2315 lines
71 KiB
Rust
2315 lines
71 KiB
Rust
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
//
|
||
// ignore-lexer-test FIXME #15883
|
||
|
||
use self::Entry::*;
|
||
use self::SearchResult::*;
|
||
use self::VacantEntryState::*;
|
||
|
||
use borrow::Borrow;
|
||
use clone::Clone;
|
||
use cmp::{max, Eq, PartialEq};
|
||
use default::Default;
|
||
use fmt::{self, Debug};
|
||
use hash::{Hash, SipHasher};
|
||
use iter::{self, Iterator, ExactSizeIterator, IntoIterator, FromIterator, Extend, Map};
|
||
use marker::Sized;
|
||
use mem::{self, replace};
|
||
use ops::{Deref, FnMut, FnOnce, Index};
|
||
use option::Option::{self, Some, None};
|
||
use rand::{self, Rng};
|
||
use result::Result::{self, Ok, Err};
|
||
|
||
use super::table::{
|
||
self,
|
||
Bucket,
|
||
EmptyBucket,
|
||
FullBucket,
|
||
FullBucketImm,
|
||
FullBucketMut,
|
||
RawTable,
|
||
SafeHash
|
||
};
|
||
use super::table::BucketState::{
|
||
Empty,
|
||
Full,
|
||
};
|
||
use super::state::HashState;
|
||
|
||
const INITIAL_LOG2_CAP: usize = 5;
|
||
#[unstable(feature = "std_misc")]
|
||
pub const INITIAL_CAPACITY: usize = 1 << INITIAL_LOG2_CAP; // 2^5
|
||
|
||
/// The default behavior of HashMap implements a load factor of 90.9%.
|
||
/// This behavior is characterized by the following condition:
|
||
///
|
||
/// - if size > 0.909 * capacity: grow the map
|
||
#[derive(Clone)]
|
||
struct DefaultResizePolicy;
|
||
|
||
impl DefaultResizePolicy {
|
||
fn new() -> DefaultResizePolicy {
|
||
DefaultResizePolicy
|
||
}
|
||
|
||
#[inline]
|
||
fn min_capacity(&self, usable_size: usize) -> usize {
|
||
// Here, we are rephrasing the logic by specifying the lower limit
|
||
// on capacity:
|
||
//
|
||
// - if `cap < size * 1.1`: grow the map
|
||
usable_size * 11 / 10
|
||
}
|
||
|
||
/// An inverse of `min_capacity`, approximately.
|
||
#[inline]
|
||
fn usable_capacity(&self, cap: usize) -> usize {
|
||
// As the number of entries approaches usable capacity,
|
||
// min_capacity(size) must be smaller than the internal capacity,
|
||
// so that the map is not resized:
|
||
// `min_capacity(usable_capacity(x)) <= x`.
|
||
// The left-hand side can only be smaller due to flooring by integer
|
||
// division.
|
||
//
|
||
// This doesn't have to be checked for overflow since allocation size
|
||
// in bytes will overflow earlier than multiplication by 10.
|
||
cap * 10 / 11
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_resize_policy() {
|
||
let rp = DefaultResizePolicy;
|
||
for n in 0..1000 {
|
||
assert!(rp.min_capacity(rp.usable_capacity(n)) <= n);
|
||
assert!(rp.usable_capacity(rp.min_capacity(n)) <= n);
|
||
}
|
||
}
|
||
|
||
// The main performance trick in this hashmap is called Robin Hood Hashing.
|
||
// It gains its excellent performance from one essential operation:
|
||
//
|
||
// If an insertion collides with an existing element, and that element's
|
||
// "probe distance" (how far away the element is from its ideal location)
|
||
// is higher than how far we've already probed, swap the elements.
|
||
//
|
||
// This massively lowers variance in probe distance, and allows us to get very
|
||
// high load factors with good performance. The 90% load factor I use is rather
|
||
// conservative.
|
||
//
|
||
// > Why a load factor of approximately 90%?
|
||
//
|
||
// In general, all the distances to initial buckets will converge on the mean.
|
||
// At a load factor of α, the odds of finding the target bucket after k
|
||
// probes is approximately 1-α^k. If we set this equal to 50% (since we converge
|
||
// on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
|
||
// this down to make the math easier on the CPU and avoid its FPU.
|
||
// Since on average we start the probing in the middle of a cache line, this
|
||
// strategy pulls in two cache lines of hashes on every lookup. I think that's
|
||
// pretty good, but if you want to trade off some space, it could go down to one
|
||
// cache line on average with an α of 0.84.
|
||
//
|
||
// > Wait, what? Where did you get 1-α^k from?
|
||
//
|
||
// On the first probe, your odds of a collision with an existing element is α.
|
||
// The odds of doing this twice in a row is approximately α^2. For three times,
|
||
// α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
|
||
// colliding after k tries is 1-α^k.
|
||
//
|
||
// The paper from 1986 cited below mentions an implementation which keeps track
|
||
// of the distance-to-initial-bucket histogram. This approach is not suitable
|
||
// for modern architectures because it requires maintaining an internal data
|
||
// structure. This allows very good first guesses, but we are most concerned
|
||
// with guessing entire cache lines, not individual indexes. Furthermore, array
|
||
// accesses are no longer linear and in one direction, as we have now. There
|
||
// is also memory and cache pressure that this would entail that would be very
|
||
// difficult to properly see in a microbenchmark.
|
||
//
|
||
// ## Future Improvements (FIXME!)
|
||
//
|
||
// Allow the load factor to be changed dynamically and/or at initialization.
|
||
//
|
||
// Also, would it be possible for us to reuse storage when growing the
|
||
// underlying table? This is exactly the use case for 'realloc', and may
|
||
// be worth exploring.
|
||
//
|
||
// ## Future Optimizations (FIXME!)
|
||
//
|
||
// Another possible design choice that I made without any real reason is
|
||
// parameterizing the raw table over keys and values. Technically, all we need
|
||
// is the size and alignment of keys and values, and the code should be just as
|
||
// efficient (well, we might need one for power-of-two size and one for not...).
|
||
// This has the potential to reduce code bloat in rust executables, without
|
||
// really losing anything except 4 words (key size, key alignment, val size,
|
||
// val alignment) which can be passed in to every call of a `RawTable` function.
|
||
// This would definitely be an avenue worth exploring if people start complaining
|
||
// about the size of rust executables.
|
||
//
|
||
// Annotate exceedingly likely branches in `table::make_hash`
|
||
// and `search_hashed` to reduce instruction cache pressure
|
||
// and mispredictions once it becomes possible (blocked on issue #11092).
|
||
//
|
||
// Shrinking the table could simply reallocate in place after moving buckets
|
||
// to the first half.
|
||
//
|
||
// The growth algorithm (fragment of the Proof of Correctness)
|
||
// --------------------
|
||
//
|
||
// The growth algorithm is basically a fast path of the naive reinsertion-
|
||
// during-resize algorithm. Other paths should never be taken.
|
||
//
|
||
// Consider growing a robin hood hashtable of capacity n. Normally, we do this
|
||
// by allocating a new table of capacity `2n`, and then individually reinsert
|
||
// each element in the old table into the new one. This guarantees that the
|
||
// new table is a valid robin hood hashtable with all the desired statistical
|
||
// properties. Remark that the order we reinsert the elements in should not
|
||
// matter. For simplicity and efficiency, we will consider only linear
|
||
// reinsertions, which consist of reinserting all elements in the old table
|
||
// into the new one by increasing order of index. However we will not be
|
||
// starting our reinsertions from index 0 in general. If we start from index
|
||
// i, for the purpose of reinsertion we will consider all elements with real
|
||
// index j < i to have virtual index n + j.
