rust/src/libstd/process.rs
Alex Crichton 76db37ee4b std: Stabilize a number of small APIs
The following APIs were all marked with a `#[stable]` tag:

* process::Child::id
* error::Error::is
* error::Error::downcast
* error::Error::downcast_ref
* error::Error::downcast_mut
* io::Error::get_ref
* io::Error::get_mut
* io::Error::into_inner
* hash::Hash::hash_slice
* hash::Hasher::write_{i,u}{8,16,32,64,size}
2015-07-28 16:34:01 -07:00

874 lines
29 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Working with processes.
#![stable(feature = "process", since = "1.0.0")]
#![allow(non_upper_case_globals)]
use prelude::v1::*;
use io::prelude::*;
use ffi::OsStr;
use fmt;
use io::{self, Error, ErrorKind};
use path;
use sync::mpsc::{channel, Receiver};
use sys::pipe::{self, AnonPipe};
use sys::process as imp;
use sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
use thread;
/// Representation of a running or exited child process.
///
/// This structure is used to represent and manage child processes. A child
/// process is created via the `Command` struct, which configures the spawning
/// process and can itself be constructed using a builder-style interface.
///
/// # Examples
///
/// ```should_panic
/// use std::process::Command;
///
/// let mut child = Command::new("/bin/cat")
/// .arg("file.txt")
/// .spawn()
/// .unwrap_or_else(|e| { panic!("failed to execute child: {}", e) });
///
/// let ecode = child.wait()
/// .unwrap_or_else(|e| { panic!("failed to wait on child: {}", e) });
///
/// assert!(ecode.success());
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub struct Child {
handle: imp::Process,
/// None until wait() or wait_with_output() is called.
status: Option<imp::ExitStatus>,
/// The handle for writing to the child's stdin, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's stdout, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's stderr, if it has been captured
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Option<ChildStderr>,
}
impl AsInner<imp::Process> for Child {
fn as_inner(&self) -> &imp::Process { &self.handle }
}
impl IntoInner<imp::Process> for Child {
fn into_inner(self) -> imp::Process { self.handle }
}
/// A handle to a child procesess's stdin
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdin {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Write for ChildStdin {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsInner<AnonPipe> for ChildStdin {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdin {
fn into_inner(self) -> AnonPipe { self.inner }
}
/// A handle to a child procesess's stdout
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStdout {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStdout {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
impl AsInner<AnonPipe> for ChildStdout {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStdout {
fn into_inner(self) -> AnonPipe { self.inner }
}
/// A handle to a child procesess's stderr
#[stable(feature = "process", since = "1.0.0")]
pub struct ChildStderr {
inner: AnonPipe
}
#[stable(feature = "process", since = "1.0.0")]
impl Read for ChildStderr {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
impl AsInner<AnonPipe> for ChildStderr {
fn as_inner(&self) -> &AnonPipe { &self.inner }
}
impl IntoInner<AnonPipe> for ChildStderr {
fn into_inner(self) -> AnonPipe { self.inner }
}
/// The `Command` type acts as a process builder, providing fine-grained control
/// over how a new process should be spawned. A default configuration can be
/// generated using `Command::new(program)`, where `program` gives a path to the
/// program to be executed. Additional builder methods allow the configuration
/// to be changed (for example, by adding arguments) prior to spawning:
///
/// ```
/// use std::process::Command;
///
/// let output = Command::new("sh")
/// .arg("-c")
/// .arg("echo hello")
/// .output()
/// .unwrap_or_else(|e| { panic!("failed to execute process: {}", e) });
/// let hello = output.stdout;
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub struct Command {
inner: imp::Command,
// Details explained in the builder methods
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
impl Command {
/// Constructs a new `Command` for launching the program at
/// path `program`, with the following default configuration:
///
/// * No arguments to the program
/// * Inherit the current process's environment
/// * Inherit the current process's working directory
/// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
///
/// Builder methods are provided to change these defaults and
/// otherwise configure the process.
#[stable(feature = "process", since = "1.0.0")]
pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
Command {
inner: imp::Command::new(program.as_ref()),
stdin: None,
stdout: None,
stderr: None,
}
}
/// Add an argument to pass to the program.
#[stable(feature = "process", since = "1.0.0")]
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
self.inner.arg(arg.as_ref());
self
}
/// Add multiple arguments to pass to the program.
#[stable(feature = "process", since = "1.0.0")]
pub fn args<S: AsRef<OsStr>>(&mut self, args: &[S]) -> &mut Command {
self.inner.args(args.iter().map(AsRef::as_ref));
self
}
/// Inserts or updates an environment variable mapping.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
#[stable(feature = "process", since = "1.0.0")]
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
where K: AsRef<OsStr>, V: AsRef<OsStr>
{
self.inner.env(key.as_ref(), val.as_ref());
self
}
/// Removes an environment variable mapping.
