rust/src/libsyntax/ext/base.rs

968 lines
32 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::SyntaxExtension::*;
use ast;
use ast::{Name, PatKind};
use attr::HasAttrs;
use codemap::{self, CodeMap, ExpnInfo};
use syntax_pos::{Span, ExpnId, NO_EXPANSION};
use errors::DiagnosticBuilder;
use ext;
use ext::expand;
use ext::tt::macro_rules;
use parse;
use parse::parser;
use parse::token;
use parse::token::{InternedString, intern, str_to_ident};
use ptr::P;
use util::small_vector::SmallVector;
use util::lev_distance::find_best_match_for_name;
use fold::Folder;
use std::collections::{HashMap, HashSet};
use std::rc::Rc;
use std::default::Default;
use tokenstream;
#[derive(Debug,Clone)]
pub enum Annotatable {
Item(P<ast::Item>),
TraitItem(P<ast::TraitItem>),
ImplItem(P<ast::ImplItem>),
}
impl HasAttrs for Annotatable {
fn attrs(&self) -> &[ast::Attribute] {
match *self {
Annotatable::Item(ref item) => &item.attrs,
Annotatable::TraitItem(ref trait_item) => &trait_item.attrs,
Annotatable::ImplItem(ref impl_item) => &impl_item.attrs,
}
}
fn map_attrs<F: FnOnce(Vec<ast::Attribute>) -> Vec<ast::Attribute>>(self, f: F) -> Self {
match self {
Annotatable::Item(item) => Annotatable::Item(item.map_attrs(f)),
Annotatable::TraitItem(trait_item) => Annotatable::TraitItem(trait_item.map_attrs(f)),
Annotatable::ImplItem(impl_item) => Annotatable::ImplItem(impl_item.map_attrs(f)),
}
}
}
impl Annotatable {
pub fn attrs(&self) -> &[ast::Attribute] {
HasAttrs::attrs(self)
}
pub fn fold_attrs(self, attrs: Vec<ast::Attribute>) -> Annotatable {
self.map_attrs(|_| attrs)
}
pub fn expect_item(self) -> P<ast::Item> {
match self {
Annotatable::Item(i) => i,
_ => panic!("expected Item")
}
}
pub fn map_item_or<F, G>(self, mut f: F, mut or: G) -> Annotatable
where F: FnMut(P<ast::Item>) -> P<ast::Item>,
G: FnMut(Annotatable) -> Annotatable
{
match self {
Annotatable::Item(i) => Annotatable::Item(f(i)),
_ => or(self)
}
}
pub fn expect_trait_item(self) -> ast::TraitItem {
match self {
Annotatable::TraitItem(i) => i.unwrap(),
_ => panic!("expected Item")
}
}
pub fn expect_impl_item(self) -> ast::ImplItem {
match self {
Annotatable::ImplItem(i) => i.unwrap(),
_ => panic!("expected Item")
}
}
pub fn fold_with<F: Folder>(self, folder: &mut F) -> SmallVector<Self> {
match self {
Annotatable::Item(item) => folder.fold_item(item).map(Annotatable::Item),
Annotatable::ImplItem(item) =>
folder.fold_impl_item(item.unwrap()).map(|item| Annotatable::ImplItem(P(item))),
Annotatable::TraitItem(item) =>
folder.fold_trait_item(item.unwrap()).map(|item| Annotatable::TraitItem(P(item))),
}
}
}
// A more flexible ItemDecorator.
pub trait MultiItemDecorator {
fn expand(&self,
ecx: &mut ExtCtxt,
sp: Span,
meta_item: &ast::MetaItem,
item: &Annotatable,
push: &mut FnMut(Annotatable));
}
impl<F> MultiItemDecorator for F
where F : Fn(&mut ExtCtxt, Span, &ast::MetaItem, &Annotatable, &mut FnMut(Annotatable))
{
fn expand(&self,
ecx: &mut ExtCtxt,
sp: Span,
meta_item: &ast::MetaItem,
item: &Annotatable,
push: &mut FnMut(Annotatable)) {
(*self)(ecx, sp, meta_item, item, push)
}
}
// `meta_item` is the annotation, and `item` is the item being modified.