|
||
//
|
||
// Our hash generation scheme consists of generating a 64-bit hash and
|
||
// truncating the most significant bits. When moving to the new table, we
|
||
// simply introduce a new bit to the front of the hash. Therefore, if an
|
||
// elements has ideal index i in the old table, it can have one of two ideal
|
||
// locations in the new table. If the new bit is 0, then the new ideal index
|
||
// is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
|
||
// we are producing two independent tables of size n, and for each element we
|
||
// independently choose which table to insert it into with equal probability.
|
||
// However the rather than wrapping around themselves on overflowing their
|
||
// indexes, the first table overflows into the first, and the first into the
|
||
// second. Visually, our new table will look something like:
|
||
//
|
||
// [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
|
||
//
|
||
// Where x's are elements inserted into the first table, y's are elements
|
||
// inserted into the second, and _'s are empty sections. We now define a few
|
||
// key concepts that we will use later. Note that this is a very abstract
|
||
// perspective of the table. A real resized table would be at least half
|
||
// empty.
|
||
//
|
||
// Theorem: A linear robin hood reinsertion from the first ideal element
|
||
// produces identical results to a linear naive reinsertion from the same
|
||
// element.
|
||
//
|
||
// FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
|
||
|
||
/// A hash map implementation which uses linear probing with Robin
|
||
/// Hood bucket stealing.
|
||
///
|
||
/// The hashes are all keyed by the task-local random number generator
|
||
/// on creation by default. This means that the ordering of the keys is
|
||
/// randomized, but makes the tables more resistant to
|
||
/// denial-of-service attacks (Hash DoS). This behaviour can be
|
||
/// overridden with one of the constructors.
|
||
///
|
||
/// It is required that the keys implement the `Eq` and `Hash` traits, although
|
||
/// this can frequently be achieved by using `#[derive(Eq, Hash)]`. If you
|
||
/// implement these yourself, it is important that the following property holds:
|
||
///
|
||
/// ```text
|
||
/// k1 == k2 -> hash(k1) == hash(k2)
|
||
/// ```
|
||
///
|
||
/// In other words, if two keys are equal, their hashes must be equal.
|
||
///
|
||
/// It is a logic error for a key to be modified in such a way that the key's
|
||
/// hash, as determined by the `Hash` trait, or its equality, as determined by
|
||
/// the `Eq` trait, changes while it is in the map. This is normally only
|
||
/// possible through `Cell`, `RefCell`, global state, I/O, or unsafe code.
|
||
///
|
||
/// Relevant papers/articles:
|
||
///
|
||
/// 1. Pedro Celis. ["Robin Hood Hashing"](https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf)
|
||
/// 2. Emmanuel Goossaert. ["Robin Hood
|
||
/// hashing"](http://codecapsule.com/2013/11/11/robin-hood-hashing/)
|
||
/// 3. Emmanuel Goossaert. ["Robin Hood hashing: backward shift
|
||
/// deletion"](http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/)
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// // type inference lets us omit an explicit type signature (which
|
||
/// // would be `HashMap<&str, &str>` in this example).
|
||
/// let mut book_reviews = HashMap::new();
|
||
///
|
||
/// // review some books.
|
||
/// book_reviews.insert("Adventures of Huckleberry Finn", "My favorite book.");
|
||
/// book_reviews.insert("Grimms' Fairy Tales", "Masterpiece.");
|
||
/// book_reviews.insert("Pride and Prejudice", "Very enjoyable.");
|
||
/// book_reviews.insert("The Adventures of Sherlock Holmes", "Eye lyked it alot.");
|
||
///
|
||
/// // check for a specific one.
|
||
/// if !book_reviews.contains_key(&("Les Misérables")) {
|
||
/// println!("We've got {} reviews, but Les Misérables ain't one.",
|
||
/// book_reviews.len());
|
||
/// }
|
||
///
|
||
/// // oops, this review has a lot of spelling mistakes, let's delete it.
|
||
/// book_reviews.remove(&("The Adventures of Sherlock Holmes"));
|
||
///
|
||
/// // look up the values associated with some keys.
|
||
/// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
|
||
/// for book in to_find.iter() {
|
||
/// match book_reviews.get(book) {
|
||
/// Some(review) => println!("{}: {}", *book, *review),
|
||
/// None => println!("{} is unreviewed.", *book)
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // iterate over everything.
|
||
/// for (book, review) in book_reviews.iter() {
|
||
/// println!("{}: \"{}\"", *book, *review);
|
||
/// }
|
||
/// ```
|
||
///
|
||
/// The easiest way to use `HashMap` with a custom type as key is to derive `Eq` and `Hash`.
|
||
/// We must also derive `PartialEq`.
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// #[derive(Hash, Eq, PartialEq, Debug)]
|
||
/// struct Viking {
|
||
/// name: String,
|
||
/// country: String,
|
||
/// }
|
||
///
|
||
/// impl Viking {
|
||
/// /// Create a new Viking.
|
||
/// fn new(name: &str, country: &str) -> Viking {
|
||
/// Viking { name: name.to_string(), country: country.to_string() }
|
||
/// }
|
||
/// }
|
||
///
|
||
/// // Use a HashMap to store the vikings' health points.
|
||
/// let mut vikings = HashMap::new();
|
||
///
|
||
/// vikings.insert(Viking::new("Einar", "Norway"), 25);
|
||
/// vikings.insert(Viking::new("Olaf", "Denmark"), 24);
|
||
/// vikings.insert(Viking::new("Harald", "Iceland"), 12);
|
||
///
|
||
/// // Use derived implementation to print the status of the vikings.
|
||
/// for (viking, health) in vikings.iter() {
|
||
/// println!("{:?} has {} hp", viking, health);
|
||
/// }
|
||
/// ```
|
||
#[derive(Clone)]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct HashMap<K, V, S = RandomState> {
|
||
// All hashes are keyed on these values, to prevent hash collision attacks.
|
||
hash_state: S,
|
||
|
||
table: RawTable<K, V>,
|
||
|
||
resize_policy: DefaultResizePolicy,
|
||
}
|
||
|
||
/// Search for a pre-hashed key.
|
||
fn search_hashed<K, V, M, F>(table: M,
|
||
hash: SafeHash,
|
||
mut is_match: F)
|
||
-> SearchResult<K, V, M> where
|
||
M: Deref<Target=RawTable<K, V>>,
|
||
F: FnMut(&K) -> bool,
|
||
{
|
||
// This is the only function where capacity can be zero. To avoid
|
||
// undefined behaviour when Bucket::new gets the raw bucket in this
|
||
// case, immediately return the appropriate search result.
|
||
if table.capacity() == 0 {
|
||
return TableRef(table);
|
||
}
|
||
|
||
let size = table.size();
|
||
let mut probe = Bucket::new(table, hash);
|
||
let ib = probe.index();
|
||
|
||
while probe.index() != ib + size {
|
||
let full = match probe.peek() {
|
||
Empty(b) => return TableRef(b.into_table()), // hit an empty bucket
|
||
Full(b) => b
|
||
};
|
||
|
||
if full.distance() + ib < full.index() {
|
||
// We can finish the search early if we hit any bucket
|
||
// with a lower distance to initial bucket than we've probed.
|
||
return TableRef(full.into_table());
|
||
}
|
||
|
||
// If the hash doesn't match, it can't be this one..