#[stable(feature = "process", since = "1.0.0")]
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
self.inner.env_remove(key.as_ref());
self
}
/// Clears the entire environment map for the child process.
#[stable(feature = "process", since = "1.0.0")]
pub fn env_clear(&mut self) -> &mut Command {
self.inner.env_clear();
self
}
/// Sets the working directory for the child process.
#[stable(feature = "process", since = "1.0.0")]
pub fn current_dir<P: AsRef<path::Path>>(&mut self, dir: P) -> &mut Command {
self.inner.cwd(dir.as_ref().as_ref());
self
}
/// Configuration for the child process's stdin handle (file descriptor 0).
#[stable(feature = "process", since = "1.0.0")]
pub fn stdin(&mut self, cfg: Stdio) -> &mut Command {
self.stdin = Some(cfg);
self
}
/// Configuration for the child process's stdout handle (file descriptor 1).
#[stable(feature = "process", since = "1.0.0")]
pub fn stdout(&mut self, cfg: Stdio) -> &mut Command {
self.stdout = Some(cfg);
self
}
/// Configuration for the child process's stderr handle (file descriptor 2).
#[stable(feature = "process", since = "1.0.0")]
pub fn stderr(&mut self, cfg: Stdio) -> &mut Command {
self.stderr = Some(cfg);
self
}
fn spawn_inner(&self, default_io: StdioImp) -> io::Result<Child> {
let default_io = Stdio(default_io);
// See comment on `setup_io` for what `_drop_later` is.
let (their_stdin, our_stdin, _drop_later) = try!(
setup_io(self.stdin.as_ref().unwrap_or(&default_io), true)
);
let (their_stdout, our_stdout, _drop_later) = try!(
setup_io(self.stdout.as_ref().unwrap_or(&default_io), false)
);
let (their_stderr, our_stderr, _drop_later) = try!(
setup_io(self.stderr.as_ref().unwrap_or(&default_io), false)
);
match imp::Process::spawn(&self.inner, their_stdin, their_stdout,
their_stderr) {
Err(e) => Err(e),
Ok(handle) => Ok(Child {
handle: handle,
status: None,
stdin: our_stdin.map(|fd| ChildStdin { inner: fd }),
stdout: our_stdout.map(|fd| ChildStdout { inner: fd }),
stderr: our_stderr.map(|fd| ChildStderr { inner: fd }),
})
}
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
#[stable(feature = "process", since = "1.0.0")]
pub fn spawn(&mut self) -> io::Result<Child> {
self.spawn_inner(StdioImp::Inherit)
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// By default, stdin, stdout and stderr are captured (and used to
/// provide the resulting output).
///
/// # Examples
///
/// ```
/// use std::process::Command;
/// let output = Command::new("cat").arg("foo.txt").output().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("status: {}", output.status);
/// println!("stdout: {}", String::from_utf8_lossy(&output.stdout));
/// println!("stderr: {}", String::from_utf8_lossy(&output.stderr));
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn output(&mut self) -> io::Result<Output> {
self.spawn_inner(StdioImp::MakePipe).and_then(|p| p.wait_with_output())
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// # Examples
///
/// ```
/// use std::process::Command;
///
/// let status = Command::new("ls").status().unwrap_or_else(|e| {
/// panic!("failed to execute process: {}", e)
/// });
///
/// println!("process exited with: {}", status);
/// ```
#[stable(feature = "process", since = "1.0.0")]
pub fn status(&mut self) -> io::Result<ExitStatus> {
self.spawn().and_then(|mut p| p.wait())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Command {
/// Format the program and arguments of a Command for display. Any
/// non-utf8 data is lossily converted using the utf8 replacement
/// character.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "{:?}", self.inner.program));
for arg in &self.inner.args {
try!(write!(f, " {:?}", arg));
}
Ok(())
}
}
impl AsInner<imp::Command> for Command {
fn as_inner(&self) -> &imp::Command { &self.inner }
}
impl AsInnerMut<imp::Command> for Command {
fn as_inner_mut(&mut self) -> &mut imp::Command { &mut self.inner }
}
// Takes a `Stdio` configuration (this module) and whether the to-be-owned
// handle will be readable.
