rust/src/bootstrap/util.rs
Alex Crichton f846aaf81f rustbuild: Build documentation for proc_macro
This commit fixes #38749 by building documentation for the `proc_macro` crate by
default for configured hosts. Unfortunately did not turn out to be a trivial
fix. Currently rustbuild generates documentation into multiple locations: one
for std, one for test, and one for rustc. The initial fix for this issue simply
actually executed `cargo doc -p proc_macro` which was otherwise completely
elided before.

Unfortunately rustbuild was the left to merge two documentation trees together.
One for the standard library and one for the rustc tree (which only had docs for
the `proc_macro` crate). Rustdoc itself knows how to merge documentation files
(specifically around search indexes, etc) but rustbuild was unaware of this, so
an initial fix ended up destroying the sidebar and the search bar from the
libstd docs.

To solve this issue the method of documentation has been tweaked slightly in
rustbuild. The build system will not use symlinks (or directory junctions on
Windows) to generate all documentation into the same location initially. This'll
rely on rustdoc's logic to weave together all the output and ensure that it ends
up all consistent.

Closes #38749
2017-03-10 13:04:49 -08:00

325 lines
11 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Various utility functions used throughout rustbuild.
//!
//! Simple things like testing the various filesystem operations here and there,
//! not a lot of interesting happenings here unfortunately.
use std::env;
use std::ffi::OsString;
use std::fs;
use std::io;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::time::Instant;
use filetime::{self, FileTime};
/// Returns the `name` as the filename of a static library for `target`.
pub fn staticlib(name: &str, target: &str) -> String {
if target.contains("windows") {
format!("{}.lib", name)
} else {
format!("lib{}.a", name)
}
}
/// Copies a file from `src` to `dst`, attempting to use hard links and then
/// falling back to an actually filesystem copy if necessary.
pub fn copy(src: &Path, dst: &Path) {
// A call to `hard_link` will fail if `dst` exists, so remove it if it
// already exists so we can try to help `hard_link` succeed.
let _ = fs::remove_file(&dst);
// Attempt to "easy copy" by creating a hard link (symlinks don't work on
// windows), but if that fails just fall back to a slow `copy` operation.
// let res = fs::hard_link(src, dst);
let res = fs::copy(src, dst);
if let Err(e) = res {
panic!("failed to copy `{}` to `{}`: {}", src.display(),
dst.display(), e)
}
let metadata = t!(src.metadata());
t!(fs::set_permissions(dst, metadata.permissions()));
let atime = FileTime::from_last_access_time(&metadata);
let mtime = FileTime::from_last_modification_time(&metadata);
t!(filetime::set_file_times(dst, atime, mtime));
}
/// Copies the `src` directory recursively to `dst`. Both are assumed to exist
/// when this function is called.
pub fn cp_r(src: &Path, dst: &Path) {
for f in t!(fs::read_dir(src)) {
let f = t!(f);
let path = f.path();
let name = path.file_name().unwrap();
let dst = dst.join(name);
if t!(f.file_type()).is_dir() {
t!(fs::create_dir_all(&dst));
cp_r(&path, &dst);
} else {
let _ = fs::remove_file(&dst);
copy(&path, &dst);
}
}
}
/// Copies the `src` directory recursively to `dst`. Both are assumed to exist
/// when this function is called. Unwanted files or directories can be skipped
/// by returning `false` from the filter function.
pub fn cp_filtered(src: &Path, dst: &Path, filter: &Fn(&Path) -> bool) {
// Inner function does the actual work
fn recurse(src: &Path, dst: &Path, relative: &Path, filter: &Fn(&Path) -> bool) {
for f in t!(fs::read_dir(src)) {
let f = t!(f);
let path = f.path();
let name = path.file_name().unwrap();
let dst = dst.join(name);
let relative = relative.join(name);
// Only copy file or directory if the filter function returns true
if filter(&relative) {
if t!(f.file_type()).is_dir() {
let _ = fs::remove_dir_all(&dst);
t!(fs::create_dir(&dst));
recurse(&path, &dst, &relative, filter);
} else {
let _ = fs::remove_file(&dst);
copy(&path, &dst);
}
}
}
}
// Immediately recurse with an empty relative path
recurse(src, dst, Path::new(""), filter)
}
/// Given an executable called `name`, return the filename for the
/// executable for a particular target.