|
||
if hash == full.hash() {
|
||
// If the key doesn't match, it can't be this one..
|
||
if is_match(full.read().0) {
|
||
return FoundExisting(full);
|
||
}
|
||
}
|
||
|
||
probe = full.next();
|
||
}
|
||
|
||
TableRef(probe.into_table())
|
||
}
|
||
|
||
fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>) -> (K, V) {
|
||
let (empty, retkey, retval) = starting_bucket.take();
|
||
let mut gap = match empty.gap_peek() {
|
||
Some(b) => b,
|
||
None => return (retkey, retval)
|
||
};
|
||
|
||
while gap.full().distance() != 0 {
|
||
gap = match gap.shift() {
|
||
Some(b) => b,
|
||
None => break
|
||
};
|
||
}
|
||
|
||
// Now we've done all our shifting. Return the value we grabbed earlier.
|
||
(retkey, retval)
|
||
}
|
||
|
||
/// Perform robin hood bucket stealing at the given `bucket`. You must
|
||
/// also pass the position of that bucket's initial bucket so we don't have
|
||
/// to recalculate it.
|
||
///
|
||
/// `hash`, `k`, and `v` are the elements to "robin hood" into the hashtable.
|
||
fn robin_hood<'a, K: 'a, V: 'a>(mut bucket: FullBucketMut<'a, K, V>,
|
||
mut ib: usize,
|
||
mut hash: SafeHash,
|
||
mut k: K,
|
||
mut v: V)
|
||
-> &'a mut V {
|
||
let starting_index = bucket.index();
|
||
let size = {
|
||
let table = bucket.table(); // FIXME "lifetime too short".
|
||
table.size()
|
||
};
|
||
// There can be at most `size - dib` buckets to displace, because
|
||
// in the worst case, there are `size` elements and we already are
|
||
// `distance` buckets away from the initial one.
|
||
let idx_end = starting_index + size - bucket.distance();
|
||
|
||
loop {
|
||
let (old_hash, old_key, old_val) = bucket.replace(hash, k, v);
|
||
loop {
|
||
let probe = bucket.next();
|
||
assert!(probe.index() != idx_end);
|
||
|
||
let full_bucket = match probe.peek() {
|
||
Empty(bucket) => {
|
||
// Found a hole!
|
||
let b = bucket.put(old_hash, old_key, old_val);
|
||
// Now that it's stolen, just read the value's pointer
|
||
// right out of the table!
|
||
return Bucket::at_index(b.into_table(), starting_index)
|
||
.peek()
|
||
.expect_full()
|
||
.into_mut_refs()
|
||
.1;
|
||
},
|
||
Full(bucket) => bucket
|
||
};
|
||
|
||
let probe_ib = full_bucket.index() - full_bucket.distance();
|
||
|
||
bucket = full_bucket;
|
||
|
||
// Robin hood! Steal the spot.
|
||
if ib < probe_ib {
|
||
ib = probe_ib;
|
||
hash = old_hash;
|
||
k = old_key;
|
||
v = old_val;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// A result that works like Option<FullBucket<..>> but preserves
|
||
/// the reference that grants us access to the table in any case.
|
||
enum SearchResult<K, V, M> {
|
||
// This is an entry that holds the given key:
|
||
FoundExisting(FullBucket<K, V, M>),
|
||
|
||
// There was no such entry. The reference is given back:
|
||
TableRef(M)
|
||
}
|
||
|
||
impl<K, V, M> SearchResult<K, V, M> {
|
||
fn into_option(self) -> Option<FullBucket<K, V, M>> {
|
||
match self {
|
||
FoundExisting(bucket) => Some(bucket),
|
||
TableRef(_) => None
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash where X: Hash {
|
||
table::make_hash(&self.hash_state, x)
|
||
}
|
||
|
||
/// Search for a key, yielding the index if it's found in the hashtable.
|
||
/// If you already have the hash for the key lying around, use
|
||
/// search_hashed.
|
||
fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> Option<FullBucketImm<'a, K, V>>
|
||
where K: Borrow<Q>, Q: Eq + Hash
|
||
{
|
||
let hash = self.make_hash(q);
|
||
search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
|
||
.into_option()
|
||
}
|
||
|
||
fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> Option<FullBucketMut<'a, K, V>>
|
||
where K: Borrow<Q>, Q: Eq + Hash
|
||
{
|
||
let hash = self.make_hash(q);
|
||
search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
|
||
.into_option()
|
||
}
|
||
|
||
// The caller should ensure that invariants by Robin Hood Hashing hold.
|
||
fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
|
||
let cap = self.table.capacity();
|
||
let mut buckets = Bucket::new(&mut self.table, hash);
|
||
let ib = buckets.index();
|
||
|
||
while buckets.index() != ib + cap {
|
||
// We don't need to compare hashes for value swap.
|
||
// Not even DIBs for Robin Hood.
|
||
buckets = match buckets.peek() {
|
||
Empty(empty) => {
|
||
empty.put(hash, k, v);
|
||
return;
|
||
}
|
||
Full(b) => b.into_bucket()
|
||
};
|
||
buckets.next();
|
||
}
|
||
panic!("Internal HashMap error: Out of space.");
|
||
}
|
||
}
|
||
|
||
impl<K: Hash + Eq, V> HashMap<K, V, RandomState> {
|
||
/// Create an empty HashMap.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let mut map: HashMap<&str, isize> = HashMap::new();
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn new() -> HashMap<K, V, RandomState> {
|
||
Default::default()
|
||
}
|
||
|
||
/// Creates an empty hash map with the given initial capacity.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let mut map: HashMap<&str, isize> = HashMap::with_capacity(10);
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState> {
|
||
HashMap::with_capacity_and_hash_state(capacity, Default::default())
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
/// Creates an empty hashmap which will use the given hasher to hash keys.
|
||
///
|
||
/// The creates map has the default initial capacity.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # #![feature(std_misc)]
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::RandomState;
|
||
///
|
||
/// let s = RandomState::new();
|
||
/// let mut map = HashMap::with_hash_state(s);
|
||
/// map.insert(1, 2);
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "std_misc", reason = "hasher stuff is unclear")]
|
||
pub fn with_hash_state(hash_state: S) -> HashMap<K, V, S> {
|
||
HashMap {
|
||
hash_state: hash_state,
|
||
resize_policy: DefaultResizePolicy::new(),
|
||
table: RawTable::new(0),
|
||
}
|
||
}
|
||
|
||
/// Create an empty HashMap with space for at least `capacity`
|
||
/// elements, using `hasher` to hash the keys.
|
||
///
|
||
/// Warning: `hasher` is normally randomly generated, and
|
||
/// is designed to allow HashMaps to be resistant to attacks that
|
||
/// cause many collisions and very poor performance. Setting it
|
||
/// manually using this function can expose a DoS attack vector.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # #![feature(std_misc)]
|
||
/// use std::collections::HashMap;
|
||
/// use std::collections::hash_map::RandomState;
|
||
///
|
||
/// let s = RandomState::new();
|
||
/// let mut map = HashMap::with_capacity_and_hash_state(10, s);
|
||
/// map.insert(1, 2);
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "std_misc", reason = "hasher stuff is unclear")]
|
||
pub fn with_capacity_and_hash_state(capacity: usize, hash_state: S)
|
||
-> HashMap<K, V, S> {
|
||
let resize_policy = DefaultResizePolicy::new();
|
||
let min_cap = max(INITIAL_CAPACITY, resize_policy.min_capacity(capacity));
|
||
let internal_cap = min_cap.checked_next_power_of_two().expect("capacity overflow");
|
||
assert!(internal_cap >= capacity, "capacity overflow");
|
||
HashMap {
|
||
hash_state: hash_state,
|
||
resize_policy: resize_policy,
|
||
table: RawTable::new(internal_cap),
|
||
}
|
||
}
|
||
|
||
/// Returns the number of elements the map can hold without reallocating.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let map: HashMap<isize, isize> = HashMap::with_capacity(100);
|
||
/// assert!(map.capacity() >= 100);
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn capacity(&self) -> usize {
|
||
self.resize_policy.usable_capacity(self.table.capacity())
|
||
}
|
||
|
||
/// Reserves capacity for at least `additional` more elements to be inserted
|
||
/// in the `HashMap`. The collection may reserve more space to avoid
|
||
/// frequent reallocations.