//
// Returns a triple of (stdio to spawn with, stdio to store, stdio to drop). The
// stdio to spawn with is passed down to the `sys` module and indicates how the
// stdio stream should be set up. The "stdio to store" is an object which
// should be returned in the `Child` that makes its way out. The "stdio to drop"
// represents the raw value of "stdio to spawn with", but is the owned variant
// for it. This needs to be dropped after the child spawns
fn setup_io(io: &Stdio, readable: bool)
-> io::Result<(imp::Stdio, Option<AnonPipe>, Option<AnonPipe>)>
{
Ok(match io.0 {
StdioImp::MakePipe => {
let (reader, writer) = try!(pipe::anon_pipe());
if readable {
(imp::Stdio::Raw(reader.raw()), Some(writer), Some(reader))
} else {
(imp::Stdio::Raw(writer.raw()), Some(reader), Some(writer))
}
}
StdioImp::Raw(ref owned) => (imp::Stdio::Raw(owned.raw()), None, None),
StdioImp::Inherit => (imp::Stdio::Inherit, None, None),
StdioImp::None => (imp::Stdio::None, None, None),
})
}
/// The output of a finished process.
#[derive(PartialEq, Eq, Clone)]
#[stable(feature = "process", since = "1.0.0")]
pub struct Output {
/// The status (exit code) of the process.
#[stable(feature = "process", since = "1.0.0")]
pub status: ExitStatus,
/// The data that the process wrote to stdout.
#[stable(feature = "process", since = "1.0.0")]
pub stdout: Vec<u8>,
/// The data that the process wrote to stderr.
#[stable(feature = "process", since = "1.0.0")]
pub stderr: Vec<u8>,
}
/// Describes what to do with a standard I/O stream for a child process.
#[stable(feature = "process", since = "1.0.0")]
pub struct Stdio(StdioImp);
// The internal enum for stdio setup; see below for descriptions.
enum StdioImp {
MakePipe,
Raw(imp::RawStdio),
Inherit,
None,
}
impl Stdio {
/// A new pipe should be arranged to connect the parent and child processes.
#[stable(feature = "process", since = "1.0.0")]
pub fn piped() -> Stdio { Stdio(StdioImp::MakePipe) }
/// The child inherits from the corresponding parent descriptor.
#[stable(feature = "process", since = "1.0.0")]
pub fn inherit() -> Stdio { Stdio(StdioImp::Inherit) }
/// This stream will be ignored. This is the equivalent of attaching the
/// stream to `/dev/null`
#[stable(feature = "process", since = "1.0.0")]
pub fn null() -> Stdio { Stdio(StdioImp::None) }
}
impl FromInner<imp::RawStdio> for Stdio {
fn from_inner(inner: imp::RawStdio) -> Stdio {
Stdio(StdioImp::Raw(inner))
}
}
/// Describes the result of a process after it has terminated.
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[stable(feature = "process", since = "1.0.0")]
pub struct ExitStatus(imp::ExitStatus);
impl ExitStatus {
/// Was termination successful? Signal termination not considered a success,
/// and success is defined as a zero exit status.
#[stable(feature = "process", since = "1.0.0")]
pub fn success(&self) -> bool {
self.0.success()
}
/// Returns the exit code of the process, if any.
///
/// On Unix, this will return `None` if the process was terminated
/// by a signal; `std::os::unix` provides an extension trait for
/// extracting the signal and other details from the `ExitStatus`.
#[stable(feature = "process", since = "1.0.0")]
pub fn code(&self) -> Option<i32> {
self.0.code()
}
}
impl AsInner<imp::ExitStatus> for ExitStatus {
fn as_inner(&self) -> &imp::ExitStatus { &self.0 }
}
#[stable(feature = "process", since = "1.0.0")]
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl Child {
/// Forces the child to exit. This is equivalent to sending a
/// SIGKILL on unix platforms.
#[stable(feature = "process", since = "1.0.0")]
pub fn kill(&mut self) -> io::Result<()> {
#[cfg(unix)] fn collect_status(p: &mut Child) {
// On Linux (and possibly other unices), a process that has exited will
// continue to accept signals because it is "defunct". The delivery of
// signals will only fail once the child has been reaped. For this
// reason, if the process hasn't exited yet, then we attempt to collect
// their status with WNOHANG.
if p.status.is_none() {
match p.handle.try_wait() {
Some(status) => { p.status = Some(status); }
None => {}
}
}
}
#[cfg(windows)] fn collect_status(_p: &mut Child) {}
collect_status(self);
// if the process has finished, and therefore had waitpid called,
// and we kill it, then on unix we might ending up killing a
// newer process that happens to have the same (re-used) id
if self.status.is_some() {
return Err(Error::new(
ErrorKind::InvalidInput,
"invalid argument: can't kill an exited process",
))
}
unsafe { self.handle.kill() }
}
/// Returns the OS-assigned process identifier associated with this child.
