2021-10-10 15:38:19 +02:00

697 lines
20 KiB
Rust

//! Support code for encoding and decoding types.
/*
Core encoding and decoding interfaces.
*/
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::path;
use std::rc::Rc;
use std::sync::Arc;
pub trait Encoder {
type Error;
// Primitive types:
fn emit_unit(&mut self) -> Result<(), Self::Error>;
fn emit_usize(&mut self, v: usize) -> Result<(), Self::Error>;
fn emit_u128(&mut self, v: u128) -> Result<(), Self::Error>;
fn emit_u64(&mut self, v: u64) -> Result<(), Self::Error>;
fn emit_u32(&mut self, v: u32) -> Result<(), Self::Error>;
fn emit_u16(&mut self, v: u16) -> Result<(), Self::Error>;
fn emit_u8(&mut self, v: u8) -> Result<(), Self::Error>;
fn emit_isize(&mut self, v: isize) -> Result<(), Self::Error>;
fn emit_i128(&mut self, v: i128) -> Result<(), Self::Error>;
fn emit_i64(&mut self, v: i64) -> Result<(), Self::Error>;
fn emit_i32(&mut self, v: i32) -> Result<(), Self::Error>;
fn emit_i16(&mut self, v: i16) -> Result<(), Self::Error>;
fn emit_i8(&mut self, v: i8) -> Result<(), Self::Error>;
fn emit_bool(&mut self, v: bool) -> Result<(), Self::Error>;
fn emit_f64(&mut self, v: f64) -> Result<(), Self::Error>;
fn emit_f32(&mut self, v: f32) -> Result<(), Self::Error>;
fn emit_char(&mut self, v: char) -> Result<(), Self::Error>;
fn emit_str(&mut self, v: &str) -> Result<(), Self::Error>;
fn emit_raw_bytes(&mut self, s: &[u8]) -> Result<(), Self::Error>;
// Compound types:
#[inline]
fn emit_enum<F>(&mut self, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
fn emit_enum_variant<F>(
&mut self,
_v_name: &str,
v_id: usize,
_len: usize,
f: F,
) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
self.emit_usize(v_id)?;
f(self)
}
#[inline]
fn emit_enum_variant_arg<F>(&mut self, _first: bool, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
#[inline]
fn emit_struct<F>(&mut self, _no_fields: bool, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
#[inline]
fn emit_struct_field<F>(&mut self, _f_name: &str, _first: bool, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
#[inline]
fn emit_tuple<F>(&mut self, _len: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
#[inline]
fn emit_tuple_arg<F>(&mut self, _idx: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
// Specialized types:
fn emit_option<F>(&mut self, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
self.emit_enum(f)
}
#[inline]
fn emit_option_none(&mut self) -> Result<(), Self::Error> {
self.emit_enum_variant("None", 0, 0, |_| Ok(()))
}
fn emit_option_some<F>(&mut self, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
self.emit_enum_variant("Some", 1, 1, f)
}
fn emit_seq<F>(&mut self, len: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
self.emit_usize(len)?;
f(self)
}
#[inline]
fn emit_seq_elt<F>(&mut self, _idx: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
fn emit_map<F>(&mut self, len: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
self.emit_usize(len)?;
f(self)
}
#[inline]
fn emit_map_elt_key<F>(&mut self, _idx: usize, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
#[inline]
fn emit_map_elt_val<F>(&mut self, f: F) -> Result<(), Self::Error>
where
F: FnOnce(&mut Self) -> Result<(), Self::Error>,
{
f(self)
}
}
pub trait Decoder {
type Error;
// Primitive types:
fn read_nil(&mut self) -> Result<(), Self::Error>;
fn read_usize(&mut self) -> Result<usize, Self::Error>;
fn read_u128(&mut self) -> Result<u128, Self::Error>;
fn read_u64(&mut self) -> Result<u64, Self::Error>;
fn read_u32(&mut self) -> Result<u32, Self::Error>;
fn read_u16(&mut self) -> Result<u16, Self::Error>;
fn read_u8(&mut self) -> Result<u8, Self::Error>;
fn read_isize(&mut self) -> Result<isize, Self::Error>;
fn read_i128(&mut self) -> Result<i128, Self::Error>;
fn read_i64(&mut self) -> Result<i64, Self::Error>;
fn read_i32(&mut self) -> Result<i32, Self::Error>;
fn read_i16(&mut self) -> Result<i16, Self::Error>;
fn read_i8(&mut self) -> Result<i8, Self::Error>;
fn read_bool(&mut self) -> Result<bool, Self::Error>;
fn read_f64(&mut self) -> Result<f64, Self::Error>;
fn read_f32(&mut self) -> Result<f32, Self::Error>;
fn read_char(&mut self) -> Result<char, Self::Error>;
fn read_str(&mut self) -> Result<Cow<'_, str>, Self::Error>;
fn read_raw_bytes_into(&mut self, s: &mut [u8]) -> Result<(), Self::Error>;
// Compound types:
#[inline]
fn read_enum<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_enum_variant<T, F>(&mut self, _names: &[&str], mut f: F) -> Result<T, Self::Error>
