748bc3ca49
This is part of the ongoing renaming of the equality traits. See #12517 for more details. All code using Eq/Ord will temporarily need to move to Partial{Eq,Ord} or the Total{Eq,Ord} traits. The Total traits will soon be renamed to {Eq,Ord}. cc #12517 [breaking-change]
727 lines
20 KiB
Rust
727 lines
20 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// FIXME: talk about offset, copy_memory, copy_nonoverlapping_memory
|
|
|
|
//! Operations on unsafe pointers, `*T`, and `*mut T`.
|
|
//!
|
|
//! Working with unsafe pointers in Rust is uncommon,
|
|
//! typically limited to a few patterns.
|
|
//!
|
|
//! Use the [`null` function](fn.null.html) to create null pointers,
|
|
//! the [`is_null`](trait.RawPtr.html#tymethod.is_null)
|
|
//! and [`is_not_null`](trait.RawPtr.html#method.is_not_null)
|
|
//! methods of the [`RawPtr` trait](trait.RawPtr.html) to check for null.
|
|
//! The `RawPtr` trait is imported by the prelude, so `is_null` etc.
|
|
//! work everywhere. The `RawPtr` also defines the `offset` method,
|
|
//! for pointer math.
|
|
//!
|
|
//! # Common ways to create unsafe pointers
|
|
//!
|
|
//! ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
|
|
//!
|
|
//! ```
|
|
//! let my_num: int = 10;
|
|
//! let my_num_ptr: *int = &my_num;
|
|
//! let mut my_speed: int = 88;
|
|
//! let my_speed_ptr: *mut int = &mut my_speed;
|
|
//! ```
|
|
//!
|
|
//! This does not take ownership of the original allocation
|
|
//! and requires no resource management later,
|
|
//! but you must not use the pointer after its lifetime.
|
|
//!
|
|
//! ## 2. Transmute an owned box (`Box<T>`).
|
|
//!
|
|
//! The `transmute` function takes, by value, whatever it's given
|
|
//! and returns it as whatever type is requested, as long as the
|
|
//! types are the same size. Because `Box<T>` and `*T` have the same
|
|
//! representation they can be trivially,
|
|
//! though unsafely, transformed from one type to the other.
|
|
//!
|
|
//! ```
|
|
//! use std::mem;
|
|
//!
|
|
//! unsafe {
|
|
//! let my_num: Box<int> = box 10;
|
|
//! let my_num: *int = mem::transmute(my_num);
|
|
//! let my_speed: Box<int> = box 88;
|
|
//! let my_speed: *mut int = mem::transmute(my_speed);
|
|
//!
|
|
//! // By taking ownership of the original `Box<T>` though
|
|
//! // we are obligated to transmute it back later to be destroyed.
|
|
//! drop(mem::transmute::<_, Box<int>>(my_speed));
|
|
//! drop(mem::transmute::<_, Box<int>>(my_num));
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Note that here the call to `drop` is for clarity - it indicates
|
|
//! that we are done with the given value and it should be destroyed.
|
|
//!
|
|
//! ## 3. Get it from C.
|
|
//!
|
|
//! ```
|
|
//! extern crate libc;
|
|
//!
|
|
//! use std::mem;
|
|
//!
|
|
//! fn main() {
|
|
//! unsafe {
|
|
//! let my_num: *mut int = libc::malloc(mem::size_of::<int>() as libc::size_t) as *mut int;
|
|
//! if my_num.is_null() {
|
|
//! fail!("failed to allocate memory");
|
|
//! }
|
|
//! libc::free(my_num as *mut libc::c_void);
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Usually you wouldn't literally use `malloc` and `free` from Rust,
|
|
//! but C APIs hand out a lot of pointers generally, so are a common source
|
|
//! of unsafe pointers in Rust.
|
|
|
|
use mem;
|
|
use clone::Clone;
|
|
use intrinsics;
|
|
use iter::{range, Iterator};
|
|
use option::{Some, None, Option};
|
|
|
|
#[cfg(not(test))] use cmp::{PartialEq, TotalEq, PartialOrd, Equiv};
|
|
|
|
/// Return the offset of the first null pointer in `buf`.