pub fn exe(name: &str, target: &str) -> String {
if target.contains("windows") {
format!("{}.exe", name)
} else {
name.to_string()
}
}
/// Returns whether the file name given looks like a dynamic library.
pub fn is_dylib(name: &str) -> bool {
name.ends_with(".dylib") || name.ends_with(".so") || name.ends_with(".dll")
}
/// Returns the corresponding relative library directory that the compiler's
/// dylibs will be found in.
pub fn libdir(target: &str) -> &'static str {
if target.contains("windows") {"bin"} else {"lib"}
}
/// Adds a list of lookup paths to `cmd`'s dynamic library lookup path.
pub fn add_lib_path(path: Vec<PathBuf>, cmd: &mut Command) {
let mut list = dylib_path();
for path in path {
list.insert(0, path);
}
cmd.env(dylib_path_var(), t!(env::join_paths(list)));
}
/// Returns the environment variable which the dynamic library lookup path
/// resides in for this platform.
pub fn dylib_path_var() -> &'static str {
if cfg!(target_os = "windows") {
"PATH"
} else if cfg!(target_os = "macos") {
"DYLD_LIBRARY_PATH"
} else {
"LD_LIBRARY_PATH"
}
}
/// Parses the `dylib_path_var()` environment variable, returning a list of
/// paths that are members of this lookup path.
pub fn dylib_path() -> Vec<PathBuf> {
env::split_paths(&env::var_os(dylib_path_var()).unwrap_or(OsString::new()))
.collect()
}
/// `push` all components to `buf`. On windows, append `.exe` to the last component.
pub fn push_exe_path(mut buf: PathBuf, components: &[&str]) -> PathBuf {
let (&file, components) = components.split_last().expect("at least one component required");
let mut file = file.to_owned();
if cfg!(windows) {
file.push_str(".exe");
}
for c in components {
buf.push(c);
}
buf.push(file);
buf
}
pub struct TimeIt(Instant);
/// Returns an RAII structure that prints out how long it took to drop.
pub fn timeit() -> TimeIt {
TimeIt(Instant::now())
}
impl Drop for TimeIt {
fn drop(&mut self) {
let time = self.0.elapsed();
println!("\tfinished in {}.{:03}",
time.as_secs(),
time.subsec_nanos() / 1_000_000);
}
}
/// Symlinks two directories, using junctions on Windows and normal symlinks on
/// Unix.