// FIXME Decorators should follow the same pattern too.
pub trait MultiItemModifier {
fn expand(&self,
ecx: &mut ExtCtxt,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable)
-> Vec<Annotatable>;
}
impl<F, T> MultiItemModifier for F
where F: Fn(&mut ExtCtxt, Span, &ast::MetaItem, Annotatable) -> T,
T: Into<Vec<Annotatable>>,
{
fn expand(&self,
ecx: &mut ExtCtxt,
span: Span,
meta_item: &ast::MetaItem,
item: Annotatable)
-> Vec<Annotatable> {
(*self)(ecx, span, meta_item, item).into()
}
}
impl Into<Vec<Annotatable>> for Annotatable {
fn into(self) -> Vec<Annotatable> {
vec![self]
}
}
/// Represents a thing that maps token trees to Macro Results
pub trait TTMacroExpander {
fn expand<'cx>(&self,
ecx: &'cx mut ExtCtxt,
span: Span,
token_tree: &[tokenstream::TokenTree])
-> Box<MacResult+'cx>;
}
pub type MacroExpanderFn =
for<'cx> fn(&'cx mut ExtCtxt, Span, &[tokenstream::TokenTree])
-> Box<MacResult+'cx>;
impl<F> TTMacroExpander for F
where F : for<'cx> Fn(&'cx mut ExtCtxt, Span, &[tokenstream::TokenTree])
-> Box<MacResult+'cx>
{
fn expand<'cx>(&self,
ecx: &'cx mut ExtCtxt,
span: Span,
token_tree: &[tokenstream::TokenTree])
-> Box<MacResult+'cx> {
(*self)(ecx, span, token_tree)
}
}
pub trait IdentMacroExpander {
fn expand<'cx>(&self,
cx: &'cx mut ExtCtxt,
sp: Span,
ident: ast::Ident,
token_tree: Vec<tokenstream::TokenTree> )
-> Box<MacResult+'cx>;
}
pub type IdentMacroExpanderFn =
for<'cx> fn(&'cx mut ExtCtxt, Span, ast::Ident, Vec<tokenstream::TokenTree>)
-> Box<MacResult+'cx>;
impl<F> IdentMacroExpander for F
where F : for<'cx> Fn(&'cx mut ExtCtxt, Span, ast::Ident,
Vec<tokenstream::TokenTree>) -> Box<MacResult+'cx>
{
fn expand<'cx>(&self,
cx: &'cx mut ExtCtxt,
sp: Span,
ident: ast::Ident,
token_tree: Vec<tokenstream::TokenTree> )
-> Box<MacResult+'cx>
{
(*self)(cx, sp, ident, token_tree)
}
}
// Use a macro because forwarding to a simple function has type system issues
macro_rules! make_stmts_default {
($me:expr) => {
$me.make_expr().map(|e| SmallVector::one(ast::Stmt {
id: ast::DUMMY_NODE_ID,
span: e.span,
node: ast::StmtKind::Expr(e),
}))
}
}
/// The result of a macro expansion. The return values of the various
/// methods are spliced into the AST at the callsite of the macro.
pub trait MacResult {
/// Create an expression.
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
None
}
/// Create zero or more items.
fn make_items(self: Box<Self>) -> Option<SmallVector<P<ast::Item>>> {
None
}
/// Create zero or more impl items.
fn make_impl_items(self: Box<Self>) -> Option<SmallVector<ast::ImplItem>> {
None
}
/// Create zero or more trait items.
fn make_trait_items(self: Box<Self>) -> Option<SmallVector<ast::TraitItem>> {
None
}
/// Create a pattern.
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
None
}
/// Create zero or more statements.
///
/// By default this attempts to create an expression statement,
/// returning None if that fails.
fn make_stmts(self: Box<Self>) -> Option<SmallVector<ast::Stmt>> {
make_stmts_default!(self)
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
None
}
}
macro_rules! make_MacEager {
( $( $fld:ident: $t:ty, )* ) => {
/// `MacResult` implementation for the common case where you've already
/// built each form of AST that you might return.