|
||
///
|
||
/// # Panics
|
||
///
|
||
/// Panics if the new allocation size overflows `usize`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
/// let mut map: HashMap<&str, isize> = HashMap::new();
|
||
/// map.reserve(10);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn reserve(&mut self, additional: usize) {
|
||
let new_size = self.len().checked_add(additional).expect("capacity overflow");
|
||
let min_cap = self.resize_policy.min_capacity(new_size);
|
||
|
||
// An invalid value shouldn't make us run out of space. This includes
|
||
// an overflow check.
|
||
assert!(new_size <= min_cap);
|
||
|
||
if self.table.capacity() < min_cap {
|
||
let new_capacity = max(min_cap.next_power_of_two(), INITIAL_CAPACITY);
|
||
self.resize(new_capacity);
|
||
}
|
||
}
|
||
|
||
/// Resizes the internal vectors to a new capacity. It's your responsibility to:
|
||
/// 1) Make sure the new capacity is enough for all the elements, accounting
|
||
/// for the load factor.
|
||
/// 2) Ensure new_capacity is a power of two or zero.
|
||
fn resize(&mut self, new_capacity: usize) {
|
||
assert!(self.table.size() <= new_capacity);
|
||
assert!(new_capacity.is_power_of_two() || new_capacity == 0);
|
||
|
||
let mut old_table = replace(&mut self.table, RawTable::new(new_capacity));
|
||
let old_size = old_table.size();
|
||
|
||
if old_table.capacity() == 0 || old_table.size() == 0 {
|
||
return;
|
||
}
|
||
|
||
// Grow the table.
|
||
// Specialization of the other branch.
|
||
let mut bucket = Bucket::first(&mut old_table);
|
||
|
||
// "So a few of the first shall be last: for many be called,
|
||
// but few chosen."
|
||
//
|
||
// We'll most likely encounter a few buckets at the beginning that
|
||
// have their initial buckets near the end of the table. They were
|
||
// placed at the beginning as the probe wrapped around the table
|
||
// during insertion. We must skip forward to a bucket that won't
|
||
// get reinserted too early and won't unfairly steal others spot.
|
||
// This eliminates the need for robin hood.
|
||
loop {
|
||
bucket = match bucket.peek() {
|
||
Full(full) => {
|
||
if full.distance() == 0 {
|
||
// This bucket occupies its ideal spot.
|
||
// It indicates the start of another "cluster".
|
||
bucket = full.into_bucket();
|
||
break;
|
||
}
|
||
// Leaving this bucket in the last cluster for later.
|
||
full.into_bucket()
|
||
}
|
||
Empty(b) => {
|
||
// Encountered a hole between clusters.
|
||
b.into_bucket()
|
||
}
|
||
};
|
||
bucket.next();
|
||
}
|
||
|
||
// This is how the buckets might be laid out in memory:
|
||
// ($ marks an initialized bucket)
|
||
// ________________
|
||
// |$$$_$$$$$$_$$$$$|
|
||
//
|
||
// But we've skipped the entire initial cluster of buckets
|
||
// and will continue iteration in this order:
|
||
// ________________
|
||
// |$$$$$$_$$$$$
|
||
// ^ wrap around once end is reached
|
||
// ________________
|
||
// $$$_____________|
|
||
// ^ exit once table.size == 0
|
||
loop {
|
||
bucket = match bucket.peek() {
|
||
Full(bucket) => {
|
||
let h = bucket.hash();
|
||
let (b, k, v) = bucket.take();
|
||
self.insert_hashed_ordered(h, k, v);
|
||
{
|
||
let t = b.table(); // FIXME "lifetime too short".
|
||
if t.size() == 0 { break }
|
||
};
|
||
b.into_bucket()
|
||
}
|
||
Empty(b) => b.into_bucket()
|
||
};
|
||
bucket.next();
|
||
}
|
||
|
||
assert_eq!(self.table.size(), old_size);
|
||
}
|
||
|
||
/// Shrinks the capacity of the map as much as possible. It will drop
|
||
/// down as much as possible while maintaining the internal rules
|
||
/// and possibly leaving some space in accordance with the resize policy.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map: HashMap<isize, isize> = HashMap::with_capacity(100);
|
||
/// map.insert(1, 2);
|
||
/// map.insert(3, 4);
|
||
/// assert!(map.capacity() >= 100);
|
||
/// map.shrink_to_fit();
|
||
/// assert!(map.capacity() >= 2);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn shrink_to_fit(&mut self) {
|
||
let min_capacity = self.resize_policy.min_capacity(self.len());
|
||
let min_capacity = max(min_capacity.next_power_of_two(), INITIAL_CAPACITY);
|
||
|
||
// An invalid value shouldn't make us run out of space.
|
||
debug_assert!(self.len() <= min_capacity);
|
||
|
||
if self.table.capacity() != min_capacity {
|
||
let old_table = replace(&mut self.table, RawTable::new(min_capacity));
|
||
let old_size = old_table.size();
|
||
|
||
// Shrink the table. Naive algorithm for resizing:
|
||
for (h, k, v) in old_table.into_iter() {
|
||
self.insert_hashed_nocheck(h, k, v);
|
||
}
|
||
|
||
debug_assert_eq!(self.table.size(), old_size);
|
||
}
|
||
}
|
||
|
||
/// Insert a pre-hashed key-value pair, without first checking
|
||
/// that there's enough room in the buckets. Returns a reference to the
|
||
/// newly insert value.
|
||
///
|
||
/// If the key already exists, the hashtable will be returned untouched
|
||
/// and a reference to the existing element will be returned.
|
||
fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> &mut V {
|
||
self.insert_or_replace_with(hash, k, v, |_, _, _| ())
|
||
}
|
||
|
||
fn insert_or_replace_with<'a, F>(&'a mut self,
|
||
hash: SafeHash,
|
||
k: K,
|
||
v: V,
|
||
mut found_existing: F)
|
||
-> &'a mut V where
|
||
F: FnMut(&mut K, &mut V, V),
|
||
{
|
||
// Worst case, we'll find one empty bucket among `size + 1` buckets.
|
||
let size = self.table.size();
|
||
let mut probe = Bucket::new(&mut self.table, hash);
|
||
let ib = probe.index();
|
||
|
||
loop {
|
||
let mut bucket = match probe.peek() {
|
||
Empty(bucket) => {
|
||
// Found a hole!
|
||
return bucket.put(hash, k, v).into_mut_refs().1;
|
||
}
|
||
Full(bucket) => bucket
|
||
};
|
||
|
||
// hash matches?
|
||
if bucket.hash() == hash {
|
||
// key matches?
