rust/src/librustc/middle/check_match.rs
Patrick Walton 75146fd59c librustc: Check function argument patterns for legality of by-move
bindings.

This will break code that incorrectly did things like:

    fn f(a @ box b: Box<String>) {}

Fix such code to not rely on undefined behavior.

Closes #12534.

[breaking-change]
2014-06-24 17:23:41 -07:00

821 lines
28 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
use middle::const_eval::{compare_const_vals, const_bool, const_float, const_nil, const_val};
use middle::const_eval::{eval_const_expr, lookup_const_by_id};
use middle::def::*;
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use std::gc::{Gc, GC};
use std::iter;
use syntax::ast::*;
use syntax::ast_util::{is_unguarded, walk_pat};
use syntax::codemap::{Span, Spanned, DUMMY_SP};
use syntax::owned_slice::OwnedSlice;
use syntax::print::pprust::pat_to_str;
use syntax::visit;
use syntax::visit::{Visitor, FnKind};
use util::ppaux::ty_to_str;
type Matrix = Vec<Vec<Gc<Pat>>>;
#[deriving(Clone)]
enum Usefulness {
Useful(Vec<Gc<Pat>>),
NotUseful
}
enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
impl Usefulness {
fn useful(self) -> Option<Vec<Gc<Pat>>> {
match self {
Useful(pats) => Some(pats),
_ => None
}
}
}
fn def_to_path(tcx: &ty::ctxt, id: DefId) -> Path {
ty::with_path(tcx, id, |mut path| Path {
global: false,
segments: path.last().map(|elem| PathSegment {
identifier: Ident::new(elem.name()),
lifetimes: vec!(),
types: OwnedSlice::empty()
}).move_iter().collect(),
span: DUMMY_SP,
})
}
struct MatchCheckCtxt<'a> {
tcx: &'a ty::ctxt,
}
impl<'a> Visitor<()> for MatchCheckCtxt<'a> {
fn visit_expr(&mut self, ex: &Expr, _: ()) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &Local, _: ()) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, _: NodeId, _: ()) {
check_fn(self, fk, fd, b, s);
}
}
pub fn check_crate(tcx: &ty::ctxt,
krate: &Crate) {
let mut cx = MatchCheckCtxt {
tcx: tcx,
};
visit::walk_crate(&mut cx, krate, ());
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &Expr) {
visit::walk_expr(cx, ex, ());
match ex.node {
ExprMatch(scrut, ref arms) => {
// First, check legality of move bindings.
for arm in arms.iter() {
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
arm.pats.as_slice());
}
// Second, check for unreachable arms.
check_arms(cx, arms.as_slice());
// Finally, check if the whole match expression is exhaustive.
// Check for empty enum, because is_useful only works on inhabited types.
let pat_ty = node_id_to_type(cx.tcx, scrut.id);
if (*arms).is_empty() {
if !type_is_empty(cx.tcx, pat_ty) {
// We know the type is inhabited, so this must be wrong
cx.tcx.sess.span_err(ex.span, format!("non-exhaustive patterns: \
type {} is non-empty",
ty_to_str(cx.tcx, pat_ty)).as_slice());
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
let m: Matrix = arms
.iter()
.filter(|&arm| is_unguarded(arm))
.flat_map(|arm| arm.pats.iter())
.map(|pat| vec!(pat.clone()))
.collect();
check_exhaustive(cx, ex.span, &m);
},
_ => ()
}
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt, arms: &[Arm]) {
let mut seen = Vec::new();
for arm in arms.iter() {
for pat in arm.pats.iter() {
// Check that we do not match against a static NaN (#6804)
let pat_matches_nan: |&Pat| -> bool = |p| {
let opt_def = cx.tcx.def_map.borrow().find_copy(&p.id);
match opt_def {
Some(DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
match eval_const_expr(cx.tcx, &*const_expr) {
const_float(f) if f.is_nan() => true,
_ => false
}
}
_ => false
}
};
walk_pat(&**pat, |p| {
if pat_matches_nan(p) {
cx.tcx.sess.span_warn(p.span, "unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
true
});
let v = vec!(*pat);
match is_useful(cx, &seen, v.as_slice(), LeaveOutWitness) {
NotUseful => cx.tcx.sess.span_err(pat.span, "unreachable pattern"),
_ => ()
}
if arm.guard.is_none() { seen.push(v); }
}
}
}
fn raw_pat(p: Gc<Pat>) -> Gc<Pat> {
match p.node {
PatIdent(_, _, Some(s)) => { raw_pat(s) }
_ => { p }
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, m: &Matrix) {
match is_useful(cx, m, [wild()], ConstructWitness) {
NotUseful => {
// This is good, wildcard pattern isn't reachable