#[derive(Default)]
pub struct MacEager {
$(
pub $fld: Option<$t>,
)*
}
impl MacEager {
$(
pub fn $fld(v: $t) -> Box<MacResult> {
Box::new(MacEager {
$fld: Some(v),
..Default::default()
})
}
)*
}
}
}
make_MacEager! {
expr: P<ast::Expr>,
pat: P<ast::Pat>,
items: SmallVector<P<ast::Item>>,
impl_items: SmallVector<ast::ImplItem>,
trait_items: SmallVector<ast::TraitItem>,
stmts: SmallVector<ast::Stmt>,
ty: P<ast::Ty>,
}
impl MacResult for MacEager {
fn make_expr(self: Box<Self>) -> Option<P<ast::Expr>> {
self.expr
}
fn make_items(self: Box<Self>) -> Option<SmallVector<P<ast::Item>>> {
self.items
}
fn make_impl_items(self: Box<Self>) -> Option<SmallVector<ast::ImplItem>> {
self.impl_items
}
fn make_trait_items(self: Box<Self>) -> Option<SmallVector<ast::TraitItem>> {
self.trait_items
}
fn make_stmts(self: Box<Self>) -> Option<SmallVector<ast::Stmt>> {
match self.stmts.as_ref().map_or(0, |s| s.len()) {
0 => make_stmts_default!(self),
_ => self.stmts,
}
}
fn make_pat(self: Box<Self>) -> Option<P<ast::Pat>> {
if let Some(p) = self.pat {
return Some(p);
}
if let Some(e) = self.expr {
if let ast::ExprKind::Lit(_) = e.node {
return Some(P(ast::Pat {
id: ast::DUMMY_NODE_ID,
span: e.span,
node: PatKind::Lit(e),
}));
}
}
None
}
fn make_ty(self: Box<Self>) -> Option<P<ast::Ty>> {
self.ty
}
}
/// Fill-in macro expansion result, to allow compilation to continue
/// after hitting errors.
#[derive(Copy, Clone)]
pub struct DummyResult {
expr_only: bool,
span: Span
}
impl DummyResult {
/// Create a default MacResult that can be anything.
///
/// Use this as a return value after hitting any errors and
/// calling `span_err`.
pub fn any(sp: Span) -> Box<MacResult+'static> {
Box::new(DummyResult { expr_only: false, span: sp })
}
/// Create a default MacResult that can only be an expression.
///
/// Use this for macros that must expand to an expression, so even
/// if an error is encountered internally, the user will receive
/// an error that they also used it in the wrong place.
pub fn expr(sp: Span) -> Box<MacResult+'static> {
Box::new(DummyResult { expr_only: true, span: sp })
}
/// A plain dummy expression.
pub fn raw_expr(sp: Span) -> P<ast::Expr> {
P(ast::Expr {
id: ast::DUMMY_NODE_ID,
node: ast::ExprKind::Lit(P(codemap::respan(sp, ast::LitKind::Bool(false)))),
span: sp,
attrs: ast::ThinVec::new(),
})
}
/// A plain dummy pattern.
pub fn raw_pat(sp: Span) -> ast::Pat {
ast::Pat {
id: ast::DUMMY_NODE_ID,
node: PatKind::Wild,
span: sp,
}
}
pub fn raw_ty(sp: Span) -> P<ast::Ty> {
P(ast::Ty {
id: ast::DUMMY_NODE_ID,
node: ast::TyKind::Infer,
span: sp
})
}
}
impl MacResult for DummyResult {
fn make_expr(self: Box<DummyResult>) -> Option<P<ast::Expr>> {
Some(DummyResult::raw_expr(self.span))
}
fn make_pat(self: Box<DummyResult>) -> Option<P<ast::Pat>> {
Some(P(DummyResult::raw_pat(self.span)))
}
fn make_items(self: Box<DummyResult>) -> Option<SmallVector<P<ast::Item>>> {
// this code needs a comment... why not always just return the Some() ?
if self.expr_only {
None
} else {
Some(SmallVector::zero())
}
}
fn make_impl_items(self: Box<DummyResult>) -> Option<SmallVector<ast::ImplItem>> {
if self.expr_only {
None
} else {
Some(SmallVector::zero())
}
}
fn make_trait_items(self: Box<DummyResult>) -> Option<SmallVector<ast::TraitItem>> {
if self.expr_only {
None
} else {
Some(SmallVector::zero())
}
}
fn make_stmts(self: Box<DummyResult>) -> Option<SmallVector<ast::Stmt>> {
Some(SmallVector::one(ast::Stmt {
id: ast::DUMMY_NODE_ID,
node: ast::StmtKind::Expr(DummyResult::raw_expr(self.span)),
span: self.span,
}))
}
fn make_ty(self: Box<DummyResult>) -> Option<P<ast::Ty>> {
Some(DummyResult::raw_ty(self.span))
}
}
/// An enum representing the different kinds of syntax extensions.
pub enum SyntaxExtension {
/// A syntax extension that is attached to an item and creates new items
/// based upon it.