|
|
#[inline]
|
|
pub unsafe fn buf_len<T>(buf: **T) -> uint {
|
|
position(buf, |i| *i == null())
|
|
}
|
|
|
|
impl<T> Clone for *T {
|
|
#[inline]
|
|
fn clone(&self) -> *T {
|
|
*self
|
|
}
|
|
}
|
|
|
|
impl<T> Clone for *mut T {
|
|
#[inline]
|
|
fn clone(&self) -> *mut T {
|
|
*self
|
|
}
|
|
}
|
|
|
|
/// Return the first offset `i` such that `f(buf[i]) == true`.
|
|
#[inline]
|
|
pub unsafe fn position<T>(buf: *T, f: |&T| -> bool) -> uint {
|
|
let mut i = 0;
|
|
loop {
|
|
if f(&(*buf.offset(i as int))) { return i; }
|
|
else { i += 1; }
|
|
}
|
|
}
|
|
|
|
/// Create a null pointer.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// use std::ptr;
|
|
///
|
|
/// let p: *int = ptr::null();
|
|
/// assert!(p.is_null());
|
|
/// ```
|
|
#[inline]
|
|
pub fn null<T>() -> *T { 0 as *T }
|
|
|
|
/// Create an unsafe mutable null pointer.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// use std::ptr;
|
|
///
|
|
/// let p: *mut int = ptr::mut_null();
|
|
/// assert!(p.is_null());
|
|
/// ```
|
|
#[inline]
|
|
pub fn mut_null<T>() -> *mut T { 0 as *mut T }
|
|
|
|
/// Copies data from one location to another.
|
|
///
|
|
/// Copies `count` elements (not bytes) from `src` to `dst`. The source
|
|
/// and destination may overlap.
|
|
///
|
|
/// `copy_memory` is semantically equivalent to C's `memmove`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Efficiently create a Rust vector from an unsafe buffer:
|
|
///
|
|
/// ```
|
|
/// use std::ptr;
|
|
///
|
|
/// unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> Vec<T> {
|
|
/// let mut dst = Vec::with_capacity(elts);
|
|
/// dst.set_len(elts);
|
|
/// ptr::copy_memory(dst.as_mut_ptr(), ptr, elts);
|
|
/// dst
|
|
/// }
|
|
/// ```
|
|
///
|
|
#[inline]
|
|
pub unsafe fn copy_memory<T>(dst: *mut T, src: *T, count: uint) {
|
|
intrinsics::copy_memory(dst, src, count)
|
|
}
|
|
|
|
/// Copies data from one location to another.
|
|
///
|
|
/// Copies `count` elements (not bytes) from `src` to `dst`. The source
|
|
/// and destination may *not* overlap.
|
|
///
|
|
/// `copy_nonoverlapping_memory` is semantically equivalent to C's `memcpy`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// A safe swap function:
|
|
///
|
|
/// ```
|
|
/// use std::mem;
|
|
/// use std::ptr;
|
|
///
|
|
/// fn swap<T>(x: &mut T, y: &mut T) {
|
|
/// unsafe {
|
|
/// // Give ourselves some scratch space to work with
|
|
/// let mut t: T = mem::uninitialized();
|
|
///
|
|
/// // Perform the swap, `&mut` pointers never alias
|
|
/// ptr::copy_nonoverlapping_memory(&mut t, &*x, 1);
|
|
/// ptr::copy_nonoverlapping_memory(x, &*y, 1);
|
|
/// ptr::copy_nonoverlapping_memory(y, &t, 1);
|
|
///
|
|
/// // y and t now point to the same thing, but we need to completely forget `tmp`
|
|
/// // because it's no longer relevant.
|
|
/// mem::forget(t);
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// # Safety Note
|
|
///
|
|
/// If the source and destination overlap then the behavior of this
|
|
/// function is undefined.
|
|
#[inline]
|
|
pub unsafe fn copy_nonoverlapping_memory<T>(dst: *mut T,
|
|
src: *T,
|
|
count: uint) {
|
|
intrinsics::copy_nonoverlapping_memory(dst, src, count)
|
|
}
|
|
|
|
/// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
|
|
/// bytes of memory starting at `dst` to `c`.
|
|
#[inline]
|
|
pub unsafe fn set_memory<T>(dst: *mut T, c: u8, count: uint) {
|
|
intrinsics::set_memory(dst, c, count)
|
|
}
|
|
|
|
/// Zeroes out `count * size_of::<T>` bytes of memory at `dst`
|
|
#[inline]
|
|
pub unsafe fn zero_memory<T>(dst: *mut T, count: uint) {
|
|
set_memory(dst, 0, count);
|
|
}
|
|
|
|
/// Swap the values at two mutable locations of the same type, without
|
|
/// deinitialising either. They may overlap.