|
||
if k == *bucket.read_mut().0 {
|
||
let (bucket_k, bucket_v) = bucket.into_mut_refs();
|
||
debug_assert!(k == *bucket_k);
|
||
// Key already exists. Get its reference.
|
||
found_existing(bucket_k, bucket_v, v);
|
||
return bucket_v;
|
||
}
|
||
}
|
||
|
||
let robin_ib = bucket.index() as isize - bucket.distance() as isize;
|
||
|
||
if (ib as isize) < robin_ib {
|
||
// Found a luckier bucket than me. Better steal his spot.
|
||
return robin_hood(bucket, robin_ib as usize, hash, k, v);
|
||
}
|
||
|
||
probe = bucket.next();
|
||
assert!(probe.index() != ib + size + 1);
|
||
}
|
||
}
|
||
|
||
/// An iterator visiting all keys in arbitrary order.
|
||
/// Iterator element type is `&'a K`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for key in map.keys() {
|
||
/// println!("{}", key);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn keys<'a>(&'a self) -> Keys<'a, K, V> {
|
||
fn first<A, B>((a, _): (A, B)) -> A { a }
|
||
let first: fn((&'a K,&'a V)) -> &'a K = first; // coerce to fn ptr
|
||
|
||
Keys { inner: self.iter().map(first) }
|
||
}
|
||
|
||
/// An iterator visiting all values in arbitrary order.
|
||
/// Iterator element type is `&'a V`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for val in map.values() {
|
||
/// println!("{}", val);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn values<'a>(&'a self) -> Values<'a, K, V> {
|
||
fn second<A, B>((_, b): (A, B)) -> B { b }
|
||
let second: fn((&'a K,&'a V)) -> &'a V = second; // coerce to fn ptr
|
||
|
||
Values { inner: self.iter().map(second) }
|
||
}
|
||
|
||
/// An iterator visiting all key-value pairs in arbitrary order.
|
||
/// Iterator element type is `(&'a K, &'a V)`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// for (key, val) in map.iter() {
|
||
/// println!("key: {} val: {}", key, val);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn iter(&self) -> Iter<K, V> {
|
||
Iter { inner: self.table.iter() }
|
||
}
|
||
|
||
/// An iterator visiting all key-value pairs in arbitrary order,
|
||
/// with mutable references to the values.
|
||
/// Iterator element type is `(&'a K, &'a mut V)`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// // Update all values
|
||
/// for (_, val) in map.iter_mut() {
|
||
/// *val *= 2;
|
||
/// }
|
||
///
|
||
/// for (key, val) in map.iter() {
|
||
/// println!("key: {} val: {}", key, val);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn iter_mut(&mut self) -> IterMut<K, V> {
|
||
IterMut { inner: self.table.iter_mut() }
|
||
}
|
||
|
||
/// Creates a consuming iterator, that is, one that moves each key-value
|
||
/// pair out of the map in arbitrary order. The map cannot be used after
|
||
/// calling this.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert("a", 1);
|
||
/// map.insert("b", 2);
|
||
/// map.insert("c", 3);
|
||
///
|
||
/// // Not possible with .iter()
|
||
/// let vec: Vec<(&str, isize)> = map.into_iter().collect();
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn into_iter(self) -> IntoIter<K, V> {
|
||
fn last_two<A, B, C>((_, b, c): (A, B, C)) -> (B, C) { (b, c) }
|
||
let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two;
|
||
|
||
IntoIter {
|
||
inner: self.table.into_iter().map(last_two)
|
||
}
|
||
}
|
||
|
||
/// Gets the given key's corresponding entry in the map for in-place manipulation.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn entry(&mut self, key: K) -> Entry<K, V> {
|
||
// Gotta resize now.
|
||
self.reserve(1);
|
||
|
||
let hash = self.make_hash(&key);
|
||
search_entry_hashed(&mut self.table, hash, key)
|
||
}
|
||
|
||
/// Returns the number of elements in the map.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// assert_eq!(a.len(), 0);
|
||
/// a.insert(1, "a");
|
||
/// assert_eq!(a.len(), 1);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn len(&self) -> usize { self.table.size() }
|
||
|
||
/// Returns true if the map contains no elements.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// assert!(a.is_empty());
|
||
/// a.insert(1, "a");
|
||
/// assert!(!a.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn is_empty(&self) -> bool { self.len() == 0 }
|
||
|
||
/// Clears the map, returning all key-value pairs as an iterator. Keeps the
|
||
/// allocated memory for reuse.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// # #![feature(std_misc)]
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// a.insert(1, "a");
|
||
/// a.insert(2, "b");
|
||
///
|
||
/// for (k, v) in a.drain().take(1) {
|
||
/// assert!(k == 1 || k == 2);
|
||
/// assert!(v == "a" || v == "b");
|
||
/// }
|
||
///
|
||
/// assert!(a.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "std_misc",
|
||
reason = "matches collection reform specification, waiting for dust to settle")]
|
||
pub fn drain(&mut self) -> Drain<K, V> {
|
||
fn last_two<A, B, C>((_, b, c): (A, B, C)) -> (B, C) { (b, c) }
|
||
let last_two: fn((SafeHash, K, V)) -> (K, V) = last_two; // coerce to fn pointer
|
||
|
||
Drain {
|
||
inner: self.table.drain().map(last_two),
|
||
}
|
||
}
|
||
|
||
/// Clears the map, removing all key-value pairs. Keeps the allocated memory
|
||
/// for reuse.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut a = HashMap::new();
|
||
/// a.insert(1, "a");
|
||
/// a.clear();
|
||
/// assert!(a.is_empty());
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
#[inline]
|
||
pub fn clear(&mut self) {
|
||
self.drain();
|
||
}
|
||
|
||
/// Returns a reference to the value corresponding to the key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// `Hash` and `Eq` on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.get(&1), Some(&"a"));
|
||
/// assert_eq!(map.get(&2), None);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
|
||
where K: Borrow<Q>, Q: Hash + Eq
|
||
{
|
||
self.search(k).map(|bucket| bucket.into_refs().1)
|
||
}
|
||
|
||
/// Returns true if the map contains a value for the specified key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// `Hash` and `Eq` on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.contains_key(&1), true);
|
||
/// assert_eq!(map.contains_key(&2), false);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
|
||
where K: Borrow<Q>, Q: Hash + Eq
|
||
{
|
||
self.search(k).is_some()
|
||
}
|
||
|
||
/// Returns a mutable reference to the value corresponding to the key.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// `Hash` and `Eq` on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// match map.get_mut(&1) {
|
||
/// Some(x) => *x = "b",
|
||
/// None => (),
|
||
/// }
|
||
/// assert_eq!(map[&1], "b");
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
|
||
where K: Borrow<Q>, Q: Hash + Eq
|
||
{
|
||
self.search_mut(k).map(|bucket| bucket.into_mut_refs().1)
|
||
}
|
||
|
||
/// Inserts a key-value pair into the map. If the key already had a value
|
||
/// present in the map, that value is returned. Otherwise, `None` is returned.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// assert_eq!(map.insert(37, "a"), None);
|
||
/// assert_eq!(map.is_empty(), false);
|
||
///
|
||
/// map.insert(37, "b");
|
||
/// assert_eq!(map.insert(37, "c"), Some("b"));
|
||
/// assert_eq!(map[&37], "c");
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
|
||
let hash = self.make_hash(&k);
|
||
self.reserve(1);
|
||
|
||
let mut retval = None;
|
||
self.insert_or_replace_with(hash, k, v, |_, val_ref, val| {
|
||
retval = Some(replace(val_ref, val));
|
||
});
|
||
retval
|
||
}
|
||
|
||
/// Removes a key from the map, returning the value at the key if the key
|
||
/// was previously in the map.