return;
}
Useful(pats) => {
let witness = match pats.as_slice() {
[witness] => witness,
[] => wild(),
_ => unreachable!()
};
let msg = format!("non-exhaustive patterns: `{0}` not covered", pat_to_str(&*witness));
cx.tcx.sess.span_err(sp, msg.as_slice());
}
}
}
#[deriving(Clone, PartialEq)]
enum ctor {
single,
variant(DefId),
val(const_val),
range(const_val, const_val),
vec(uint)
}
fn const_val_to_expr(value: &const_val) -> Gc<Expr> {
let node = match value {
&const_bool(b) => LitBool(b),
&const_nil => LitNil,
_ => unreachable!()
};
box(GC) Expr {
id: 0,
node: ExprLit(box(GC) Spanned { node: node, span: DUMMY_SP }),
span: DUMMY_SP
}
}
fn construct_witness(cx: &MatchCheckCtxt, ctor: &ctor, pats: Vec<Gc<Pat>>, lty: ty::t) -> Gc<Pat> {
let pat = match ty::get(lty).sty {
ty::ty_tup(_) => PatTup(pats),
ty::ty_enum(cid, _) | ty::ty_struct(cid, _) => {
let (vid, is_structure) = match ctor {
&variant(vid) => (vid,
ty::enum_variant_with_id(cx.tcx, cid, vid).arg_names.is_some()),
_ => (cid, true)
};
if is_structure {
let fields = ty::lookup_struct_fields(cx.tcx, vid);
let field_pats = fields.move_iter()
.zip(pats.iter())
.map(|(field, pat)| FieldPat {
ident: Ident::new(field.name),
pat: pat.clone()
}).collect();
PatStruct(def_to_path(cx.tcx, vid), field_pats, false)
} else {
PatEnum(def_to_path(cx.tcx, vid), Some(pats))
}
},
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => {
match ty::get(ty).sty {
ty::ty_vec(_, None) => match ctor {
&vec(_) => PatVec(pats, None, vec!()),
_ => unreachable!()
},
ty::ty_str => PatWild,
_ => {
assert_eq!(pats.len(), 1);
PatRegion(pats.get(0).clone())
}
}
},
ty::ty_box(_) => {
assert_eq!(pats.len(), 1);
PatBox(pats.get(0).clone())
},
_ => {
match ctor {
&vec(_) => PatVec(pats, None, vec!()),
&val(ref v) => PatLit(const_val_to_expr(v)),
_ => PatWild
}
}
};
box(GC) Pat {
id: 0,
node: pat,
span: DUMMY_SP
}
}
fn missing_constructor(cx: &MatchCheckCtxt, m: &Matrix, left_ty: ty::t) -> Option<ctor> {
let used_constructors: Vec<ctor> = m.iter()
.filter_map(|r| pat_ctor_id(cx, left_ty, *r.get(0)))
.collect();
all_constructors(cx, m, left_ty)
.move_iter()
.find(|c| !used_constructors.contains(c))
}
fn all_constructors(cx: &MatchCheckCtxt, m: &Matrix, left_ty: ty::t) -> Vec<ctor> {
// This produces a list of all vector constructors that we would expect to appear
// in an exhaustive set of patterns. Because such a list would normally be infinite,
// we narrow it down to only those constructors that actually appear in the inspected
// column, plus, any that are missing and not covered by a pattern with a destructured slice.
fn vec_constructors(m: &Matrix) -> Vec<ctor> {
let max_vec_len = m.iter().map(|r| match r.get(0).node {
PatVec(ref before, _, ref after) => before.len() + after.len(),
_ => 0u
}).max().unwrap_or(0u);
let min_vec_len_with_slice = m.iter().map(|r| match r.get(0).node {
PatVec(ref before, Some(_), ref after) => before.len() + after.len(),
_ => max_vec_len + 1
}).min().unwrap_or(max_vec_len + 1);
let other_lengths = m.iter().map(|r| match r.get(0).node {
PatVec(ref before, _, ref after) => before.len() + after.len(),
_ => 0u
}).filter(|&len| len > min_vec_len_with_slice);
iter::range_inclusive(0u, min_vec_len_with_slice)
.chain(other_lengths)
.map(|len| vec(len))
.collect()
}
match ty::get(left_ty).sty {
ty::ty_bool =>
[true, false].iter().map(|b| val(const_bool(*b))).collect(),
ty::ty_nil =>
vec!(val(const_nil)),
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty {
ty::ty_vec(_, None) => vec_constructors(m),
_ => vec!(single)
},
ty::ty_enum(eid, _) =>
ty::enum_variants(cx.tcx, eid)
.iter()
.map(|va| variant(va.id))
.collect(),
ty::ty_vec(_, None) =>
vec_constructors(m),
ty::ty_vec(_, Some(n)) =>
vec!(vec(n)),
_ =>
vec!(single)
}
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt, m: &Matrix, v: &[Gc<Pat>],
witness: WitnessPreference) -> Usefulness {
if m.len() == 0u {
return Useful(vec!());
}
if m.get(0).len() == 0u {
return NotUseful;
}
let real_pat = match m.iter().find(|r| r.get(0).id != 0) {
Some(r) => {
match r.get(0).node {
// An arm of the form `ref x @ sub_pat` has type
// `sub_pat`, not `&sub_pat` as `x` itself does.