|
|
#[inline]
|
|
pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
|
|
// Give ourselves some scratch space to work with
|
|
let mut tmp: T = mem::uninitialized();
|
|
let t: *mut T = &mut tmp;
|
|
|
|
// Perform the swap
|
|
copy_nonoverlapping_memory(t, &*x, 1);
|
|
copy_memory(x, &*y, 1); // `x` and `y` may overlap
|
|
copy_nonoverlapping_memory(y, &*t, 1);
|
|
|
|
// y and t now point to the same thing, but we need to completely forget `tmp`
|
|
// because it's no longer relevant.
|
|
mem::forget(tmp);
|
|
}
|
|
|
|
/// Replace the value at a mutable location with a new one, returning the old
|
|
/// value, without deinitialising either.
|
|
#[inline]
|
|
pub unsafe fn replace<T>(dest: *mut T, mut src: T) -> T {
|
|
mem::swap(mem::transmute(dest), &mut src); // cannot overlap
|
|
src
|
|
}
|
|
|
|
/// Reads the value from `*src` and returns it.
|
|
#[inline(always)]
|
|
pub unsafe fn read<T>(src: *T) -> T {
|
|
let mut tmp: T = mem::uninitialized();
|
|
copy_nonoverlapping_memory(&mut tmp, src, 1);
|
|
tmp
|
|
}
|
|
|
|
/// Reads the value from `*src` and nulls it out.
|
|
/// This currently prevents destructors from executing.
|
|
#[inline(always)]
|
|
pub unsafe fn read_and_zero<T>(dest: *mut T) -> T {
|
|
// Copy the data out from `dest`:
|
|
let tmp = read(&*dest);
|
|
|
|
// Now zero out `dest`:
|
|
zero_memory(dest, 1);
|
|
|
|
tmp
|
|
}
|
|
|
|
/// Given a **T (pointer to an array of pointers),
|
|
/// iterate through each *T, up to the provided `len`,
|
|
/// passing to the provided callback function
|
|
pub unsafe fn array_each_with_len<T>(arr: **T, len: uint, cb: |*T|) {
|
|
if arr.is_null() {
|
|
fail!("ptr::array_each_with_len failure: arr input is null pointer");
|
|
}
|
|
//let start_ptr = *arr;
|
|
for e in range(0, len) {
|
|
let n = arr.offset(e as int);
|
|
cb(*n);
|
|
}
|
|
}
|
|
|
|
/// Given a null-pointer-terminated **T (pointer to
|
|
/// an array of pointers), iterate through each *T,
|
|
/// passing to the provided callback function
|
|
///
|
|
/// # Safety Note
|
|
///
|
|
/// This will only work with a null-terminated
|
|
/// pointer array.
|
|
pub unsafe fn array_each<T>(arr: **T, cb: |*T|) {
|
|
if arr.is_null() {
|
|
fail!("ptr::array_each_with_len failure: arr input is null pointer");
|
|
}
|
|
let len = buf_len(arr);
|
|
array_each_with_len(arr, len, cb);
|
|
}
|
|
|
|
/// Methods on raw pointers
|
|
pub trait RawPtr<T> {
|
|
/// Returns the null pointer.
|
|
fn null() -> Self;
|
|
/// Returns true if the pointer is equal to the null pointer.
|
|
fn is_null(&self) -> bool;
|
|
/// Returns true if the pointer is not equal to the null pointer.
|
|
fn is_not_null(&self) -> bool { !self.is_null() }
|
|
/// Returns the value of this pointer (ie, the address it points to)
|
|
fn to_uint(&self) -> uint;
|
|
/// Returns `None` if the pointer is null, or else returns the value wrapped
|
|
/// in `Some`.
|
|
///
|
|
/// # Safety Notes
|
|
///
|
|
/// While this method is useful for null-safety, it is important to note
|
|
/// that this is still an unsafe operation because the returned value could
|
|
/// be pointing to invalid memory.