where
F: FnMut(&mut Self, usize) -> Result<T, Self::Error>,
{
let disr = self.read_usize()?;
f(self, disr)
}
#[inline]
fn read_enum_variant_arg<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_struct<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_struct_field<T, F>(&mut self, _f_name: &str, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_tuple<T, F>(&mut self, _len: usize, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_tuple_arg<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
// Specialized types:
fn read_option<T, F>(&mut self, mut f: F) -> Result<T, Self::Error>
where
F: FnMut(&mut Self, bool) -> Result<T, Self::Error>,
{
self.read_enum(move |this| {
this.read_enum_variant(&["None", "Some"], move |this, idx| match idx {
0 => f(this, false),
1 => f(this, true),
_ => Err(this.error("read_option: expected 0 for None or 1 for Some")),
})
})
}
fn read_seq<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self, usize) -> Result<T, Self::Error>,
{
let len = self.read_usize()?;
f(self, len)
}
#[inline]
fn read_seq_elt<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
fn read_map<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self, usize) -> Result<T, Self::Error>,
{
let len = self.read_usize()?;
f(self, len)
}
#[inline]
fn read_map_elt_key<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
#[inline]
fn read_map_elt_val<T, F>(&mut self, f: F) -> Result<T, Self::Error>
where
F: FnOnce(&mut Self) -> Result<T, Self::Error>,
{
f(self)
}
// Failure
fn error(&mut self, err: &str) -> Self::Error;
}
/// Trait for types that can be serialized
///
/// This can be implemented using the `Encodable`, `TyEncodable` and
/// `MetadataEncodable` macros.
///
/// * `Encodable` should be used in crates that don't depend on
/// `rustc_middle`.
/// * `MetadataEncodable` is used in `rustc_metadata` for types that contain
/// `rustc_metadata::rmeta::Lazy`.
/// * `TyEncodable` should be used for types that are only serialized in crate
/// metadata or the incremental cache. This is most types in `rustc_middle`.
pub trait Encodable<S: Encoder> {
fn encode(&self, s: &mut S) -> Result<(), S::Error>;
}
/// Trait for types that can be deserialized
///
/// This can be implemented using the `Decodable`, `TyDecodable` and
/// `MetadataDecodable` macros.
///
/// * `Decodable` should be used in crates that don't depend on
/// `rustc_middle`.
/// * `MetadataDecodable` is used in `rustc_metadata` for types that contain
/// `rustc_metadata::rmeta::Lazy`.
/// * `TyDecodable` should be used for types that are only serialized in crate
/// metadata or the incremental cache. This is most types in `rustc_middle`.
pub trait Decodable<D: Decoder>: Sized {
fn decode(d: &mut D) -> Result<Self, D::Error>;
}
macro_rules! direct_serialize_impls {
($($ty:ident $emit_method:ident $read_method:ident),*) => {
$(
impl<S: Encoder> Encodable<S> for $ty {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.$emit_method(*self)
}
}
impl<D: Decoder> Decodable<D> for $ty {
fn decode(d: &mut D) -> Result<$ty, D::Error> {
d.$read_method()
}
}
)*
}
}
direct_serialize_impls! {
usize emit_usize read_usize,
u8 emit_u8 read_u8,
u16 emit_u16 read_u16,
u32 emit_u32 read_u32,
u64 emit_u64 read_u64,
u128 emit_u128 read_u128,
isize emit_isize read_isize,
i8 emit_i8 read_i8,
i16 emit_i16 read_i16,
i32 emit_i32 read_i32,
i64 emit_i64 read_i64,
i128 emit_i128 read_i128,
f32 emit_f32 read_f32,
f64 emit_f64 read_f64,
bool emit_bool read_bool,
char emit_char read_char
}
impl<S: Encoder> Encodable<S> for ! {
fn encode(&self, _s: &mut S) -> Result<(), S::Error> {
unreachable!()
}
}
impl<D: Decoder> Decodable<D> for ! {
fn decode(_d: &mut D) -> Result<!, D::Error> {
unreachable!()
}
}
impl<S: Encoder> Encodable<S> for ::std::num::NonZeroU32 {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_u32(self.get())
}
}
impl<D: Decoder> Decodable<D> for ::std::num::NonZeroU32 {
fn decode(d: &mut D) -> Result<Self, D::Error> {
d.read_u32().map(|d| ::std::num::NonZeroU32::new(d).unwrap())
}
}
impl<S: Encoder> Encodable<S> for str {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_str(self)
}
}
impl<S: Encoder> Encodable<S> for &str {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_str(self)
}
}
impl<S: Encoder> Encodable<S> for String {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_str(&self[..])