PatIdent(BindByRef(_), _, Some(sub)) => sub,
_ => *r.get(0)
}
}
None if v.len() == 0 => return NotUseful,
None => v[0]
};
let left_ty = if real_pat.id == 0 {
ty::mk_nil()
} else {
ty::pat_ty(cx.tcx, &*real_pat)
};
match pat_ctor_id(cx, left_ty, v[0]) {
None => match missing_constructor(cx, m, left_ty) {
None => {
all_constructors(cx, m, left_ty).move_iter().filter_map(|c| {
is_useful_specialized(cx, m, v, c.clone(),
left_ty, witness).useful().map(|pats| {
Useful(match witness {
ConstructWitness => {
let arity = constructor_arity(cx, &c, left_ty);
let subpats = {
let pat_slice = pats.as_slice();
Vec::from_fn(arity, |i| {
pat_slice.get(i).map(|p| p.clone())
.unwrap_or_else(|| wild())
})
};
let mut result = vec!(construct_witness(cx, &c, subpats, left_ty));
result.extend(pats.move_iter().skip(arity));
result
}
LeaveOutWitness => vec!()
})
})
}).nth(0).unwrap_or(NotUseful)
},
Some(ctor) => {
let matrix = m.iter().filter_map(|r| default(cx, r.as_slice())).collect();
match is_useful(cx, &matrix, v.tail(), witness) {
Useful(pats) => Useful(match witness {
ConstructWitness => {
let arity = constructor_arity(cx, &ctor, left_ty);
let wild_pats = Vec::from_elem(arity, wild());
let enum_pat = construct_witness(cx, &ctor, wild_pats, left_ty);
(vec!(enum_pat)).append(pats.as_slice())
}
LeaveOutWitness => vec!()
}),
result => result
}
}
},
Some(v0_ctor) => is_useful_specialized(cx, m, v, v0_ctor, left_ty, witness)
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt, m: &Matrix, v: &[Gc<Pat>],
ctor: ctor, lty: ty::t, witness: WitnessPreference) -> Usefulness {
let arity = constructor_arity(cx, &ctor, lty);
let matrix = m.iter().filter_map(|r| {
specialize(cx, r.as_slice(), &ctor, arity)
}).collect();
match specialize(cx, v, &ctor, arity) {
Some(v) => is_useful(cx, &matrix, v.as_slice(), witness),
None => NotUseful
}
}
fn pat_ctor_id(cx: &MatchCheckCtxt, left_ty: ty::t, p: Gc<Pat>) -> Option<ctor> {
let pat = raw_pat(p);
match pat.node {
PatIdent(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
Some(val(eval_const_expr(cx.tcx, &*const_expr)))
},
Some(&DefVariant(_, id, _)) => Some(variant(id)),
_ => None
},
PatEnum(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefStatic(did, false)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
Some(val(eval_const_expr(cx.tcx, &*const_expr)))
},
Some(&DefVariant(_, id, _)) => Some(variant(id)),
_ => Some(single)
},
PatStruct(..) =>
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefVariant(_, id, _)) => Some(variant(id)),
_ => Some(single)
},
PatLit(expr) =>
Some(val(eval_const_expr(cx.tcx, &*expr))),
PatRange(lo, hi) =>
Some(range(eval_const_expr(cx.tcx, &*lo), eval_const_expr(cx.tcx, &*hi))),
PatVec(ref before, _, ref after) => match ty::get(left_ty).sty {
ty::ty_vec(_, Some(n)) =>
Some(vec(n)),
_ =>
Some(vec(before.len() + after.len()))
},
PatBox(_) | PatTup(_) | PatRegion(..) =>
Some(single),
PatWild | PatWildMulti =>
None,
PatMac(_) =>
cx.tcx.sess.bug("unexpanded macro")
}