|
||
///
|
||
/// The key may be any borrowed form of the map's key type, but
|
||
/// `Hash` and `Eq` on the borrowed form *must* match those for
|
||
/// the key type.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::collections::HashMap;
|
||
///
|
||
/// let mut map = HashMap::new();
|
||
/// map.insert(1, "a");
|
||
/// assert_eq!(map.remove(&1), Some("a"));
|
||
/// assert_eq!(map.remove(&1), None);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
|
||
where K: Borrow<Q>, Q: Hash + Eq
|
||
{
|
||
if self.table.size() == 0 {
|
||
return None
|
||
}
|
||
|
||
self.search_mut(k).map(|bucket| pop_internal(bucket).1)
|
||
}
|
||
}
|
||
|
||
fn search_entry_hashed<'a, K: Eq, V>(table: &'a mut RawTable<K,V>, hash: SafeHash, k: K)
|
||
-> Entry<'a, K, V>
|
||
{
|
||
// Worst case, we'll find one empty bucket among `size + 1` buckets.
|
||
let size = table.size();
|
||
let mut probe = Bucket::new(table, hash);
|
||
let ib = probe.index();
|
||
|
||
loop {
|
||
let bucket = match probe.peek() {
|
||
Empty(bucket) => {
|
||
// Found a hole!
|
||
return Vacant(VacantEntry {
|
||
hash: hash,
|
||
key: k,
|
||
elem: NoElem(bucket),
|
||
});
|
||
},
|
||
Full(bucket) => bucket
|
||
};
|
||
|
||
// hash matches?
|
||
if bucket.hash() == hash {
|
||
// key matches?
|
||
if k == *bucket.read().0 {
|
||
return Occupied(OccupiedEntry{
|
||
elem: bucket,
|
||
});
|
||
}
|
||
}
|
||
|
||
let robin_ib = bucket.index() as isize - bucket.distance() as isize;
|
||
|
||
if (ib as isize) < robin_ib {
|
||
// Found a luckier bucket than me. Better steal his spot.
|
||
return Vacant(VacantEntry {
|
||
hash: hash,
|
||
key: k,
|
||
elem: NeqElem(bucket, robin_ib as usize),
|
||
});
|
||
}
|
||
|
||
probe = bucket.next();
|
||
assert!(probe.index() != ib + size + 1);
|
||
}
|
||
}
|
||
|
||
impl<K, V, S> PartialEq for HashMap<K, V, S>
|
||
where K: Eq + Hash, V: PartialEq, S: HashState
|
||
{
|
||
fn eq(&self, other: &HashMap<K, V, S>) -> bool {
|
||
if self.len() != other.len() { return false; }
|
||
|
||
self.iter().all(|(key, value)|
|
||
other.get(key).map_or(false, |v| *value == *v)
|
||
)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> Eq for HashMap<K, V, S>
|
||
where K: Eq + Hash, V: Eq, S: HashState
|
||
{}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> Debug for HashMap<K, V, S>
|
||
where K: Eq + Hash + Debug, V: Debug, S: HashState
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
self.iter().fold(f.debug_map(), |b, (k, v)| b.entry(k, v)).finish()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> Default for HashMap<K, V, S>
|
||
where K: Eq + Hash,
|
||
S: HashState + Default,
|
||
{
|
||
fn default() -> HashMap<K, V, S> {
|
||
HashMap::with_hash_state(Default::default())
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
|
||
where K: Eq + Hash + Borrow<Q>,
|
||
Q: Eq + Hash,
|
||
S: HashState,
|
||
{
|
||
type Output = V;
|
||
|
||
#[inline]
|
||
fn index(&self, index: &Q) -> &V {
|
||
self.get(index).expect("no entry found for key")
|
||
}
|
||
}
|
||
|
||
/// HashMap iterator.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Iter<'a, K: 'a, V: 'a> {
|
||
inner: table::Iter<'a, K, V>
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Iter<'a, K, V> {
|
||
fn clone(&self) -> Iter<'a, K, V> {
|
||
Iter {
|
||
inner: self.inner.clone()
|
||
}
|
||
}
|
||
}
|
||
|
||
/// HashMap mutable values iterator.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct IterMut<'a, K: 'a, V: 'a> {
|
||
inner: table::IterMut<'a, K, V>
|
||
}
|
||
|
||
/// HashMap move iterator.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct IntoIter<K, V> {
|
||
inner: iter::Map<table::IntoIter<K, V>, fn((SafeHash, K, V)) -> (K, V)>
|
||
}
|
||
|
||
/// HashMap keys iterator.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Keys<'a, K: 'a, V: 'a> {
|
||
inner: Map<Iter<'a, K, V>, fn((&'a K, &'a V)) -> &'a K>
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Keys<'a, K, V> {
|
||
fn clone(&self) -> Keys<'a, K, V> {
|
||
Keys {
|
||
inner: self.inner.clone()
|
||
}
|
||
}
|
||
}
|
||
|
||
/// HashMap values iterator.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Values<'a, K: 'a, V: 'a> {
|
||
inner: Map<Iter<'a, K, V>, fn((&'a K, &'a V)) -> &'a V>
|
||
}
|
||
|
||
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
|
||
impl<'a, K, V> Clone for Values<'a, K, V> {
|
||
fn clone(&self) -> Values<'a, K, V> {
|
||
Values {
|
||
inner: self.inner.clone()
|
||
}
|
||
}
|
||
}
|
||
|
||
/// HashMap drain iterator.
|
||
#[unstable(feature = "std_misc",
|
||
reason = "matches collection reform specification, waiting for dust to settle")]
|
||
pub struct Drain<'a, K: 'a, V: 'a> {
|
||
inner: iter::Map<table::Drain<'a, K, V>, fn((SafeHash, K, V)) -> (K, V)>
|
||
}
|
||
|
||
/// A view into a single occupied location in a HashMap.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
|
||
elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
|
||
}
|
||
|
||
/// A view into a single empty location in a HashMap.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct VacantEntry<'a, K: 'a, V: 'a> {
|
||
hash: SafeHash,
|
||
key: K,
|
||
elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
|
||
}
|
||
|
||
/// A view into a single location in a map, which may be vacant or occupied.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub enum Entry<'a, K: 'a, V: 'a> {
|
||
/// An occupied Entry.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
Occupied(OccupiedEntry<'a, K, V>),
|
||
|
||
/// A vacant Entry.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
Vacant(VacantEntry<'a, K, V>),
|
||
}
|
||
|
||
/// Possible states of a VacantEntry.
|
||
enum VacantEntryState<K, V, M> {
|
||
/// The index is occupied, but the key to insert has precedence,
|
||
/// and will kick the current one out on insertion.
|
||
NeqElem(FullBucket<K, V, M>, usize),
|
||
/// The index is genuinely vacant.
