.basic_blocks_mut().raw.insert(
0,
BasicBlockData {
statements: vec![assign],
terminator: Some(Terminator { source_info, kind: switch }),
is_cleanup: false,
},
);
let blocks = body.basic_blocks_mut().iter_mut();
for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
*target = BasicBlock::new(target.index() + 1);
}
}
fn elaborate_generator_drops<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
body: &mut BodyAndCache<'tcx>,
) {
use crate::shim::DropShimElaborator;
use crate::util::elaborate_drops::{elaborate_drop, Unwind};
use crate::util::patch::MirPatch;
// Note that `elaborate_drops` only drops the upvars of a generator, and
// this is ok because `open_drop` can only be reached within that own
// generator's resume function.
let param_env = tcx.param_env(def_id);
let gen = self_arg();
let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, param_env };
for (block, block_data) in body.basic_blocks().iter_enumerated() {
let (target, unwind, source_info) = match block_data.terminator() {
Terminator { source_info, kind: TerminatorKind::Drop { location, target, unwind } } => {
if let Some(local) = location.as_local() {
if local == gen {
(target, unwind, source_info)
} else {
continue;
}
} else {
continue;
}
}
_ => continue,
};
let unwind = if block_data.is_cleanup {
Unwind::InCleanup
} else {
Unwind::To(unwind.unwrap_or_else(|| elaborator.patch.resume_block()))
};
elaborate_drop(
&mut elaborator,
*source_info,
&Place::from(gen),
(),
*target,
unwind,
block,
);
}
elaborator.patch.apply(body);
}
fn create_generator_drop_shim<'tcx>(
tcx: TyCtxt<'tcx>,
transform: &TransformVisitor<'tcx>,
def_id: DefId,
source: MirSource<'tcx>,
gen_ty: Ty<'tcx>,
body: &mut BodyAndCache<'tcx>,
drop_clean: BasicBlock,
) -> BodyAndCache<'tcx> {
let mut body = body.clone();
let source_info = source_info(&body);
let mut cases = create_cases(&mut body, transform, |point| point.drop);
cases.insert(0, (UNRESUMED, drop_clean));
// The returned state and the poisoned state fall through to the default
// case which is just to return
insert_switch(&mut body, cases, &transform, TerminatorKind::Return);
for block in body.basic_blocks_mut() {
let kind = &mut block.terminator_mut().kind;
if let TerminatorKind::GeneratorDrop = *kind {
*kind = TerminatorKind::Return;
}
}
// Replace the return variable
body.local_decls[RETURN_PLACE] = LocalDecl {
mutability: Mutability::Mut,
ty: tcx.mk_unit(),
user_ty: UserTypeProjections::none(),
source_info,
internal: false,
is_block_tail: None,
local_info: LocalInfo::Other,
};
make_generator_state_argument_indirect(tcx, def_id, &mut body);
// Change the generator argument from &mut to *mut
body.local_decls[self_arg()] = LocalDecl {
mutability: Mutability::Mut,
ty: tcx.mk_ptr(ty::TypeAndMut { ty: gen_ty, mutbl: hir::Mutability::Mut }),
user_ty: UserTypeProjections::none(),
source_info,
internal: false,
is_block_tail: None,
local_info: LocalInfo::Other,
};
if tcx.sess.opts.debugging_opts.mir_emit_retag {
// Alias tracking must know we changed the type
body.basic_blocks_mut()[START_BLOCK].statements.insert(
0,
Statement {
source_info,
kind: StatementKind::Retag(RetagKind::Raw, box Place::from(self_arg())),
},
)
}
no_landing_pads(tcx, &mut body);
// Make sure we remove dead blocks to remove
// unrelated code from the resume part of the function
simplify::remove_dead_blocks(&mut body);
dump_mir(tcx, None, "generator_drop", &0, source, &mut body, |_, _| Ok(()));
body
}
fn insert_term_block<'tcx>(
body: &mut BodyAndCache<'tcx>,
kind: TerminatorKind<'tcx>,
) -> BasicBlock {
let term_block = BasicBlock::new(body.basic_blocks().len());
let source_info = source_info(body);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind }),
is_cleanup: false,
});
term_block
}
fn insert_panic_block<'tcx>(
tcx: TyCtxt<'tcx>,
body: &mut BodyAndCache<'tcx>,
message: AssertMessage<'tcx>,
) -> BasicBlock {
let assert_block = BasicBlock::new(body.basic_blocks().len());
let term = TerminatorKind::Assert {
cond: Operand::Constant(box Constant {
span: body.span,
user_ty: None,
literal: ty::Const::from_bool(tcx, false),
}),
expected: true,
msg: message,
target: assert_block,
cleanup: None,
};
let source_info = source_info(body);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
});
assert_block
}
fn create_generator_resume_function<'tcx>(
tcx: TyCtxt<'tcx>,
transform: TransformVisitor<'tcx>,
def_id: DefId,
source: MirSource<'tcx>,
body: &mut BodyAndCache<'tcx>,
) {
// Poison the generator when it unwinds
for block in body.basic_blocks_mut() {
let source_info = block.terminator().source_info;
if let &TerminatorKind::Resume = &block.terminator().kind {
block.statements.push(transform.set_discr(VariantIdx::new(POISONED), source_info));
}
}
let mut cases = create_cases(body, &transform, |point| Some(point.resume));
use rustc::mir::interpret::PanicInfo::{ResumedAfterPanic, ResumedAfterReturn};
// Jump to the entry point on the unresumed
cases.insert(0, (UNRESUMED, BasicBlock::new(0)));
// Panic when resumed on the returned or poisoned state
let generator_kind = body.generator_kind.unwrap();
cases.insert(1, (RETURNED, insert_panic_block(tcx, body, ResumedAfterReturn(generator_kind))));
cases.insert(2, (POISONED, insert_panic_block(tcx, body, ResumedAfterPanic(generator_kind))));
insert_switch(body, cases, &transform, TerminatorKind::Unreachable);
make_generator_state_argument_indirect(tcx, def_id, body);
make_generator_state_argument_pinned(tcx, body);
no_landing_pads(tcx, body);
// Make sure we remove dead blocks to remove
// unrelated code from the drop part of the function
simplify::remove_dead_blocks(body);
dump_mir(tcx, None, "generator_resume", &0, source, body, |_, _| Ok(()));
}
fn source_info(body: &Body<'_>) -> SourceInfo {
SourceInfo { span: body.span, scope: OUTERMOST_SOURCE_SCOPE }
}
fn insert_clean_drop(body: &mut BodyAndCache<'_>) -> BasicBlock {
let return_block = insert_term_block(body, TerminatorKind::Return);
// Create a block to destroy an unresumed generators. This can only destroy upvars.