///
/// `#[derive(...)]` is a `MultiItemDecorator`.
MultiDecorator(Box<MultiItemDecorator + 'static>),
/// A syntax extension that is attached to an item and modifies it
/// in-place. More flexible version than Modifier.
MultiModifier(Box<MultiItemModifier + 'static>),
/// A normal, function-like syntax extension.
///
/// `bytes!` is a `NormalTT`.
///
/// The `bool` dictates whether the contents of the macro can
/// directly use `#[unstable]` things (true == yes).
NormalTT(Box<TTMacroExpander + 'static>, Option<Span>, bool),
/// A function-like syntax extension that has an extra ident before
/// the block.
///
IdentTT(Box<IdentMacroExpander + 'static>, Option<Span>, bool),
/// Represents `macro_rules!` itself.
MacroRulesTT,
}
pub type NamedSyntaxExtension = (Name, SyntaxExtension);
pub struct BlockInfo {
/// Should macros escape from this scope?
pub macros_escape: bool,
}
impl BlockInfo {
pub fn new() -> BlockInfo {
BlockInfo {
macros_escape: false,
}
}
}
/// The base map of methods for expanding syntax extension
/// AST nodes into full ASTs
fn initial_syntax_expander_table<'feat>(ecfg: &expand::ExpansionConfig<'feat>)
-> SyntaxEnv {
// utility function to simplify creating NormalTT syntax extensions
fn builtin_normal_expander(f: MacroExpanderFn) -> SyntaxExtension {
NormalTT(Box::new(f), None, false)
}
let mut syntax_expanders = SyntaxEnv::new();
syntax_expanders.insert(intern("macro_rules"), MacroRulesTT);
if ecfg.enable_quotes() {
// Quasi-quoting expanders
syntax_expanders.insert(intern("quote_tokens"),
builtin_normal_expander(
ext::quote::expand_quote_tokens));
syntax_expanders.insert(intern("quote_expr"),
builtin_normal_expander(
ext::quote::expand_quote_expr));
syntax_expanders.insert(intern("quote_ty"),
builtin_normal_expander(
ext::quote::expand_quote_ty));
syntax_expanders.insert(intern("quote_item"),
builtin_normal_expander(
ext::quote::expand_quote_item));
syntax_expanders.insert(intern("quote_pat"),
builtin_normal_expander(
ext::quote::expand_quote_pat));
syntax_expanders.insert(intern("quote_arm"),
builtin_normal_expander(
ext::quote::expand_quote_arm));
syntax_expanders.insert(intern("quote_stmt"),
builtin_normal_expander(
ext::quote::expand_quote_stmt));
syntax_expanders.insert(intern("quote_matcher"),
builtin_normal_expander(
ext::quote::expand_quote_matcher));
syntax_expanders.insert(intern("quote_attr"),
builtin_normal_expander(
ext::quote::expand_quote_attr));
syntax_expanders.insert(intern("quote_arg"),
builtin_normal_expander(
ext::quote::expand_quote_arg));
syntax_expanders.insert(intern("quote_block"),
builtin_normal_expander(
ext::quote::expand_quote_block));
syntax_expanders.insert(intern("quote_meta_item"),
builtin_normal_expander(
ext::quote::expand_quote_meta_item));
syntax_expanders.insert(intern("quote_path"),
builtin_normal_expander(
ext::quote::expand_quote_path));
}
syntax_expanders.insert(intern("line"),
builtin_normal_expander(
ext::source_util::expand_line));
syntax_expanders.insert(intern("column"),
builtin_normal_expander(
ext::source_util::expand_column));
syntax_expanders.insert(intern("file"),
builtin_normal_expander(
ext::source_util::expand_file));
syntax_expanders.insert(intern("stringify"),
builtin_normal_expander(
ext::source_util::expand_stringify));
syntax_expanders.insert(intern("include"),
builtin_normal_expander(
ext::source_util::expand_include));
syntax_expanders.insert(intern("include_str"),
builtin_normal_expander(
ext::source_util::expand_include_str));
syntax_expanders.insert(intern("include_bytes"),
builtin_normal_expander(
ext::source_util::expand_include_bytes));
syntax_expanders.insert(intern("module_path"),
builtin_normal_expander(
ext::source_util::expand_mod));
syntax_expanders
}
pub trait MacroLoader {
fn load_crate(&mut self, extern_crate: &ast::Item, allows_macros: bool) -> Vec<ast::MacroDef>;
}
pub struct DummyMacroLoader;
impl MacroLoader for DummyMacroLoader {
fn load_crate(&mut self, _: &ast::Item, _: bool) -> Vec<ast::MacroDef> {
Vec::new()
}
}
/// One of these is made during expansion and incrementally updated as we go;
/// when a macro expansion occurs, the resulting nodes have the backtrace()
/// -> expn_info of their expansion context stored into their span.