}
}
impl<D: Decoder> Decodable<D> for String {
fn decode(d: &mut D) -> Result<String, D::Error> {
Ok(d.read_str()?.into_owned())
}
}
impl<S: Encoder> Encodable<S> for () {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_unit()
}
}
impl<D: Decoder> Decodable<D> for () {
fn decode(d: &mut D) -> Result<(), D::Error> {
d.read_nil()
}
}
impl<S: Encoder, T> Encodable<S> for PhantomData<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_unit()
}
}
impl<D: Decoder, T> Decodable<D> for PhantomData<T> {
fn decode(d: &mut D) -> Result<PhantomData<T>, D::Error> {
d.read_nil()?;
Ok(PhantomData)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<[T]> {
fn decode(d: &mut D) -> Result<Box<[T]>, D::Error> {
let v: Vec<T> = Decodable::decode(d)?;
Ok(v.into_boxed_slice())
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Rc<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Rc<T> {
fn decode(d: &mut D) -> Result<Rc<T>, D::Error> {
Ok(Rc::new(Decodable::decode(d)?))
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for [T] {
default fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_seq(self.len(), |s| {
for (i, e) in self.iter().enumerate() {
s.emit_seq_elt(i, |s| e.encode(s))?
}
Ok(())
})
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Vec<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
let slice: &[T] = self;
slice.encode(s)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Vec<T> {
default fn decode(d: &mut D) -> Result<Vec<T>, D::Error> {
d.read_seq(|d, len| {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(d.read_seq_elt(|d| Decodable::decode(d))?);
}
Ok(v)
})
}
}
impl<S: Encoder, T: Encodable<S>, const N: usize> Encodable<S> for [T; N] {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
let slice: &[T] = self;
slice.encode(s)
}
}
impl<D: Decoder, const N: usize> Decodable<D> for [u8; N] {
fn decode(d: &mut D) -> Result<[u8; N], D::Error> {
d.read_seq(|d, len| {
assert!(len == N);
let mut v = [0u8; N];
for x in &mut v {
*x = d.read_seq_elt(|d| Decodable::decode(d))?;
}
Ok(v)
})
}
}
impl<'a, S: Encoder, T: Encodable<S>> Encodable<S> for Cow<'a, [T]>
where
[T]: ToOwned<Owned = Vec<T>>,
{
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
let slice: &[T] = self;
slice.encode(s)
}
}
impl<D: Decoder, T: Decodable<D> + ToOwned> Decodable<D> for Cow<'static, [T]>
where
[T]: ToOwned<Owned = Vec<T>>,
{
fn decode(d: &mut D) -> Result<Cow<'static, [T]>, D::Error> {
let v: Vec<T> = Decodable::decode(d)?;
Ok(Cow::Owned(v))
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Option<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_option(|s| match *self {
None => s.emit_option_none(),
Some(ref v) => s.emit_option_some(|s| v.encode(s)),
})
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Option<T> {
fn decode(d: &mut D) -> Result<Option<T>, D::Error> {
d.read_option(|d, b| if b { Ok(Some(Decodable::decode(d)?)) } else { Ok(None) })
}
}
impl<S: Encoder, T1: Encodable<S>, T2: Encodable<S>> Encodable<S> for Result<T1, T2> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_enum(|s| match *self {
Ok(ref v) => {
s.emit_enum_variant("Ok", 0, 1, |s| s.emit_enum_variant_arg(true, |s| v.encode(s)))
}
Err(ref v) => {
s.emit_enum_variant("Err", 1, 1, |s| s.emit_enum_variant_arg(true, |s| v.encode(s)))
}
})
}
}
impl<D: Decoder, T1: Decodable<D>, T2: Decodable<D>> Decodable<D> for Result<T1, T2> {
fn decode(d: &mut D) -> Result<Result<T1, T2>, D::Error> {
d.read_enum(|d| {
d.read_enum_variant(&["Ok", "Err"], |d, disr| match disr {
0 => Ok(Ok(d.read_enum_variant_arg(|d| T1::decode(d))?)),
1 => Ok(Err(d.read_enum_variant_arg(|d| T2::decode(d))?)),
_ => {
panic!(
"Encountered invalid discriminant while \
decoding `Result`."