|
||
NoElem(EmptyBucket<K, V, M>),
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
type Item = (&'a K, &'a V);
|
||
type IntoIter = Iter<'a, K, V>;
|
||
|
||
fn into_iter(self) -> Iter<'a, K, V> {
|
||
self.iter()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
type Item = (&'a K, &'a mut V);
|
||
type IntoIter = IterMut<'a, K, V>;
|
||
|
||
fn into_iter(mut self) -> IterMut<'a, K, V> {
|
||
self.iter_mut()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> IntoIterator for HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
type Item = (K, V);
|
||
type IntoIter = IntoIter<K, V>;
|
||
|
||
fn into_iter(self) -> IntoIter<K, V> {
|
||
self.into_iter()
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> Iterator for Iter<'a, K, V> {
|
||
type Item = (&'a K, &'a V);
|
||
|
||
#[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
|
||
type Item = (&'a K, &'a mut V);
|
||
|
||
#[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V> Iterator for IntoIter<K, V> {
|
||
type Item = (K, V);
|
||
|
||
#[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> Iterator for Keys<'a, K, V> {
|
||
type Item = &'a K;
|
||
|
||
#[inline] fn next(&mut self) -> Option<(&'a K)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> Iterator for Values<'a, K, V> {
|
||
type Item = &'a V;
|
||
|
||
#[inline] fn next(&mut self) -> Option<(&'a V)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> Iterator for Drain<'a, K, V> {
|
||
type Item = (K, V);
|
||
|
||
#[inline] fn next(&mut self) -> Option<(K, V)> { self.inner.next() }
|
||
#[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
|
||
}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
|
||
#[inline] fn len(&self) -> usize { self.inner.len() }
|
||
}
|
||
|
||
impl<'a, K, V> Entry<'a, K, V> {
|
||
/// Returns a mutable reference to the entry if occupied, or the VacantEntry if vacant.
|
||
#[unstable(feature = "std_misc",
|
||
reason = "will soon be replaced by or_insert")]
|
||
#[deprecated(since = "1.0",
|
||
reason = "replaced with more ergonomic `or_insert` and `or_insert_with`")]
|
||
/// Returns a mutable reference to the entry if occupied, or the VacantEntry if vacant
|
||
pub fn get(self) -> Result<&'a mut V, VacantEntry<'a, K, V>> {
|
||
match self {
|
||
Occupied(entry) => Ok(entry.into_mut()),
|
||
Vacant(entry) => Err(entry),
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
/// Ensures a value is in the entry by inserting the default if empty, and returns
|
||
/// a mutable reference to the value in the entry.
|
||
pub fn or_insert(self, default: V) -> &'a mut V {
|
||
match self {
|
||
Occupied(entry) => entry.into_mut(),
|
||
Vacant(entry) => entry.insert(default),
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
/// Ensures a value is in the entry by inserting the result of the default function if empty,
|
||
/// and returns a mutable reference to the value in the entry.
|
||
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
|
||
match self {
|
||
Occupied(entry) => entry.into_mut(),
|
||
Vacant(entry) => entry.insert(default()),
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, K, V> OccupiedEntry<'a, K, V> {
|
||
/// Gets a reference to the value in the entry.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn get(&self) -> &V {
|
||
self.elem.read().1
|
||
}
|
||
|
||
/// Gets a mutable reference to the value in the entry.
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn get_mut(&mut self) -> &mut V {
|
||
self.elem.read_mut().1
|
||
}
|
||
|
||
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
|
||
/// with a lifetime bound to the map itself
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn into_mut(self) -> &'a mut V {
|
||
self.elem.into_mut_refs().1
|
||
}
|
||
|
||
/// Sets the value of the entry, and returns the entry's old value
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn insert(&mut self, mut value: V) -> V {
|
||
let old_value = self.get_mut();
|
||
mem::swap(&mut value, old_value);
|
||
value
|
||
}
|
||
|
||
/// Takes the value out of the entry, and returns it
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn remove(self) -> V {
|
||
pop_internal(self.elem).1
|
||
}
|
||
}
|
||
|
||
impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
|
||
/// Sets the value of the entry with the VacantEntry's key,
|
||
/// and returns a mutable reference to it
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn insert(self, value: V) -> &'a mut V {
|
||
match self.elem {
|
||
NeqElem(bucket, ib) => {
|
||
robin_hood(bucket, ib, self.hash, self.key, value)
|
||
}
|
||
NoElem(bucket) => {
|
||
bucket.put(self.hash, self.key, value).into_mut_refs().1
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState + Default
|
||
{
|
||
fn from_iter<T: IntoIterator<Item=(K, V)>>(iterable: T) -> HashMap<K, V, S> {
|
||
let iter = iterable.into_iter();
|
||
let lower = iter.size_hint().0;
|
||
let mut map = HashMap::with_capacity_and_hash_state(lower,
|
||
Default::default());
|
||
map.extend(iter);
|
||
map
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
|
||
where K: Eq + Hash, S: HashState
|
||
{
|
||
fn extend<T: IntoIterator<Item=(K, V)>>(&mut self, iter: T) {
|
||
for (k, v) in iter {
|
||
self.insert(k, v);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/// `RandomState` is the default state for `HashMap` types.
|
||
///
|
||
/// A particular instance `RandomState` will create the same instances of
|
||
/// `Hasher`, but the hashers created by two different `RandomState`
|
||
/// instances are unlikely to produce the same result for the same values.
|
||
#[derive(Clone)]
|
||
#[unstable(feature = "std_misc",
|
||
reason = "hashing an hash maps may be altered")]
|
||
pub struct RandomState {
|
||
k0: u64,
|
||
k1: u64,
|
||
}
|
||
|
||
#[unstable(feature = "std_misc",
|
||
reason = "hashing an hash maps may be altered")]
|
||
impl RandomState {
|
||
/// Construct a new `RandomState` that is initialized with random keys.
|
||
#[inline]
|
||
#[allow(deprecated)]
|
||
pub fn new() -> RandomState {
|
||
let mut r = rand::thread_rng();
|
||
RandomState { k0: r.gen(), k1: r.gen() }
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "std_misc",
|
||
reason = "hashing an hash maps may be altered")]
|
||
impl HashState for RandomState {
|
||
type Hasher = SipHasher;
|
||
fn hasher(&self) -> SipHasher {
|
||
SipHasher::new_with_keys(self.k0, self.k1)
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "std_misc",
|
||
reason = "hashing an hash maps may be altered")]
|
||
impl Default for RandomState {
|
||
#[inline]
|
||
fn default() -> RandomState {
|
||
RandomState::new()
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod test_map {
|
||
use prelude::v1::*;
|
||
|
||
use super::HashMap;
|
||
use super::Entry::{Occupied, Vacant};
|
||
use iter::{range_inclusive, range_step_inclusive, repeat};
|
||
use cell::RefCell;
|
||
use rand::{thread_rng, Rng};
|
||
|
||
#[test]
|
||
fn test_create_capacity_zero() {
|
||
let mut m = HashMap::with_capacity(0);
|
||
|
||
assert!(m.insert(1, 1).is_none());
|
||
|
||
assert!(m.contains_key(&1));
|
||
assert!(!m.contains_key(&0));
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert() {
|
||
let mut m = HashMap::new();
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(m.len(), 1);
|
||
assert!(m.insert(2, 4).is_none());
|
||
assert_eq!(m.len(), 2);
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&2).unwrap(), 4);
|
||
}
|
||
|
||
thread_local! { static DROP_VECTOR: RefCell<Vec<isize>> = RefCell::new(Vec::new()) }
|
||
|
||
#[derive(Hash, PartialEq, Eq)]
|
||
struct Dropable {
|
||
k: usize
|
||
}
|
||
|
||
impl Dropable {
|
||
fn new(k: usize) -> Dropable {
|
||
DROP_VECTOR.with(|slot| {
|
||
slot.borrow_mut()[k] += 1;
|
||
});
|
||
|
||
Dropable { k: k }
|
||
}
|
||
}
|
||
|
||
impl Drop for Dropable {
|
||
fn drop(&mut self) {
|
||
DROP_VECTOR.with(|slot| {
|
||
slot.borrow_mut()[self.k] -= 1;
|
||
});
|
||
}
|
||
}
|
||
|
||
impl Clone for Dropable {
|
||
fn clone(&self) -> Dropable {
|
||
Dropable::new(self.k)
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_drops() {
|
||
DROP_VECTOR.with(|slot| {
|
||
*slot.borrow_mut() = repeat(0).take(200).collect();
|
||
});
|
||
|
||
{
|
||
let mut m = HashMap::new();
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
|
||
for i in 0..100 {
|
||
let d1 = Dropable::new(i);
|
||
let d2 = Dropable::new(i+100);
|
||
m.insert(d1, d2);
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
for i in 0..50 {
|
||
let k = Dropable::new(i);
|
||
let v = m.remove(&k);
|
||
|
||
assert!(v.is_some());
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
assert_eq!(v.borrow()[i+100], 1);
|
||
});
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..50 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
assert_eq!(v.borrow()[i+100], 0);
|
||
}
|
||
|
||
for i in 50..100 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
assert_eq!(v.borrow()[i+100], 1);
|
||
}
|
||
});
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_iter_drops() {
|
||
DROP_VECTOR.with(|v| {
|
||
*v.borrow_mut() = repeat(0).take(200).collect();
|
||
});
|
||
|
||
let hm = {
|
||
let mut hm = HashMap::new();
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
|
||
for i in 0..100 {
|
||
let d1 = Dropable::new(i);
|
||
let d2 = Dropable::new(i+100);
|
||
hm.insert(d1, d2);
|
||
}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
hm
|
||
};
|
||
|
||
// By the way, ensure that cloning doesn't screw up the dropping.
