461 lines
16 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![no_std]
#![allow(unused_attributes)]
#![deny(warnings)]
#![unstable(feature = "alloc_system",
reason = "this library is unlikely to be stabilized in its current \
form or name",
issue = "32838")]
#![feature(global_allocator)]
#![feature(allocator_api)]
#![feature(alloc)]
#![feature(core_intrinsics)]
#![feature(staged_api)]
#![feature(rustc_attrs)]
#![cfg_attr(any(unix, target_os = "redox"), feature(libc))]
#![rustc_alloc_kind = "lib"]
// The minimum alignment guaranteed by the architecture. This value is used to
// add fast paths for low alignment values. In practice, the alignment is a
// constant at the call site and the branch will be optimized out.
#[cfg(all(any(target_arch = "x86",
target_arch = "arm",
target_arch = "mips",
target_arch = "powerpc",
target_arch = "powerpc64",
target_arch = "asmjs",
target_arch = "wasm32")))]
const MIN_ALIGN: usize = 8;
#[cfg(all(any(target_arch = "x86_64",
target_arch = "aarch64",
target_arch = "mips64",
target_arch = "s390x",
target_arch = "sparc64")))]
const MIN_ALIGN: usize = 16;
extern crate alloc;
use self::alloc::heap::{Alloc, AllocErr, Layout, Excess, CannotReallocInPlace};
#[unstable(feature = "allocator_api", issue = "32838")]
pub struct System;
#[unstable(feature = "allocator_api", issue = "32838")]
unsafe impl Alloc for System {
#[inline]
unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> {
(&*self).alloc(layout)
}
#[inline]
unsafe fn alloc_zeroed(&mut self, layout: Layout)
-> Result<*mut u8, AllocErr>
{
(&*self).alloc_zeroed(layout)
}
#[inline]
unsafe fn dealloc(&mut self, ptr: *mut u8, layout: Layout) {
(&*self).dealloc(ptr, layout)
}
#[inline]
unsafe fn realloc(&mut self,
ptr: *mut u8,
old_layout: Layout,
new_layout: Layout) -> Result<*mut u8, AllocErr> {
(&*self).realloc(ptr, old_layout, new_layout)
}
fn oom(&mut self, err: AllocErr) -> ! {
(&*self).oom(err)
}
#[inline]
fn usable_size(&self, layout: &Layout) -> (usize, usize) {
(&self).usable_size(layout)
}
#[inline]
unsafe fn alloc_excess(&mut self, layout: Layout) -> Result<Excess, AllocErr> {
(&*self).alloc_excess(layout)
}
#[inline]
unsafe fn realloc_excess(&mut self,
ptr: *mut u8,
layout: Layout,
new_layout: Layout) -> Result<Excess, AllocErr> {
(&*self).realloc_excess(ptr, layout, new_layout)
}
#[inline]
unsafe fn grow_in_place(&mut self,
ptr: *mut u8,
layout: Layout,
new_layout: Layout) -> Result<(), CannotReallocInPlace> {
(&*self).grow_in_place(ptr, layout, new_layout)
}
#[inline]
unsafe fn shrink_in_place(&mut self,
ptr: *mut u8,
layout: Layout,
new_layout: Layout) -> Result<(), CannotReallocInPlace> {
(&*self).shrink_in_place(ptr, layout, new_layout)
}
}
#[cfg(any(unix, target_os = "redox"))]
mod platform {
extern crate libc;
use core::cmp;
use core::ptr;
use MIN_ALIGN;
use System;
use alloc::heap::{Alloc, AllocErr, Layout};
#[unstable(feature = "allocator_api", issue = "32838")]
unsafe impl<'a> Alloc for &'a System {
#[inline]
unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> {
let ptr = if layout.align() <= MIN_ALIGN {
libc::malloc(layout.size()) as *mut u8
} else {
aligned_malloc(&layout)
};
if !ptr.is_null() {
Ok(ptr)
} else {
Err(AllocErr::Exhausted { request: layout })
}
}
#[inline]
unsafe fn alloc_zeroed(&mut self, layout: Layout)
-> Result<*mut u8, AllocErr>
{
if layout.align() <= MIN_ALIGN {
let ptr = libc::calloc(layout.size(), 1) as *mut u8;
if !ptr.is_null() {
Ok(ptr)
} else {
Err(AllocErr::Exhausted { request: layout })
}
} else {
let ret = self.alloc(layout.clone());
if let Ok(ptr) = ret {
ptr::write_bytes(ptr, 0, layout.size());
}
ret
}
}
#[inline]
unsafe fn dealloc(&mut self, ptr: *mut u8, _layout: Layout) {
libc::free(ptr as *mut libc::c_void)
}
#[inline]
unsafe fn realloc(&mut self,
ptr: *mut u8,
old_layout: Layout,
new_layout: Layout) -> Result<*mut u8, AllocErr> {
if old_layout.align() != new_layout.align() {
return Err(AllocErr::Unsupported {
details: "cannot change alignment on `realloc`",
})
}
if new_layout.align() <= MIN_ALIGN {
let ptr = libc::realloc(ptr as *mut libc::c_void, new_layout.size());
if !ptr.is_null() {
Ok(ptr as *mut u8)
} else {
Err(AllocErr::Exhausted { request: new_layout })
}
} else {
let res = self.alloc(new_layout.clone());
if let Ok(new_ptr) = res {
let size = cmp::min(old_layout.size(), new_layout.size());
ptr::copy_nonoverlapping(ptr, new_ptr, size);
self.dealloc(ptr, old_layout);
}
res
}
}
fn oom(&mut self, err: AllocErr) -> ! {
use core::fmt::{self, Write};
// Print a message to stderr before aborting to assist with
// debugging. It is critical that this code does not allocate any
// memory since we are in an OOM situation. Any errors are ignored
// while printing since there's nothing we can do about them and we
// are about to exit anyways.