pub struct ExtCtxt<'a> {
pub parse_sess: &'a parse::ParseSess,
pub cfg: ast::CrateConfig,
pub backtrace: ExpnId,
pub ecfg: expand::ExpansionConfig<'a>,
pub crate_root: Option<&'static str>,
pub loader: &'a mut MacroLoader,
pub mod_path: Vec<ast::Ident> ,
pub exported_macros: Vec<ast::MacroDef>,
pub syntax_env: SyntaxEnv,
pub recursion_count: usize,
pub filename: Option<String>,
pub mod_path_stack: Vec<InternedString>,
pub in_block: bool,
}
impl<'a> ExtCtxt<'a> {
pub fn new(parse_sess: &'a parse::ParseSess, cfg: ast::CrateConfig,
ecfg: expand::ExpansionConfig<'a>,
loader: &'a mut MacroLoader)
-> ExtCtxt<'a> {
let env = initial_syntax_expander_table(&ecfg);
ExtCtxt {
parse_sess: parse_sess,
cfg: cfg,
backtrace: NO_EXPANSION,
mod_path: Vec::new(),
ecfg: ecfg,
crate_root: None,
exported_macros: Vec::new(),
loader: loader,
syntax_env: env,
recursion_count: 0,
filename: None,
mod_path_stack: Vec::new(),
in_block: false,
}
}
/// Returns a `Folder` for deeply expanding all macros in an AST node.
pub fn expander<'b>(&'b mut self) -> expand::MacroExpander<'b, 'a> {
expand::MacroExpander::new(self)
}
pub fn new_parser_from_tts(&self, tts: &[tokenstream::TokenTree])
-> parser::Parser<'a> {
parse::tts_to_parser(self.parse_sess, tts.to_vec(), self.cfg())
}
pub fn codemap(&self) -> &'a CodeMap { self.parse_sess.codemap() }
pub fn parse_sess(&self) -> &'a parse::ParseSess { self.parse_sess }
pub fn cfg(&self) -> ast::CrateConfig { self.cfg.clone() }
pub fn call_site(&self) -> Span {
self.codemap().with_expn_info(self.backtrace, |ei| match ei {
Some(expn_info) => expn_info.call_site,
None => self.bug("missing top span")
})
}
pub fn backtrace(&self) -> ExpnId { self.backtrace }
/// Returns span for the macro which originally caused the current expansion to happen.
///
/// Stops backtracing at include! boundary.