#[stable(feature = "process_id", since = "1.3.0")]
pub fn id(&self) -> u32 {
self.handle.id()
}
/// Waits for the child to exit completely, returning the status that it
/// exited with. This function will continue to have the same return value
/// after it has been called at least once.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
#[stable(feature = "process", since = "1.0.0")]
pub fn wait(&mut self) -> io::Result<ExitStatus> {
drop(self.stdin.take());
match self.status {
Some(code) => Ok(ExitStatus(code)),
None => {
let status = try!(self.handle.wait());
self.status = Some(status);
Ok(ExitStatus(status))
}
}
}
/// Simultaneously waits for the child to exit and collect all remaining
/// output on the stdout/stderr handles, returning a `Output`
/// instance.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
#[stable(feature = "process", since = "1.0.0")]
pub fn wait_with_output(mut self) -> io::Result<Output> {
drop(self.stdin.take());
fn read<T: Read + Send + 'static>(stream: Option<T>) -> Receiver<io::Result<Vec<u8>>> {
let (tx, rx) = channel();
match stream {
Some(stream) => {
thread::spawn(move || {
let mut stream = stream;
let mut ret = Vec::new();
let res = stream.read_to_end(&mut ret);
tx.send(res.map(|_| ret)).unwrap();
});
}
None => tx.send(Ok(Vec::new())).unwrap()
}
rx
}
let stdout = read(self.stdout.take());
let stderr = read(self.stderr.take());
let status = try!(self.wait());
Ok(Output {
status: status,
stdout: stdout.recv().unwrap().unwrap_or(Vec::new()),
stderr: stderr.recv().unwrap().unwrap_or(Vec::new()),
})
}
}
/// Terminates the current process with the specified exit code.
///
/// This function will never return and will immediately terminate the current
/// process. The exit code is passed through to the underlying OS and will be
/// available for consumption by another process.
///
/// Note that because this function never returns, and that it terminates the
/// process, no destructors on the current stack or any other thread's stack
/// will be run. If a clean shutdown is needed it is recommended to only call
/// this function at a known point where there are no more destructors left
/// to run.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn exit(code: i32) -> ! {
::sys::os::exit(code)
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::prelude::*;
use io::ErrorKind;
use rt::running_on_valgrind;
use str;
use super::{Command, Output, Stdio};
// FIXME(#10380) these tests should not all be ignored on android.
#[cfg(not(target_os="android"))]
#[test]
fn smoke() {
let p = Command::new("true").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().success());
}
#[cfg(not(target_os="android"))]
#[test]
fn smoke_failure() {
match Command::new("if-this-is-a-binary-then-the-world-has-ended").spawn() {
Ok(..) => panic!(),
Err(..) => {}
}
}
#[cfg(not(target_os="android"))]
#[test]
fn exit_reported_right() {
let p = Command::new("false").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.wait().unwrap().code() == Some(1));
drop(p.wait());
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn signal_reported_right() {
use os::unix::process::ExitStatusExt;
let p = Command::new("/bin/sh").arg("-c").arg("kill -9 $$").spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
match p.wait().unwrap().signal() {
Some(9) => {},
result => panic!("not terminated by signal 9 (instead, {:?})", result),
}
}
pub fn run_output(mut cmd: Command) -> String {
let p = cmd.spawn();
assert!(p.is_ok());
let mut p = p.unwrap();
assert!(p.stdout.is_some());
let mut ret = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut ret).unwrap();
assert!(p.wait().unwrap().success());
return ret;
}
#[cfg(not(target_os="android"))]
#[test]
fn stdout_works() {
let mut cmd = Command::new("echo");
cmd.arg("foobar").stdout(Stdio::piped());
assert_eq!(run_output(cmd), "foobar\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn set_current_dir_works() {
let mut cmd = Command::new("/bin/sh");
cmd.arg("-c").arg("pwd")
.current_dir("/")
.stdout(Stdio::piped());
assert_eq!(run_output(cmd), "/\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn stdin_works() {
let mut p = Command::new("/bin/sh")
.arg("-c").arg("read line; echo $line")
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.spawn().unwrap();
p.stdin.as_mut().unwrap().write("foobar".as_bytes()).unwrap();
drop(p.stdin.take());
let mut out = String::new();
p.stdout.as_mut().unwrap().read_to_string(&mut out).unwrap();
assert!(p.wait().unwrap().success());
assert_eq!(out, "foobar\n");
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn uid_works() {
use os::unix::prelude::*;
use libc;
let mut p = Command::new("/bin/sh")
.arg("-c").arg("true")
.uid(unsafe { libc::getuid() })
.gid(unsafe { libc::getgid() })
.spawn().unwrap();
assert!(p.wait().unwrap().success());
}
#[cfg(all(unix, not(target_os="android")))]
#[test]
fn uid_to_root_fails() {
use os::unix::prelude::*;
use libc;
// if we're already root, this isn't a valid test. Most of the bots run
// as non-root though (android is an exception).