);
}
})
})
}
}
macro_rules! peel {
($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}
/// Evaluates to the number of tokens passed to it.
///
/// Logarithmic counting: every one or two recursive expansions, the number of
/// tokens to count is divided by two, instead of being reduced by one.
/// Therefore, the recursion depth is the binary logarithm of the number of
/// tokens to count, and the expanded tree is likewise very small.
macro_rules! count {
() => (0usize);
($one:tt) => (1usize);
($($pairs:tt $_p:tt)*) => (count!($($pairs)*) << 1usize);
($odd:tt $($rest:tt)*) => (count!($($rest)*) | 1usize);
}
macro_rules! tuple {
() => ();
( $($name:ident,)+ ) => (
impl<D: Decoder, $($name: Decodable<D>),+> Decodable<D> for ($($name,)+) {
#[allow(non_snake_case)]
fn decode(d: &mut D) -> Result<($($name,)+), D::Error> {
let len: usize = count!($($name)+);
d.read_tuple(len, |d| {
let ret = ($(d.read_tuple_arg(|d| -> Result<$name, D::Error> {
Decodable::decode(d)
})?,)+);
Ok(ret)
})
}
}
impl<S: Encoder, $($name: Encodable<S>),+> Encodable<S> for ($($name,)+) {
#[allow(non_snake_case)]
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
let ($(ref $name,)+) = *self;
let mut n = 0;
$(let $name = $name; n += 1;)+
s.emit_tuple(n, |s| {
let mut i = 0;
$(s.emit_tuple_arg({ i+=1; i-1 }, |s| $name.encode(s))?;)+
Ok(())
})
}
}
peel! { $($name,)+ }
)
}
tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }
impl<S: Encoder> Encodable<S> for path::Path {
fn encode(&self, e: &mut S) -> Result<(), S::Error> {
self.to_str().unwrap().encode(e)
}
}
impl<S: Encoder> Encodable<S> for path::PathBuf {
fn encode(&self, e: &mut S) -> Result<(), S::Error> {
path::Path::encode(self, e)
}
}
impl<D: Decoder> Decodable<D> for path::PathBuf {
fn decode(d: &mut D) -> Result<path::PathBuf, D::Error> {
let bytes: String = Decodable::decode(d)?;
Ok(path::PathBuf::from(bytes))
}
}
impl<S: Encoder, T: Encodable<S> + Copy> Encodable<S> for Cell<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
self.get().encode(s)
}
}
impl<D: Decoder, T: Decodable<D> + Copy> Decodable<D> for Cell<T> {
fn decode(d: &mut D) -> Result<Cell<T>, D::Error> {
Ok(Cell::new(Decodable::decode(d)?))
}
}
// FIXME: #15036
// Should use `try_borrow`, returning an
// `encoder.error("attempting to Encode borrowed RefCell")`
// from `encode` when `try_borrow` returns `None`.
impl<S: Encoder, T: Encodable<S>> Encodable<S> for RefCell<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
self.borrow().encode(s)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for RefCell<T> {
fn decode(d: &mut D) -> Result<RefCell<T>, D::Error> {
Ok(RefCell::new(Decodable::decode(d)?))
}
}
impl<S: Encoder, T: Encodable<S>> Encodable<S> for Arc<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Arc<T> {
fn decode(d: &mut D) -> Result<Arc<T>, D::Error> {
Ok(Arc::new(Decodable::decode(d)?))
}
}
impl<S: Encoder, T: ?Sized + Encodable<S>> Encodable<S> for Box<T> {
fn encode(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)
}
}
impl<D: Decoder, T: Decodable<D>> Decodable<D> for Box<T> {
fn decode(d: &mut D) -> Result<Box<T>, D::Error> {
Ok(Box::new(Decodable::decode(d)?))
}
}