}
fn is_wild(cx: &MatchCheckCtxt, p: Gc<Pat>) -> bool {
let pat = raw_pat(p);
match pat.node {
PatWild | PatWildMulti => true,
PatIdent(_, _, _) => {
match cx.tcx.def_map.borrow().find(&pat.id) {
Some(&DefVariant(_, _, _)) | Some(&DefStatic(..)) => false,
_ => true
}
}
_ => false
}
}
fn constructor_arity(cx: &MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint {
match ty::get(ty).sty {
ty::ty_tup(ref fs) => fs.len(),
ty::ty_box(_) | ty::ty_uniq(_) => 1u,
ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty {
ty::ty_vec(_, None) => match *ctor {
vec(n) => n,
_ => 0u
},
ty::ty_str => 0u,
_ => 1u
},
ty::ty_enum(eid, _) => {
match *ctor {
variant(id) => enum_variant_with_id(cx.tcx, eid, id).args.len(),
_ => unreachable!()
}
}
ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(),
ty::ty_vec(_, _) => match *ctor {
vec(n) => n,
_ => 0u
},
_ => 0u
}
}
fn wild() -> Gc<Pat> {
box(GC) Pat {id: 0, node: PatWild, span: DUMMY_SP}
}
fn range_covered_by_constructor(ctor_id: &ctor, from: &const_val, to: &const_val) -> Option<bool> {
let (c_from, c_to) = match *ctor_id {
val(ref value) => (value, value),
range(ref from, ref to) => (from, to),
single => return Some(true),
_ => unreachable!()
};
let cmp_from = compare_const_vals(c_from, from);
let cmp_to = compare_const_vals(c_to, to);
match (cmp_from, cmp_to) {
(Some(val1), Some(val2)) => Some(val1 >= 0 && val2 <= 0),
_ => None
}
}
fn specialize(cx: &MatchCheckCtxt, r: &[Gc<Pat>],
ctor_id: &ctor, arity: uint) -> Option<Vec<Gc<Pat>>> {
let &Pat {
id: ref pat_id, node: ref n, span: ref pat_span
} = &(*raw_pat(r[0]));
let head: Option<Vec<Gc<Pat>>> = match n {
&PatWild => {
Some(Vec::from_elem(arity, wild()))
}
&PatWildMulti => {
Some(Vec::from_elem(arity, wild()))
}
&PatIdent(_, _, _) => {
let opt_def = cx.tcx.def_map.borrow().find_copy(pat_id);
match opt_def {
Some(DefVariant(_, id, _)) => if *ctor_id == variant(id) {
Some(vec!())
} else {
None
},
Some(DefStatic(did, _)) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, &*const_expr);
match range_covered_by_constructor(ctor_id, &e_v, &e_v) {
Some(true) => Some(vec!()),
Some(false) => None,
None => {
cx.tcx.sess.span_err(*pat_span, "mismatched types between arms");
None
}
}
}
_ => {
Some(Vec::from_elem(arity, wild()))
}
}
}
&PatEnum(_, ref args) => {
let def = cx.tcx.def_map.borrow().get_copy(pat_id);
match def {
DefStatic(did, _) => {
let const_expr = lookup_const_by_id(cx.tcx, did).unwrap();
let e_v = eval_const_expr(cx.tcx, &*const_expr);
match range_covered_by_constructor(ctor_id, &e_v, &e_v) {
Some(true) => Some(vec!()),
Some(false) => None,
None => {
cx.tcx.sess.span_err(*pat_span, "mismatched types between arms");
None
}
}
}
DefVariant(_, id, _) if *ctor_id != variant(id) => None,
DefVariant(..) | DefFn(..) | DefStruct(..) => {
Some(match args {
&Some(ref args) => args.clone(),
&None => Vec::from_elem(arity, wild())
})
}
_ => None
}
}
&PatStruct(_, ref pattern_fields, _) => {
// Is this a struct or an enum variant?
