rust/src/libgreen/basic.rs
Alex Crichton cc34dbb840 Expose whether event loops have active I/O
The green scheduler can optimize its runtime based on this by deciding to not go
to sleep in epoll() if there is no active I/O and there is a task to be stolen.

This is implemented for librustuv by keeping a count of the number of tasks
which are currently homed. If a task is homed, and then performs a blocking I/O
operation, the count will be nonzero while the task is blocked. The homing count
is intentionally 0 when there are I/O handles, but no handles currently blocked.
The reason for this is that epoll() would only be used to wake up the scheduler
anyway.

The crux of this change was to have a `HomingMissile` contain a mutable borrowed
reference back to the `HomeHandle`. The rest of the change was just dealing with
this fallout. This reference is used to decrement the homed handle count in a
HomingMissile's destructor.

Also note that the count maintained is not atomic because all of its
increments/decrements/reads are all on the same I/O thread.
2014-02-12 09:46:31 -08:00

286 lines
7.2 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This is a basic event loop implementation not meant for any "real purposes"
//! other than testing the scheduler and proving that it's possible to have a
//! pluggable event loop.
//!
//! This implementation is also used as the fallback implementation of an event
//! loop if no other one is provided (and M:N scheduling is desired).
use std::cast;
use std::mem::replace;
use std::rt::rtio::{EventLoop, IoFactory, RemoteCallback, PausableIdleCallback,
Callback};
use std::unstable::sync::Exclusive;
/// This is the only exported function from this module.
pub fn event_loop() -> ~EventLoop {
~BasicLoop::new() as ~EventLoop
}
struct BasicLoop {
work: ~[proc()], // pending work
idle: Option<*mut BasicPausable>, // only one is allowed
remotes: ~[(uint, ~Callback)],
next_remote: uint,
messages: Exclusive<~[Message]>,
}
enum Message { RunRemote(uint), RemoveRemote(uint) }
impl BasicLoop {
fn new() -> BasicLoop {
BasicLoop {
work: ~[],
idle: None,
next_remote: 0,
remotes: ~[],
messages: Exclusive::new(~[]),
}
}
/// Process everything in the work queue (continually)
fn work(&mut self) {
while self.work.len() > 0 {
for work in replace(&mut self.work, ~[]).move_iter() {
work();
}
}
}
fn remote_work(&mut self) {
let messages = unsafe {
self.messages.with(|messages| {
if messages.len() > 0 {
Some(replace(messages, ~[]))
} else {
None
}
})
};
let messages = match messages {
Some(m) => m, None => return
};
for message in messages.iter() {
self.message(*message);
}
}
fn message(&mut self, message: Message) {
match message {
RunRemote(i) => {
match self.remotes.mut_iter().find(|& &(id, _)| id == i) {
Some(&(_, ref mut f)) => f.call(),
None => unreachable!()
}
}
RemoveRemote(i) => {
match self.remotes.iter().position(|&(id, _)| id == i) {
Some(i) => { self.remotes.remove(i).unwrap(); }
None => unreachable!()
}
}
}
}
/// Run the idle callback if one is registered
fn idle(&mut self) {
unsafe {
match self.idle {
Some(idle) => {
if (*idle).active {
(*idle).work.call();
}
}
None => {}
}
}
}
fn has_idle(&self) -> bool {
unsafe { self.idle.is_some() && (**self.idle.get_ref()).active }
}
}
impl EventLoop for BasicLoop {
fn run(&mut self) {
// Not exactly efficient, but it gets the job done.
while self.remotes.len() > 0 || self.work.len() > 0 || self.has_idle() {
self.work();
self.remote_work();
if self.has_idle() {
self.idle();
continue
}
unsafe {
// We block here if we have no messages to process and we may
// receive a message at a later date
self.messages.hold_and_wait(|messages| {
self.remotes.len() > 0 &&
messages.len() == 0 &&
self.work.len() == 0
})
}
}
}
fn callback(&mut self, f: proc()) {
self.work.push(f);
}
// FIXME: Seems like a really weird requirement to have an event loop provide.
fn pausable_idle_callback(&mut self, cb: ~Callback) -> ~PausableIdleCallback {
let callback = ~BasicPausable::new(self, cb);
rtassert!(self.idle.is_none());
unsafe {
let cb_ptr: &*mut BasicPausable = cast::transmute(&callback);
self.idle = Some(*cb_ptr);
}
return callback as ~PausableIdleCallback;
}
fn remote_callback(&mut self, f: ~Callback) -> ~RemoteCallback {
let id = self.next_remote;
self.next_remote += 1;
self.remotes.push((id, f));
~BasicRemote::new(self.messages.clone(), id) as ~RemoteCallback
}
fn io<'a>(&'a mut self) -> Option<&'a mut IoFactory> { None }
fn has_active_io(&self) -> bool { false }
}
struct BasicRemote {
queue: Exclusive<~[Message]>,
id: uint,
}
impl BasicRemote {
fn new(queue: Exclusive<~[Message]>, id: uint) -> BasicRemote {
BasicRemote { queue: queue, id: id }
}
}
impl RemoteCallback for BasicRemote {
fn fire(&mut self) {
unsafe {
self.queue.hold_and_signal(|queue| {
queue.push(RunRemote(self.id));
})
}
}
}
impl Drop for BasicRemote {
fn drop(&mut self) {
unsafe {
self.queue.hold_and_signal(|queue| {
queue.push(RemoveRemote(self.id));
})
}
}
}
struct BasicPausable {
eloop: *mut BasicLoop,
work: ~Callback,
active: bool,
}
impl BasicPausable {
fn new(eloop: &mut BasicLoop, cb: ~Callback) -> BasicPausable {
BasicPausable {
active: false,
work: cb,
eloop: eloop,
}
}
}
impl PausableIdleCallback for BasicPausable {
fn pause(&mut self) {
self.active = false;
}
fn resume(&mut self) {
self.active = true;
}
}
impl Drop for BasicPausable {
fn drop(&mut self) {
unsafe {
(*self.eloop).idle = None;
}
}
}
#[cfg(test)]
mod test {
use std::task::TaskOpts;
use basic;
use PoolConfig;
use SchedPool;
fn pool() -> SchedPool {
SchedPool::new(PoolConfig {
threads: 1,
event_loop_factory: Some(basic::event_loop),
})
}
fn run(f: proc()) {
let mut pool = pool();
pool.spawn(TaskOpts::new(), f);
pool.shutdown();
}
#[test]
fn smoke() {
run(proc() {});
}
#[test]
fn some_channels() {
run(proc() {
let (p, c) = Chan::new();
spawn(proc() {
c.send(());
});
p.recv();
});
}
#[test]
fn multi_thread() {
let mut pool = SchedPool::new(PoolConfig {
threads: 2,
event_loop_factory: Some(basic::event_loop),
});
for _ in range(0, 20) {
pool.spawn(TaskOpts::new(), proc() {
let (p, c) = Chan::new();
spawn(proc() {
c.send(());
});
p.recv();
});
}
pool.shutdown();
}
}