rust/src/shims/time.rs
2021-07-16 10:10:12 +02:00

233 lines
8.6 KiB
Rust

use std::convert::TryFrom;
use std::time::{Duration, Instant, SystemTime};
use crate::*;
use helpers::{immty_from_int_checked, immty_from_uint_checked};
use thread::Time;
/// Returns the time elapsed between the provided time and the unix epoch as a `Duration`.
pub fn system_time_to_duration<'tcx>(time: &SystemTime) -> InterpResult<'tcx, Duration> {
time.duration_since(SystemTime::UNIX_EPOCH)
.map_err(|_| err_unsup_format!("times before the Unix epoch are not supported").into())
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn clock_gettime(
&mut self,
clk_id_op: &OpTy<'tcx, Tag>,
tp_op: &OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("linux", "clock_gettime");
this.check_no_isolation("`clock_gettime`")?;
let clk_id = this.read_scalar(clk_id_op)?.to_i32()?;
let tp = this.deref_operand(tp_op)?;
let duration = if clk_id == this.eval_libc_i32("CLOCK_REALTIME")? {
system_time_to_duration(&SystemTime::now())?
} else if clk_id == this.eval_libc_i32("CLOCK_MONOTONIC")? {
// Absolute time does not matter, only relative time does, so we can just
// use our own time anchor here.
Instant::now().duration_since(this.machine.time_anchor)
} else {
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
return Ok(-1);
};
let tv_sec = duration.as_secs();
let tv_nsec = duration.subsec_nanos();
let imms = [
immty_from_int_checked(tv_sec, this.libc_ty_layout("time_t")?)?,
immty_from_int_checked(tv_nsec, this.libc_ty_layout("c_long")?)?,
];
this.write_packed_immediates(&tp, &imms)?;
Ok(0)
}
fn gettimeofday(
&mut self,
tv_op: &OpTy<'tcx, Tag>,
tz_op: &OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "gettimeofday");
this.check_no_isolation("`gettimeofday`")?;
// Using tz is obsolete and should always be null
let tz = this.read_pointer(tz_op)?;
if !this.ptr_is_null(tz)? {
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
return Ok(-1);
}
let tv = this.deref_operand(tv_op)?;
let duration = system_time_to_duration(&SystemTime::now())?;
let tv_sec = duration.as_secs();
let tv_usec = duration.subsec_micros();
let imms = [
immty_from_int_checked(tv_sec, this.libc_ty_layout("time_t")?)?,
immty_from_int_checked(tv_usec, this.libc_ty_layout("suseconds_t")?)?,
];
this.write_packed_immediates(&tv, &imms)?;
Ok(0)
}
#[allow(non_snake_case)]
fn GetSystemTimeAsFileTime(&mut self, LPFILETIME_op: &OpTy<'tcx, Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "GetSystemTimeAsFileTime");
this.check_no_isolation("`GetSystemTimeAsFileTime`")?;
let NANOS_PER_SEC = this.eval_windows_u64("time", "NANOS_PER_SEC")?;
let INTERVALS_PER_SEC = this.eval_windows_u64("time", "INTERVALS_PER_SEC")?;
let INTERVALS_TO_UNIX_EPOCH = this.eval_windows_u64("time", "INTERVALS_TO_UNIX_EPOCH")?;
let NANOS_PER_INTERVAL = NANOS_PER_SEC / INTERVALS_PER_SEC;
let SECONDS_TO_UNIX_EPOCH = INTERVALS_TO_UNIX_EPOCH / INTERVALS_PER_SEC;
let duration = system_time_to_duration(&SystemTime::now())?