pub fn expansion_cause(&self) -> Span {
let mut expn_id = self.backtrace;
let mut last_macro = None;
loop {
if self.codemap().with_expn_info(expn_id, |info| {
info.map_or(None, |i| {
if i.callee.name().as_str() == "include" {
// Stop going up the backtrace once include! is encountered
return None;
}
expn_id = i.call_site.expn_id;
last_macro = Some(i.call_site);
return Some(());
})
}).is_none() {
break
}
}
last_macro.expect("missing expansion backtrace")
}
pub fn mod_push(&mut self, i: ast::Ident) { self.mod_path.push(i); }
pub fn mod_pop(&mut self) { self.mod_path.pop().unwrap(); }
pub fn mod_path(&self) -> Vec<ast::Ident> {
let mut v = Vec::new();
v.push(token::str_to_ident(&self.ecfg.crate_name));
v.extend(self.mod_path.iter().cloned());
return v;
}
pub fn bt_push(&mut self, ei: ExpnInfo) {
self.recursion_count += 1;
if self.recursion_count > self.ecfg.recursion_limit {
self.span_fatal(ei.call_site,
&format!("recursion limit reached while expanding the macro `{}`",
ei.callee.name()));
}
let mut call_site = ei.call_site;
call_site.expn_id = self.backtrace;
self.backtrace = self.codemap().record_expansion(ExpnInfo {
call_site: call_site,
callee: ei.callee
});
}
pub fn bt_pop(&mut self) {
match self.backtrace {
NO_EXPANSION => self.bug("tried to pop without a push"),
expn_id => {
self.recursion_count -= 1;
self.backtrace = self.codemap().with_expn_info(expn_id, |expn_info| {
expn_info.map_or(NO_EXPANSION, |ei| ei.call_site.expn_id)
});
}
}
}
pub fn insert_macro(&mut self, def: ast::MacroDef) {
if def.export {
self.exported_macros.push(def.clone());
}
if def.use_locally {
let ext = macro_rules::compile(self, &def);
self.syntax_env.insert(def.ident.name, ext);
}
}
pub fn struct_span_warn(&self,
sp: Span,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_warn(sp, msg)
}
pub fn struct_span_err(&self,
sp: Span,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_err(sp, msg)
}
pub fn struct_span_fatal(&self,
sp: Span,
msg: &str)
-> DiagnosticBuilder<'a> {
self.parse_sess.span_diagnostic.struct_span_fatal(sp, msg)
}
/// Emit `msg` attached to `sp`, and stop compilation immediately.
///
/// `span_err` should be strongly preferred where-ever possible:
/// this should *only* be used when
/// - continuing has a high risk of flow-on errors (e.g. errors in
/// declaring a macro would cause all uses of that macro to
/// complain about "undefined macro"), or
/// - there is literally nothing else that can be done (however,
/// in most cases one can construct a dummy expression/item to
/// substitute; we never hit resolve/type-checking so the dummy
/// value doesn't have to match anything)
pub fn span_fatal(&self, sp: Span, msg: &str) -> ! {
panic!(self.parse_sess.span_diagnostic.span_fatal(sp, msg));
}
/// Emit `msg` attached to `sp`, without immediately stopping
/// compilation.
///
/// Compilation will be stopped in the near future (at the end of
/// the macro expansion phase).
pub fn span_err(&self, sp: Span, msg: &str) {
self.parse_sess.span_diagnostic.span_err(sp, msg);
}
pub fn span_warn(&self, sp: Span, msg: &str) {
self.parse_sess.span_diagnostic.span_warn(sp, msg);
}
pub fn span_unimpl(&self, sp: Span, msg: &str) -> ! {
self.parse_sess.span_diagnostic.span_unimpl(sp, msg);
}
pub fn span_bug(&self, sp: Span, msg: &str) -> ! {
self.parse_sess.span_diagnostic.span_bug(sp, msg);
}
pub fn bug(&self, msg: &str) -> ! {
self.parse_sess.span_diagnostic.bug(msg);
}
pub fn trace_macros(&self) -> bool {
self.ecfg.trace_mac
}
pub fn set_trace_macros(&mut self, x: bool) {
self.ecfg.trace_mac = x
}
pub fn ident_of(&self, st: &str) -> ast::Ident {
str_to_ident(st)
}
pub fn std_path(&self, components: &[&str]) -> Vec<ast::Ident> {
let mut v = Vec::new();
if let Some(s) = self.crate_root {
v.push(self.ident_of(s));
}
v.extend(components.iter().map(|s| self.ident_of(s)));
return v
}
pub fn name_of(&self, st: &str) -> ast::Name {
token::intern(st)
}
pub fn suggest_macro_name(&mut self,
name: &str,
err: &mut DiagnosticBuilder<'a>) {
let names = &self.syntax_env.names;
if let Some(suggestion) = find_best_match_for_name(names.iter(), name, None) {
if suggestion != name {
err.help(&format!("did you mean `{}!`?", suggestion));
} else {
err.help(&format!("have you added the `#[macro_use]` on the \
module/import?"));
}
}
}
}
/// Extract a string literal from the macro expanded version of `expr`,
/// emitting `err_msg` if `expr` is not a string literal. This does not stop
/// compilation on error, merely emits a non-fatal error and returns None.