|
|
unsafe fn to_option(&self) -> Option<&T>;
|
|
/// Calculates the offset from a pointer. The offset *must* be in-bounds of
|
|
/// the object, or one-byte-past-the-end. `count` is in units of T; e.g. a
|
|
/// `count` of 3 represents a pointer offset of `3 * sizeof::<T>()` bytes.
|
|
unsafe fn offset(self, count: int) -> Self;
|
|
}
|
|
|
|
impl<T> RawPtr<T> for *T {
|
|
#[inline]
|
|
fn null() -> *T { null() }
|
|
|
|
#[inline]
|
|
fn is_null(&self) -> bool { *self == RawPtr::null() }
|
|
|
|
#[inline]
|
|
fn to_uint(&self) -> uint { *self as uint }
|
|
|
|
#[inline]
|
|
unsafe fn offset(self, count: int) -> *T { intrinsics::offset(self, count) }
|
|
|
|
#[inline]
|
|
unsafe fn to_option(&self) -> Option<&T> {
|
|
if self.is_null() {
|
|
None
|
|
} else {
|
|
Some(&**self)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> RawPtr<T> for *mut T {
|
|
#[inline]
|
|
fn null() -> *mut T { mut_null() }
|
|
|
|
#[inline]
|
|
fn is_null(&self) -> bool { *self == RawPtr::null() }
|
|
|
|
#[inline]
|
|
fn to_uint(&self) -> uint { *self as uint }
|
|
|
|
#[inline]
|
|
unsafe fn offset(self, count: int) -> *mut T {
|
|
intrinsics::offset(self as *T, count) as *mut T
|
|
}
|
|
|
|
#[inline]
|
|
unsafe fn to_option(&self) -> Option<&T> {
|
|
if self.is_null() {
|
|
None
|
|
} else {
|
|
Some(&**self)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Equality for pointers
|
|
#[cfg(not(test))]
|
|
impl<T> PartialEq for *T {
|
|
#[inline]
|
|
fn eq(&self, other: &*T) -> bool {
|
|
*self == *other
|
|
}
|
|
#[inline]
|
|
fn ne(&self, other: &*T) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl<T> TotalEq for *T {}
|
|
|
|
#[cfg(not(test))]
|
|
impl<T> PartialEq for *mut T {
|
|
#[inline]
|
|
fn eq(&self, other: &*mut T) -> bool {
|
|
*self == *other
|
|
}
|
|
#[inline]
|
|
fn ne(&self, other: &*mut T) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl<T> TotalEq for *mut T {}
|
|
|
|
// Equivalence for pointers
|
|
#[cfg(not(test))]
|
|
impl<T> Equiv<*mut T> for *T {
|
|
fn equiv(&self, other: &*mut T) -> bool {
|
|
self.to_uint() == other.to_uint()
|
|
}
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl<T> Equiv<*T> for *mut T {
|
|
fn equiv(&self, other: &*T) -> bool {
|
|
self.to_uint() == other.to_uint()
|
|
}
|
|
}
|
|
|
|
// Equality for extern "C" fn pointers
|
|
#[cfg(not(test))]
|
|
mod externfnpointers {
|
|
use mem;
|
|
use cmp::PartialEq;
|
|
|
|
impl<_R> PartialEq for extern "C" fn() -> _R {
|
|
#[inline]
|
|
fn eq(&self, other: &extern "C" fn() -> _R) -> bool {
|
|
let self_: *() = unsafe { mem::transmute(*self) };
|
|
let other_: *() = unsafe { mem::transmute(*other) };
|
|
self_ == other_
|
|
}
|
|
}
|
|
macro_rules! fnptreq(
|
|
($($p:ident),*) => {
|
|
impl<_R,$($p),*> PartialEq for extern "C" fn($($p),*) -> _R {
|
|
#[inline]
|
|
fn eq(&self, other: &extern "C" fn($($p),*) -> _R) -> bool {
|
|
let self_: *() = unsafe { mem::transmute(*self) };
|
|
let other_: *() = unsafe { mem::transmute(*other) };
|
|
self_ == other_
|
|
}
|
|
}
|
|
}
|
|
)
|
|
fnptreq!(A)
|
|
fnptreq!(A,B)
|
|
fnptreq!(A,B,C)
|
|