pub fn symlink_dir(src: &Path, dest: &Path) -> io::Result<()> {
let _ = fs::remove_dir(dest);
return symlink_dir_inner(src, dest);
#[cfg(not(windows))]
fn symlink_dir_inner(src: &Path, dest: &Path) -> io::Result<()> {
use std::os::unix::fs;
fs::symlink(src, dest)
}
// Creating a directory junction on windows involves dealing with reparse
// points and the DeviceIoControl function, and this code is a skeleton of
// what can be found here:
//
// http://www.flexhex.com/docs/articles/hard-links.phtml
//
// Copied from std
#[cfg(windows)]
#[allow(bad_style)]
fn symlink_dir_inner(target: &Path, junction: &Path) -> io::Result<()> {
use std::ptr;
use std::ffi::OsStr;
use std::os::windows::ffi::OsStrExt;
const MAXIMUM_REPARSE_DATA_BUFFER_SIZE: usize = 16 * 1024;
const GENERIC_WRITE: DWORD = 0x40000000;
const OPEN_EXISTING: DWORD = 3;
const FILE_FLAG_OPEN_REPARSE_POINT: DWORD = 0x00200000;
const FILE_FLAG_BACKUP_SEMANTICS: DWORD = 0x02000000;
const FSCTL_SET_REPARSE_POINT: DWORD = 0x900a4;
const IO_REPARSE_TAG_MOUNT_POINT: DWORD = 0xa0000003;
const FILE_SHARE_DELETE: DWORD = 0x4;
const FILE_SHARE_READ: DWORD = 0x1;
const FILE_SHARE_WRITE: DWORD = 0x2;
type BOOL = i32;
type DWORD = u32;
type HANDLE = *mut u8;
type LPCWSTR = *const u16;
type LPDWORD = *mut DWORD;
type LPOVERLAPPED = *mut u8;
type LPSECURITY_ATTRIBUTES = *mut u8;
type LPVOID = *mut u8;
type WCHAR = u16;
type WORD = u16;
#[repr(C)]
struct REPARSE_MOUNTPOINT_DATA_BUFFER {
ReparseTag: DWORD,
ReparseDataLength: DWORD,
Reserved: WORD,
ReparseTargetLength: WORD,
ReparseTargetMaximumLength: WORD,
Reserved1: WORD,
ReparseTarget: WCHAR,
}
extern "system" {
fn CreateFileW(lpFileName: LPCWSTR,
dwDesiredAccess: DWORD,
dwShareMode: DWORD,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES,
dwCreationDisposition: DWORD,
dwFlagsAndAttributes: DWORD,
hTemplateFile: HANDLE)
-> HANDLE;
fn DeviceIoControl(hDevice: HANDLE,
dwIoControlCode: DWORD,
lpInBuffer: LPVOID,
nInBufferSize: DWORD,
lpOutBuffer: LPVOID,
nOutBufferSize: DWORD,
lpBytesReturned: LPDWORD,
lpOverlapped: LPOVERLAPPED) -> BOOL;
}
fn to_u16s<S: AsRef<OsStr>>(s: S) -> io::Result<Vec<u16>> {
Ok(s.as_ref().encode_wide().chain(Some(0)).collect())
}
// We're using low-level APIs to create the junction, and these are more
// picky about paths. For example, forward slashes cannot be used as a
// path separator, so we should try to canonicalize the path first.
let target = try!(fs::canonicalize(target));
try!(fs::create_dir(junction));
let path = try!(to_u16s(junction));
unsafe {
let h = CreateFileW(path.as_ptr(),
GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
0 as *mut _,
OPEN_EXISTING,
FILE_FLAG_OPEN_REPARSE_POINT | FILE_FLAG_BACKUP_SEMANTICS,
ptr::null_mut());
let mut data = [0u8; MAXIMUM_REPARSE_DATA_BUFFER_SIZE];
let mut db = data.as_mut_ptr()
as *mut REPARSE_MOUNTPOINT_DATA_BUFFER;
let buf = &mut (*db).ReparseTarget as *mut _;
let mut i = 0;
// FIXME: this conversion is very hacky
let v = br"\??\";
let v = v.iter().map(|x| *x as u16);
for c in v.chain(target.as_os_str().encode_wide().skip(4)) {
*buf.offset(i) = c;
i += 1;
}
*buf.offset(i) = 0;
i += 1;
(*db).ReparseTag = IO_REPARSE_TAG_MOUNT_POINT;
(*db).ReparseTargetMaximumLength = (i * 2) as WORD;
(*db).ReparseTargetLength = ((i - 1) * 2) as WORD;
(*db).ReparseDataLength =
(*db).ReparseTargetLength as DWORD + 12;
let mut ret = 0;
let res = DeviceIoControl(h as *mut _,
FSCTL_SET_REPARSE_POINT,
data.as_ptr() as *mut _,
(*db).ReparseDataLength + 8,
ptr::null_mut(), 0,
&mut ret,
ptr::null_mut());
if res == 0 {
Err(io::Error::last_os_error())
} else {
Ok(())
}
}
}
}