let def = cx.tcx.def_map.borrow().get_copy(pat_id);
let class_id = match def {
DefVariant(_, variant_id, _) => if *ctor_id == variant(variant_id) {
Some(variant_id)
} else {
None
},
DefStruct(struct_id) => Some(struct_id),
_ => None
};
class_id.map(|variant_id| {
let struct_fields = ty::lookup_struct_fields(cx.tcx, variant_id);
let args = struct_fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.ident.name == sf.name) {
Some(f) => f.pat,
_ => wild()
}
}).collect();
args
})
}
&PatTup(ref args) =>
Some(args.clone()),
&PatBox(ref inner) | &PatRegion(ref inner) =>
Some(vec!(inner.clone())),
&PatLit(ref expr) => {
let expr_value = eval_const_expr(cx.tcx, &**expr);
match range_covered_by_constructor(ctor_id, &expr_value, &expr_value) {
Some(true) => Some(vec!()),
Some(false) => None,
None => {
cx.tcx.sess.span_err(*pat_span, "mismatched types between arms");
None
}
}
}
&PatRange(ref from, ref to) => {
let from_value = eval_const_expr(cx.tcx, &**from);
let to_value = eval_const_expr(cx.tcx, &**to);
match range_covered_by_constructor(ctor_id, &from_value, &to_value) {
Some(true) => Some(vec!()),
Some(false) => None,
None => {
cx.tcx.sess.span_err(*pat_span, "mismatched types between arms");
None
}
}
}
&PatVec(ref before, ref slice, ref after) => {
match *ctor_id {
vec(_) => {
let num_elements = before.len() + after.len();
if num_elements < arity && slice.is_some() {
let mut result = Vec::new();
result.push_all(before.as_slice());
result.grow_fn(arity - num_elements, |_| wild());
result.push_all(after.as_slice());
Some(result)
} else if num_elements == arity {
let mut result = Vec::new();
result.push_all(before.as_slice());
result.push_all(after.as_slice());
Some(result)
} else {
None
}
}
_ => None
}
}
&PatMac(_) => {
cx.tcx.sess.span_err(*pat_span, "unexpanded macro");
None
}
};
head.map(|head| head.append(r.tail()))
}
fn default(cx: &MatchCheckCtxt, r: &[Gc<Pat>]) -> Option<Vec<Gc<Pat>>> {
if is_wild(cx, r[0]) {
Some(Vec::from_slice(r.tail()))
} else {
None
}
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &Local) {
visit::walk_local(cx, loc, ());
let name = match loc.source {
LocalLet => "local",
LocalFor => "`for` loop"
};
match is_refutable(cx, loc.pat) {
Some(pat) => {
let msg = format!(
"refutable pattern in {} binding: `{}` not covered",
name, pat_to_str(&*pat)
);
cx.tcx.sess.span_err(loc.pat.span, msg.as_slice());
},
None => ()
}
// Check legality of move bindings.
check_legality_of_move_bindings(cx, false, [ loc.pat ]);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: &FnKind,
decl: &FnDecl,
body: &Block,
sp: Span) {
visit::walk_fn(cx, kind, decl, body, sp, ());
for input in decl.inputs.iter() {
match is_refutable(cx, input.pat) {
Some(pat) => {
let msg = format!(
"refutable pattern in function argument: `{}` not covered",
pat_to_str(&*pat)
);
cx.tcx.sess.span_err(input.pat.span, msg.as_slice());
},
None => ()
}
check_legality_of_move_bindings(cx, false, [input.pat]);
}
}
fn is_refutable(cx: &MatchCheckCtxt, pat: Gc<Pat>) -> Option<Gc<Pat>> {
let pats = vec!(vec!(pat));
is_useful(cx, &pats, [wild()], ConstructWitness)
.useful()
.map(|pats| {
assert_eq!(pats.len(), 1);
pats.get(0).clone()
})
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[Gc<Pat>]) {
let tcx = cx.tcx;
let def_map = &tcx.def_map;
let mut by_ref_span = None;
for pat in pats.iter() {
pat_bindings(def_map, &**pat, |bm, _, span, _path| {
match bm {
BindByRef(_) => {
by_ref_span = Some(span);
}
BindByValue(_) => {
}
}
})
}
let check_move: |&Pat, Option<Gc<Pat>>| = |p, sub| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(def_map, &*p)) {
tcx.sess.span_err(
p.span,
"cannot bind by-move with sub-bindings");
} else if has_guard {
tcx.sess.span_err(
p.span,
"cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
tcx.sess.span_err(
p.span,
"cannot bind by-move and by-ref \
in the same pattern");
tcx.sess.span_note(
by_ref_span.unwrap(),
"by-ref binding occurs here");
}
};
for pat in pats.iter() {
walk_pat(&**pat, |p| {
if pat_is_binding(def_map, &*p) {
match p.node {
PatIdent(BindByValue(_), _, sub) => {
let pat_ty = ty::node_id_to_type(tcx, p.id);
if ty::type_moves_by_default(tcx, pat_ty) {
check_move(p, sub);
}
}
PatIdent(BindByRef(_), _, _) => {
}
_ => {
cx.tcx.sess.span_bug(
p.span,
format!("binding pattern {} is not an \
identifier: {:?}",
p.id,
p.node).as_slice());
}
}
}
true
});
}
}