+ Duration::from_secs(SECONDS_TO_UNIX_EPOCH);
let duration_ticks = u64::try_from(duration.as_nanos() / u128::from(NANOS_PER_INTERVAL))
.map_err(|_| err_unsup_format!("programs running more than 2^64 Windows ticks after the Windows epoch are not supported"))?;
let dwLowDateTime = u32::try_from(duration_ticks & 0x00000000FFFFFFFF).unwrap();
let dwHighDateTime = u32::try_from((duration_ticks & 0xFFFFFFFF00000000) >> 32).unwrap();
let DWORD_tylayout = this.machine.layouts.u32;
let imms = [
immty_from_uint_checked(dwLowDateTime, DWORD_tylayout)?,
immty_from_uint_checked(dwHighDateTime, DWORD_tylayout)?,
];
this.write_packed_immediates(&this.deref_operand(LPFILETIME_op)?, &imms)?;
Ok(())
}
#[allow(non_snake_case)]
fn QueryPerformanceCounter(
&mut self,
lpPerformanceCount_op: &OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "QueryPerformanceCounter");
this.check_no_isolation("`QueryPerformanceCounter`")?;
// QueryPerformanceCounter uses a hardware counter as its basis.
// Miri will emulate a counter with a resolution of 1 nanosecond.
let duration = Instant::now().duration_since(this.machine.time_anchor);
let qpc = i64::try_from(duration.as_nanos()).map_err(|_| {
err_unsup_format!("programs running longer than 2^63 nanoseconds are not supported")
})?;
this.write_scalar(
Scalar::from_i64(qpc),
&this.deref_operand(lpPerformanceCount_op)?.into(),
)?;
Ok(-1) // return non-zero on success
}
#[allow(non_snake_case)]
fn QueryPerformanceFrequency(
&mut self,
lpFrequency_op: &OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "QueryPerformanceFrequency");
this.check_no_isolation("`QueryPerformanceFrequency`")?;
// Retrieves the frequency of the hardware performance counter.
// The frequency of the performance counter is fixed at system boot and
// is consistent across all processors.
// Miri emulates a "hardware" performance counter with a resolution of 1ns,
// and thus 10^9 counts per second.
this.write_scalar(
Scalar::from_i64(1_000_000_000),
&this.deref_operand(lpFrequency_op)?.into(),
)?;
Ok(-1) // Return non-zero on success
}
fn mach_absolute_time(&self) -> InterpResult<'tcx, u64> {
let this = self.eval_context_ref();
this.assert_target_os("macos", "mach_absolute_time");
this.check_no_isolation("`mach_absolute_time`")?;
// This returns a u64, with time units determined dynamically by `mach_timebase_info`.
// We return plain nanoseconds.
let duration = Instant::now().duration_since(this.machine.time_anchor);
u64::try_from(duration.as_nanos()).map_err(|_| {
err_unsup_format!("programs running longer than 2^64 nanoseconds are not supported")
.into()
})
}
fn mach_timebase_info(&mut self, info_op: &OpTy<'tcx, Tag>) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "mach_timebase_info");
this.check_no_isolation("`mach_timebase_info`")?;
let info = this.deref_operand(info_op)?;
// Since our emulated ticks in `mach_absolute_time` *are* nanoseconds,
// no scaling needs to happen.
let (numer, denom) = (1, 1);
let imms = [
immty_from_int_checked(numer, this.machine.layouts.u32)?,
immty_from_int_checked(denom, this.machine.layouts.u32)?,
];
this.write_packed_immediates(&info, &imms)?;
Ok(0) // KERN_SUCCESS
}
fn nanosleep(
&mut self,
req_op: &OpTy<'tcx, Tag>,
_rem: &OpTy<'tcx, Tag>,
) -> InterpResult<'tcx, i32> {
// Signal handlers are not supported, so rem will never be written to.
let this = self.eval_context_mut();
this.check_no_isolation("`nanosleep`")?;
let duration = match this.read_timespec(&this.deref_operand(req_op)?)? {
Some(duration) => duration,
None => {
let einval = this.eval_libc("EINVAL")?;
this.set_last_error(einval)?;
return Ok(-1);
}
};
let timeout_time = Time::Monotonic(Instant::now().checked_add(duration).unwrap());
let active_thread = this.get_active_thread();
this.block_thread(active_thread);
this.register_timeout_callback(
active_thread,
timeout_time,
Box::new(move |ecx| {
ecx.unblock_thread(active_thread);
Ok(())
}),
);
Ok(0)
}
}