drop(writeln!(Stderr, "fatal runtime error: {}", err));
unsafe {
::core::intrinsics::abort();
}
struct Stderr;
impl Write for Stderr {
fn write_str(&mut self, s: &str) -> fmt::Result {
unsafe {
libc::write(libc::STDERR_FILENO,
s.as_ptr() as *const libc::c_void,
s.len());
}
Ok(())
}
}
}
}
#[cfg(any(target_os = "android", target_os = "redox", target_os = "solaris"))]
#[inline]
unsafe fn aligned_malloc(layout: &Layout) -> *mut u8 {
// On android we currently target API level 9 which unfortunately
// doesn't have the `posix_memalign` API used below. Instead we use
// `memalign`, but this unfortunately has the property on some systems
// where the memory returned cannot be deallocated by `free`!
//
// Upon closer inspection, however, this appears to work just fine with
// Android, so for this platform we should be fine to call `memalign`
// (which is present in API level 9). Some helpful references could
// possibly be chromium using memalign [1], attempts at documenting that
// memalign + free is ok [2] [3], or the current source of chromium
// which still uses memalign on android [4].
//
// [1]: https://codereview.chromium.org/10796020/
// [2]: https://code.google.com/p/android/issues/detail?id=35391
// [3]: https://bugs.chromium.org/p/chromium/issues/detail?id=138579
// [4]: https://chromium.googlesource.com/chromium/src/base/+/master/
// /memory/aligned_memory.cc
libc::memalign(layout.align(), layout.size()) as *mut u8
}
#[cfg(not(any(target_os = "android", target_os = "redox", target_os = "solaris")))]
#[inline]
unsafe fn aligned_malloc(layout: &Layout) -> *mut u8 {
let mut out = ptr::null_mut();
let ret = libc::posix_memalign(&mut out, layout.align(), layout.size());
if ret != 0 {
ptr::null_mut()
} else {
out as *mut u8
}
}
}
#[cfg(windows)]
#[allow(bad_style)]
mod platform {
use core::cmp;
use core::ptr;
use MIN_ALIGN;
use System;
use alloc::heap::{Alloc, AllocErr, Layout, CannotReallocInPlace};
type LPVOID = *mut u8;
type HANDLE = LPVOID;
type SIZE_T = usize;
type DWORD = u32;
type BOOL = i32;
type LPDWORD = *mut DWORD;
type LPOVERLAPPED = *mut u8;
const STD_ERROR_HANDLE: DWORD = -12i32 as DWORD;
extern "system" {
fn GetProcessHeap() -> HANDLE;
fn HeapAlloc(hHeap: HANDLE, dwFlags: DWORD, dwBytes: SIZE_T) -> LPVOID;
fn HeapReAlloc(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID, dwBytes: SIZE_T) -> LPVOID;
fn HeapFree(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID) -> BOOL;
fn GetLastError() -> DWORD;
fn WriteFile(hFile: HANDLE,
lpBuffer: LPVOID,
nNumberOfBytesToWrite: DWORD,
lpNumberOfBytesWritten: LPDWORD,
lpOverlapped: LPOVERLAPPED)
-> BOOL;
fn GetStdHandle(which: DWORD) -> HANDLE;
}
#[repr(C)]
struct Header(*mut u8);
const HEAP_ZERO_MEMORY: DWORD = 0x00000008;
const HEAP_REALLOC_IN_PLACE_ONLY: DWORD = 0x00000010;
unsafe fn get_header<'a>(ptr: *mut u8) -> &'a mut Header {
&mut *(ptr as *mut Header).offset(-1)
}
unsafe fn align_ptr(ptr: *mut u8, align: usize) -> *mut u8 {
let aligned = ptr.offset((align - (ptr as usize & (align - 1))) as isize);
*get_header(aligned) = Header(ptr);
aligned
}
#[inline]
unsafe fn allocate_with_flags(layout: Layout, flags: DWORD)
-> Result<*mut u8, AllocErr>