if unsafe { libc::getuid() == 0 } { return }
assert!(Command::new("/bin/ls").uid(0).gid(0).spawn().is_err());
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_status() {
let mut status = Command::new("false").status().unwrap();
assert!(status.code() == Some(1));
status = Command::new("true").status().unwrap();
assert!(status.success());
}
#[test]
fn test_process_output_fail_to_start() {
match Command::new("/no-binary-by-this-name-should-exist").output() {
Err(e) => assert_eq!(e.kind(), ErrorKind::NotFound),
Ok(..) => panic!()
}
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_output_output() {
let Output {status, stdout, stderr}
= Command::new("echo").arg("hello").output().unwrap();
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(stderr, Vec::new());
}
}
#[cfg(not(target_os="android"))]
#[test]
fn test_process_output_error() {
let Output {status, stdout, stderr}
= Command::new("mkdir").arg(".").output().unwrap();
assert!(status.code() == Some(1));
assert_eq!(stdout, Vec::new());
assert!(!stderr.is_empty());
}
#[cfg(not(target_os="android"))]
#[test]
fn test_finish_once() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
}
#[cfg(not(target_os="android"))]
#[test]
fn test_finish_twice() {
let mut prog = Command::new("false").spawn().unwrap();
assert!(prog.wait().unwrap().code() == Some(1));
assert!(prog.wait().unwrap().code() == Some(1));
}
#[cfg(not(target_os="android"))]
#[test]
fn test_wait_with_output_once() {
let prog = Command::new("echo").arg("hello").stdout(Stdio::piped())
.spawn().unwrap();
let Output {status, stdout, stderr} = prog.wait_with_output().unwrap();
let output_str = str::from_utf8(&stdout).unwrap();
assert!(status.success());
assert_eq!(output_str.trim().to_string(), "hello");
// FIXME #7224
if !running_on_valgrind() {
assert_eq!(stderr, Vec::new());
}
}
#[cfg(all(unix, not(target_os="android")))]
pub fn env_cmd() -> Command {
Command::new("env")
}
#[cfg(target_os="android")]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("/system/bin/sh");
cmd.arg("-c").arg("set");
cmd
}
#[cfg(windows)]
pub fn env_cmd() -> Command {
let mut cmd = Command::new("cmd");
cmd.arg("/c").arg("set");
cmd
}
#[cfg(not(target_os="android"))]
#[test]
fn test_inherit_env() {
use std::env;
if running_on_valgrind() { return; }
let result = env_cmd().output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
for (ref k, ref v) in env::vars() {
// don't check windows magical empty-named variables
assert!(k.is_empty() ||
output.contains(&format!("{}={}", *k, *v)),
"output doesn't contain `{}={}`\n{}",
k, v, output);
}
}
#[cfg(target_os="android")]
#[test]
fn test_inherit_env() {
use std::env;
if running_on_valgrind() { return; }
let mut result = env_cmd().output().unwrap();
let output = String::from_utf8(result.stdout).unwrap();
for (ref k, ref v) in env::vars() {
// don't check android RANDOM variables
if *k != "RANDOM".to_string() {
assert!(output.contains(&format!("{}={}",
*k,
*v)) ||
output.contains(&format!("{}=\'{}\'",
*k,
*v)));
}
}
}
#[test]
fn test_override_env() {
use env;
// In some build environments (such as chrooted Nix builds), `env` can
// only be found in the explicitly-provided PATH env variable, not in
// default places such as /bin or /usr/bin. So we need to pass through
// PATH to our sub-process.
let mut cmd = env_cmd();
cmd.env_clear().env("RUN_TEST_NEW_ENV", "123");
if let Some(p) = env::var_os("PATH") {
cmd.env("PATH", &p);
}
let result = cmd.output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
#[test]
fn test_add_to_env() {
let result = env_cmd().env("RUN_TEST_NEW_ENV", "123").output().unwrap();
let output = String::from_utf8_lossy(&result.stdout).to_string();
assert!(output.contains("RUN_TEST_NEW_ENV=123"),
"didn't find RUN_TEST_NEW_ENV inside of:\n\n{}", output);
}
}