let drop_clean = BasicBlock::new(body.basic_blocks().len());
let term = TerminatorKind::Drop {
location: Place::from(self_arg()),
target: return_block,
unwind: None,
};
let source_info = source_info(body);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
});
drop_clean
}
fn create_cases<'tcx, F>(
body: &mut BodyAndCache<'tcx>,
transform: &TransformVisitor<'tcx>,
target: F,
) -> Vec<(usize, BasicBlock)>
where
F: Fn(&SuspensionPoint) -> Option<BasicBlock>,
{
let source_info = source_info(body);
transform
.suspension_points
.iter()
.filter_map(|point| {
// Find the target for this suspension point, if applicable
target(point).map(|target| {
let block = BasicBlock::new(body.basic_blocks().len());
let mut statements = Vec::new();
// Create StorageLive instructions for locals with live storage
for i in 0..(body.local_decls.len()) {
let l = Local::new(i);
if point.storage_liveness.contains(l) && !transform.remap.contains_key(&l) {
statements
.push(Statement { source_info, kind: StatementKind::StorageLive(l) });
}
}
// Then jump to the real target
body.basic_blocks_mut().push(BasicBlockData {
statements,
terminator: Some(Terminator {
source_info,
kind: TerminatorKind::Goto { target },
}),
is_cleanup: false,
});
(point.state, block)
})
})
.collect()
}
impl<'tcx> MirPass<'tcx> for StateTransform {
fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut BodyAndCache<'tcx>) {
let yield_ty = if let Some(yield_ty) = body.yield_ty {
yield_ty
} else {
// This only applies to generators
return;
};
assert!(body.generator_drop.is_none());
let def_id = source.def_id();
// The first argument is the generator type passed by value
let gen_ty = body.local_decls.raw[1].ty;
// Get the interior types and substs which typeck computed
let (upvars, interior, discr_ty, movable) = match gen_ty.kind {
ty::Generator(_, substs, movability) => {
let substs = substs.as_generator();
(
substs.upvar_tys(def_id, tcx).collect(),
substs.witness(def_id, tcx),
substs.discr_ty(tcx),
movability == hir::Movability::Movable,
)
}
_ => bug!(),
};
// Compute GeneratorState<yield_ty, return_ty>
let state_did = tcx.lang_items().gen_state().unwrap();
let state_adt_ref = tcx.adt_def(state_did);
let state_substs = tcx.intern_substs(&[yield_ty.into(), body.return_ty().into()]);
let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
// We rename RETURN_PLACE which has type mir.return_ty to new_ret_local
// RETURN_PLACE then is a fresh unused local with type ret_ty.
let new_ret_local = replace_result_variable(ret_ty, body, tcx);
// Extract locals which are live across suspension point into `layout`
// `remap` gives a mapping from local indices onto generator struct indices
// `storage_liveness` tells us which locals have live storage at suspension points
let (remap, layout, storage_liveness) =
compute_layout(tcx, source, &upvars, interior, movable, body);
// Run the transformation which converts Places from Local to generator struct
// accesses for locals in `remap`.
// It also rewrites `return x` and `yield y` as writing a new generator state and returning
// GeneratorState::Complete(x) and GeneratorState::Yielded(y) respectively.
let mut transform = TransformVisitor {
tcx,
state_adt_ref,
state_substs,
remap,
storage_liveness,
suspension_points: Vec::new(),
new_ret_local,
discr_ty,
};
transform.visit_body(body);
// Update our MIR struct to reflect the changed we've made
body.yield_ty = None;
body.arg_count = 1;
body.spread_arg = None;
body.generator_layout = Some(layout);
// Insert `drop(generator_struct)` which is used to drop upvars for generators in
// the unresumed state.
// This is expanded to a drop ladder in `elaborate_generator_drops`.
let drop_clean = insert_clean_drop(body);
dump_mir(tcx, None, "generator_pre-elab", &0, source, body, |_, _| Ok(()));
// Expand `drop(generator_struct)` to a drop ladder which destroys upvars.
// If any upvars are moved out of, drop elaboration will handle upvar destruction.
// However we need to also elaborate the code generated by `insert_clean_drop`.
elaborate_generator_drops(tcx, def_id, body);
dump_mir(tcx, None, "generator_post-transform", &0, source, body, |_, _| Ok(()));
// Create a copy of our MIR and use it to create the drop shim for the generator
let drop_shim =
create_generator_drop_shim(tcx, &transform, def_id, source, gen_ty, body, drop_clean);
body.generator_drop = Some(box drop_shim);
// Create the Generator::resume function
create_generator_resume_function(tcx, transform, def_id, source, body);
}
}