{
let ptr = if layout.align() <= MIN_ALIGN {
HeapAlloc(GetProcessHeap(), flags, layout.size())
} else {
let size = layout.size() + layout.align();
let ptr = HeapAlloc(GetProcessHeap(), flags, size);
if ptr.is_null() {
ptr
} else {
align_ptr(ptr, layout.align())
}
};
if ptr.is_null() {
Err(AllocErr::Exhausted { request: layout })
} else {
Ok(ptr as *mut u8)
}
}
#[unstable(feature = "allocator_api", issue = "32838")]
unsafe impl<'a> Alloc for &'a System {
#[inline]
unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> {
allocate_with_flags(layout, 0)
}
#[inline]
unsafe fn alloc_zeroed(&mut self, layout: Layout)
-> Result<*mut u8, AllocErr>
{
allocate_with_flags(layout, HEAP_ZERO_MEMORY)
}
#[inline]
unsafe fn dealloc(&mut self, ptr: *mut u8, layout: Layout) {
if layout.align() <= MIN_ALIGN {
let err = HeapFree(GetProcessHeap(), 0, ptr as LPVOID);
debug_assert!(err != 0, "Failed to free heap memory: {}",
GetLastError());
} else {
let header = get_header(ptr);
let err = HeapFree(GetProcessHeap(), 0, header.0 as LPVOID);
debug_assert!(err != 0, "Failed to free heap memory: {}",
GetLastError());
}
}
#[inline]
unsafe fn realloc(&mut self,
ptr: *mut u8,
old_layout: Layout,
new_layout: Layout) -> Result<*mut u8, AllocErr> {
if old_layout.align() != new_layout.align() {
return Err(AllocErr::Unsupported {
details: "cannot change alignment on `realloc`",
})
}
if new_layout.align() <= MIN_ALIGN {
let ptr = HeapReAlloc(GetProcessHeap(),
0,
ptr as LPVOID,
new_layout.size());
if !ptr.is_null() {
Ok(ptr as *mut u8)
} else {
Err(AllocErr::Exhausted { request: new_layout })
}
} else {
let res = self.alloc(new_layout.clone());
if let Ok(new_ptr) = res {
let size = cmp::min(old_layout.size(), new_layout.size());
ptr::copy_nonoverlapping(ptr, new_ptr, size);
self.dealloc(ptr, old_layout);
}
res
}
}
#[inline]
unsafe fn grow_in_place(&mut self,
ptr: *mut u8,
layout: Layout,
new_layout: Layout) -> Result<(), CannotReallocInPlace> {
self.shrink_in_place(ptr, layout, new_layout)
}
#[inline]
unsafe fn shrink_in_place(&mut self,
ptr: *mut u8,
old_layout: Layout,
new_layout: Layout) -> Result<(), CannotReallocInPlace> {
if old_layout.align() != new_layout.align() {
return Err(CannotReallocInPlace)
}
let new = if new_layout.align() <= MIN_ALIGN {
HeapReAlloc(GetProcessHeap(),
HEAP_REALLOC_IN_PLACE_ONLY,
ptr as LPVOID,
new_layout.size())
} else {
let header = get_header(ptr);
HeapReAlloc(GetProcessHeap(),
HEAP_REALLOC_IN_PLACE_ONLY,
header.0 as LPVOID,
new_layout.size() + new_layout.align())
};
if new.is_null() {
Err(CannotReallocInPlace)
} else {
Ok(())
}
}
fn oom(&mut self, err: AllocErr) -> ! {
use core::fmt::{self, Write};
// Same as with unix we ignore all errors here
drop(writeln!(Stderr, "fatal runtime error: {}", err));
unsafe {
::core::intrinsics::abort();
}
struct Stderr;
impl Write for Stderr {
fn write_str(&mut self, s: &str) -> fmt::Result {
unsafe {
// WriteFile silently fails if it is passed an invalid
// handle, so there is no need to check the result of
// GetStdHandle.
WriteFile(GetStdHandle(STD_ERROR_HANDLE),
s.as_ptr() as LPVOID,
s.len() as DWORD,
ptr::null_mut(),
ptr::null_mut());
}
Ok(())
}
}
}
}
}