pub fn expr_to_string(cx: &mut ExtCtxt, expr: P<ast::Expr>, err_msg: &str)
-> Option<(InternedString, ast::StrStyle)> {
// we want to be able to handle e.g. concat("foo", "bar")
let expr = cx.expander().fold_expr(expr);
match expr.node {
ast::ExprKind::Lit(ref l) => match l.node {
ast::LitKind::Str(ref s, style) => return Some(((*s).clone(), style)),
_ => cx.span_err(l.span, err_msg)
},
_ => cx.span_err(expr.span, err_msg)
}
None
}
/// Non-fatally assert that `tts` is empty. Note that this function
/// returns even when `tts` is non-empty, macros that *need* to stop
/// compilation should call
/// `cx.parse_sess.span_diagnostic.abort_if_errors()` (this should be
/// done as rarely as possible).
pub fn check_zero_tts(cx: &ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree],
name: &str) {
if !tts.is_empty() {
cx.span_err(sp, &format!("{} takes no arguments", name));
}
}
/// Extract the string literal from the first token of `tts`. If this
/// is not a string literal, emit an error and return None.
pub fn get_single_str_from_tts(cx: &mut ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree],
name: &str)
-> Option<String> {
let mut p = cx.new_parser_from_tts(tts);
if p.token == token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
return None
}
let ret = cx.expander().fold_expr(panictry!(p.parse_expr()));
if p.token != token::Eof {
cx.span_err(sp, &format!("{} takes 1 argument", name));
}
expr_to_string(cx, ret, "argument must be a string literal").map(|(s, _)| {
s.to_string()
})
}
/// Extract comma-separated expressions from `tts`. If there is a
/// parsing error, emit a non-fatal error and return None.
pub fn get_exprs_from_tts(cx: &mut ExtCtxt,
sp: Span,
tts: &[tokenstream::TokenTree]) -> Option<Vec<P<ast::Expr>>> {
let mut p = cx.new_parser_from_tts(tts);
let mut es = Vec::new();
while p.token != token::Eof {
es.push(cx.expander().fold_expr(panictry!(p.parse_expr())));
if p.eat(&token::Comma) {
continue;
}
if p.token != token::Eof {
cx.span_err(sp, "expected token: `,`");
return None;
}
}
Some(es)
}
/// In order to have some notion of scoping for macros,
/// we want to implement the notion of a transformation
/// environment.
///
/// This environment maps Names to SyntaxExtensions.
pub struct SyntaxEnv {
chain: Vec<MapChainFrame>,
/// All bang-style macro/extension names
/// encountered so far; to be used for diagnostics in resolve
pub names: HashSet<Name>,
}
// impl question: how to implement it? Initially, the
// env will contain only macros, so it might be painful
// to add an empty frame for every context. Let's just
// get it working, first....
// NB! the mutability of the underlying maps means that
// if expansion is out-of-order, a deeper scope may be
// able to refer to a macro that was added to an enclosing
// scope lexically later than the deeper scope.
struct MapChainFrame {
info: BlockInfo,
map: HashMap<Name, Rc<SyntaxExtension>>,
}
impl SyntaxEnv {
fn new() -> SyntaxEnv {
let mut map = SyntaxEnv { chain: Vec::new() , names: HashSet::new()};
map.push_frame();
map
}
pub fn push_frame(&mut self) {
self.chain.push(MapChainFrame {
info: BlockInfo::new(),
map: HashMap::new(),
});
}
pub fn pop_frame(&mut self) {
assert!(self.chain.len() > 1, "too many pops on MapChain!");
self.chain.pop();
}
fn find_escape_frame(&mut self) -> &mut MapChainFrame {
for (i, frame) in self.chain.iter_mut().enumerate().rev() {
if !frame.info.macros_escape || i == 0 {
return frame
}
}
unreachable!()
}
pub fn find(&self, k: Name) -> Option<Rc<SyntaxExtension>> {
for frame in self.chain.iter().rev() {
if let Some(v) = frame.map.get(&k) {
return Some(v.clone());
}
}
None
}
pub fn insert(&mut self, k: Name, v: SyntaxExtension) {
if let NormalTT(..) = v {
self.names.insert(k);
}
self.find_escape_frame().map.insert(k, Rc::new(v));
}
pub fn info(&mut self) -> &mut BlockInfo {
let last_chain_index = self.chain.len() - 1;
&mut self.chain[last_chain_index].info
}
pub fn is_crate_root(&mut self) -> bool {
// The first frame is pushed in `SyntaxEnv::new()` and the second frame is
// pushed when folding the crate root pseudo-module (c.f. noop_fold_crate).
self.chain.len() <= 2
}
}