fnptreq!(A,B,C,D)
|
|
fnptreq!(A,B,C,D,E)
|
|
}
|
|
|
|
// Comparison for pointers
|
|
#[cfg(not(test))]
|
|
impl<T> PartialOrd for *T {
|
|
#[inline]
|
|
fn lt(&self, other: &*T) -> bool { *self < *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl<T> PartialOrd for *mut T {
|
|
#[inline]
|
|
fn lt(&self, other: &*mut T) -> bool { *self < *other }
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod ptr_tests {
|
|
use super::*;
|
|
use prelude::*;
|
|
|
|
use realstd::c_str::ToCStr;
|
|
use mem;
|
|
use libc;
|
|
use realstd::str;
|
|
use realstd::str::Str;
|
|
use slice::{ImmutableVector, MutableVector};
|
|
|
|
#[test]
|
|
fn test() {
|
|
unsafe {
|
|
struct Pair {
|
|
fst: int,
|
|
snd: int
|
|
};
|
|
let mut p = Pair {fst: 10, snd: 20};
|
|
let pptr: *mut Pair = &mut p;
|
|
let iptr: *mut int = mem::transmute(pptr);
|
|
assert_eq!(*iptr, 10);
|
|
*iptr = 30;
|
|
assert_eq!(*iptr, 30);
|
|
assert_eq!(p.fst, 30);
|
|
|
|
*pptr = Pair {fst: 50, snd: 60};
|
|
assert_eq!(*iptr, 50);
|
|
assert_eq!(p.fst, 50);
|
|
assert_eq!(p.snd, 60);
|
|
|
|
let v0 = box [32000u16, 32001u16, 32002u16];
|
|
let mut v1 = box [0u16, 0u16, 0u16];
|
|
|
|
copy_memory(v1.as_mut_ptr().offset(1),
|
|
v0.as_ptr().offset(1), 1);
|
|
assert!((v1[0] == 0u16 && v1[1] == 32001u16 && v1[2] == 0u16));
|
|
copy_memory(v1.as_mut_ptr(),
|
|
v0.as_ptr().offset(2), 1);
|
|
assert!((v1[0] == 32002u16 && v1[1] == 32001u16 &&
|
|
v1[2] == 0u16));
|
|
copy_memory(v1.as_mut_ptr().offset(2),
|
|
v0.as_ptr(), 1u);
|
|
assert!((v1[0] == 32002u16 && v1[1] == 32001u16 &&
|
|
v1[2] == 32000u16));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_position() {
|
|
use libc::c_char;
|
|
|
|
"hello".with_c_str(|p| {
|
|
unsafe {
|
|
assert!(2u == position(p, |c| *c == 'l' as c_char));
|
|
assert!(4u == position(p, |c| *c == 'o' as c_char));
|
|
assert!(5u == position(p, |c| *c == 0 as c_char));
|
|
}
|
|
})
|
|
}
|
|
|
|
#[test]
|
|
fn test_buf_len() {
|
|
"hello".with_c_str(|p0| {
|
|
"there".with_c_str(|p1| {
|
|
"thing".with_c_str(|p2| {
|
|
let v = box [p0, p1, p2, null()];
|
|
unsafe {
|
|
assert_eq!(buf_len(v.as_ptr()), 3u);
|
|
}
|
|
})
|
|
})
|
|
})
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_null() {
|
|
let p: *int = null();
|
|
assert!(p.is_null());
|
|
assert!(!p.is_not_null());
|
|
|
|
let q = unsafe { p.offset(1) };
|
|
assert!(!q.is_null());
|
|
assert!(q.is_not_null());
|
|
|
|
let mp: *mut int = mut_null();
|
|
assert!(mp.is_null());
|
|
assert!(!mp.is_not_null());
|
|
|
|
let mq = unsafe { mp.offset(1) };
|
|
assert!(!mq.is_null());
|
|
assert!(mq.is_not_null());
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_option() {
|
|
unsafe {
|
|
let p: *int = null();
|
|
assert_eq!(p.to_option(), None);
|
|
|
|
let q: *int = &2;
|
|
assert_eq!(q.to_option().unwrap(), &2);
|
|
|
|
let p: *mut int = mut_null();
|
|
assert_eq!(p.to_option(), None);
|
|
|
|
let q: *mut int = &mut 2;
|
|
assert_eq!(q.to_option().unwrap(), &2);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_ptr_addition() {
|
|
unsafe {
|
|
let xs = box [5, ..16];
|
|
let mut ptr = xs.as_ptr();
|
|
let end = ptr.offset(16);
|
|
|
|
while ptr < end {
|
|
assert_eq!(*ptr, 5);
|
|
ptr = ptr.offset(1);
|
|
}
|
|
|
|
let mut xs_mut = xs.clone();
|
|
let mut m_ptr = xs_mut.as_mut_ptr();
|
|
let m_end = m_ptr.offset(16);
|
|
|
|
while m_ptr < m_end {
|
|
*m_ptr += 5;
|
|
m_ptr = m_ptr.offset(1);
|
|
}
|
|
|
|
assert_eq!(xs_mut, box [10, ..16]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_ptr_subtraction() {
|
|
unsafe {
|
|
let xs = box [0,1,2,3,4,5,6,7,8,9];
|
|
let mut idx = 9i8;
|
|
let ptr = xs.as_ptr();
|
|
|
|
while idx >= 0i8 {
|
|
assert_eq!(*(ptr.offset(idx as int)), idx as int);
|
|
idx = idx - 1i8;
|
|
}
|
|
|
|
let mut xs_mut = xs.clone();
|
|
let m_start = xs_mut.as_mut_ptr();
|
|
let mut m_ptr = m_start.offset(9);
|
|
|
|
while m_ptr >= m_start {
|
|
*m_ptr += *m_ptr;
|
|
m_ptr = m_ptr.offset(-1);
|
|
}
|
|
|
|
assert_eq!(xs_mut, box [0,2,4,6,8,10,12,14,16,18]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_ptr_array_each_with_len() {
|
|
unsafe {
|
|
let one = "oneOne".to_c_str();
|
|
let two = "twoTwo".to_c_str();
|
|
let three = "threeThree".to_c_str();
|
|
let arr = box [
|
|
one.with_ref(|buf| buf),
|
|
two.with_ref(|buf| buf),
|
|
three.with_ref(|buf| buf),
|
|
];
|
|
let expected_arr = [
|
|
one, two, three
|
|
];
|
|
|
|
let mut ctr = 0;
|
|
let mut iteration_count = 0;
|
|
array_each_with_len(arr.as_ptr(), arr.len(), |e| {
|
|
let actual = str::raw::from_c_str(e);
|
|
let expected = expected_arr[ctr].with_ref(|buf| {
|
|
str::raw::from_c_str(buf)
|
|
});
|
|
assert_eq!(actual.as_slice(), expected.as_slice());
|
|
ctr += 1;
|
|
iteration_count += 1;
|
|
});
|
|
assert_eq!(iteration_count, 3u);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_ptr_array_each() {
|
|
unsafe {
|
|
let one = "oneOne".to_c_str();
|
|
let two = "twoTwo".to_c_str();
|
|
let three = "threeThree".to_c_str();
|
|
let arr = box [
|
|
one.with_ref(|buf| buf),
|
|
two.with_ref(|buf| buf),
|
|
three.with_ref(|buf| buf),
|
|
// fake a null terminator
|
|
null(),
|
|
];
|
|
let expected_arr = [
|
|
one, two, three
|
|
];
|
|
|
|
let arr_ptr = arr.as_ptr();
|
|
let mut ctr = 0;
|
|
let mut iteration_count = 0;
|
|
array_each(arr_ptr, |e| {
|
|
let actual = str::raw::from_c_str(e);
|
|
let expected = expected_arr[ctr].with_ref(|buf| {
|
|
str::raw::from_c_str(buf)
|
|
});
|
|
assert_eq!(actual.as_slice(), expected.as_slice());
|
|
ctr += 1;
|
|
iteration_count += 1;
|
|
});
|
|
assert_eq!(iteration_count, 3);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_ptr_array_each_with_len_null_ptr() {
|
|
unsafe {
|
|
array_each_with_len(0 as **libc::c_char, 1, |e| {
|
|
str::raw::from_c_str(e);
|
|
});
|
|
}
|
|
}
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_ptr_array_each_null_ptr() {
|
|
unsafe {
|
|
array_each(0 as **libc::c_char, |e| {
|
|
str::raw::from_c_str(e);
|
|
});
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_set_memory() {
|
|
let mut xs = [0u8, ..20];
|
|
let ptr = xs.as_mut_ptr();
|
|
unsafe { set_memory(ptr, 5u8, xs.len()); }
|
|
assert!(xs == [5u8, ..20]);
|
|
}
|
|
}
|