|
||
drop(hm.clone());
|
||
|
||
{
|
||
let mut half = hm.into_iter().take(50);
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 1);
|
||
}
|
||
});
|
||
|
||
for _ in half.by_ref() {}
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
let nk = (0..100).filter(|&i| {
|
||
v.borrow()[i] == 1
|
||
}).count();
|
||
|
||
let nv = (0..100).filter(|&i| {
|
||
v.borrow()[i+100] == 1
|
||
}).count();
|
||
|
||
assert_eq!(nk, 50);
|
||
assert_eq!(nv, 50);
|
||
});
|
||
};
|
||
|
||
DROP_VECTOR.with(|v| {
|
||
for i in 0..200 {
|
||
assert_eq!(v.borrow()[i], 0);
|
||
}
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
fn test_empty_pop() {
|
||
let mut m: HashMap<isize, bool> = HashMap::new();
|
||
assert_eq!(m.remove(&0), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_lots_of_insertions() {
|
||
let mut m = HashMap::new();
|
||
|
||
// Try this a few times to make sure we never screw up the hashmap's
|
||
// internal state.
|
||
for _ in 0..10 {
|
||
assert!(m.is_empty());
|
||
|
||
for i in range_inclusive(1, 1000) {
|
||
assert!(m.insert(i, i).is_none());
|
||
|
||
for j in range_inclusive(1, i) {
|
||
let r = m.get(&j);
|
||
assert_eq!(r, Some(&j));
|
||
}
|
||
|
||
for j in range_inclusive(i+1, 1000) {
|
||
let r = m.get(&j);
|
||
assert_eq!(r, None);
|
||
}
|
||
}
|
||
|
||
for i in range_inclusive(1001, 2000) {
|
||
assert!(!m.contains_key(&i));
|
||
}
|
||
|
||
// remove forwards
|
||
for i in range_inclusive(1, 1000) {
|
||
assert!(m.remove(&i).is_some());
|
||
|
||
for j in range_inclusive(1, i) {
|
||
assert!(!m.contains_key(&j));
|
||
}
|
||
|
||
for j in range_inclusive(i+1, 1000) {
|
||
assert!(m.contains_key(&j));
|
||
}
|
||
}
|
||
|
||
for i in range_inclusive(1, 1000) {
|
||
assert!(!m.contains_key(&i));
|
||
}
|
||
|
||
for i in range_inclusive(1, 1000) {
|
||
assert!(m.insert(i, i).is_none());
|
||
}
|
||
|
||
// remove backwards
|
||
for i in range_step_inclusive(1000, 1, -1) {
|
||
assert!(m.remove(&i).is_some());
|
||
|
||
for j in range_inclusive(i, 1000) {
|
||
assert!(!m.contains_key(&j));
|
||
}
|
||
|
||
for j in range_inclusive(1, i-1) {
|
||
assert!(m.contains_key(&j));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_find_mut() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.insert(1, 12).is_none());
|
||
assert!(m.insert(2, 8).is_none());
|
||
assert!(m.insert(5, 14).is_none());
|
||
let new = 100;
|
||
match m.get_mut(&5) {
|
||
None => panic!(), Some(x) => *x = new
|
||
}
|
||
assert_eq!(m.get(&5), Some(&new));
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert_overwrite() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert!(!m.insert(1, 3).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert_conflicts() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert!(m.insert(5, 3).is_none());
|
||
assert!(m.insert(9, 4).is_none());
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_conflict_remove() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert!(m.insert(5, 3).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert!(m.insert(9, 4).is_none());
|
||
assert_eq!(*m.get(&1).unwrap(), 2);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert!(m.remove(&1).is_some());
|
||
assert_eq!(*m.get(&9).unwrap(), 4);
|
||
assert_eq!(*m.get(&5).unwrap(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_empty() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
assert!(m.insert(1, 2).is_none());
|
||
assert!(!m.is_empty());
|
||
assert!(m.remove(&1).is_some());
|
||
assert!(m.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop() {
|
||
let mut m = HashMap::new();
|
||
m.insert(1, 2);
|
||
assert_eq!(m.remove(&1), Some(2));
|
||
assert_eq!(m.remove(&1), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_iterate() {
|
||
let mut m = HashMap::with_capacity(4);
|
||
for i in 0..32 {
|
||
assert!(m.insert(i, i*2).is_none());
|
||
}
|
||
assert_eq!(m.len(), 32);
|
||
|
||
let mut observed: u32 = 0;
|
||
|
||
for (k, v) in &m {
|
||
assert_eq!(*v, *k * 2);
|
||
observed |= 1 << *k;
|
||
}
|
||
assert_eq!(observed, 0xFFFF_FFFF);
|
||
}
|
||
|
||
#[test]
|
||
fn test_keys() {
|
||
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
|
||
let map: HashMap<_, _> = vec.into_iter().collect();
|
||
let keys: Vec<_> = map.keys().cloned().collect();
|
||
assert_eq!(keys.len(), 3);
|
||
assert!(keys.contains(&1));
|
||
assert!(keys.contains(&2));
|
||
assert!(keys.contains(&3));
|
||
}
|
||
|
||
#[test]
|
||
fn test_values() {
|
||
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
|
||
let map: HashMap<_, _> = vec.into_iter().collect();
|
||
let values: Vec<_> = map.values().cloned().collect();
|
||
assert_eq!(values.len(), 3);
|
||
assert!(values.contains(&'a'));
|
||
assert!(values.contains(&'b'));
|
||
assert!(values.contains(&'c'));
|
||
}
|
||
|
||
#[test]
|
||
fn test_find() {
|
||
let mut m = HashMap::new();
|
||
assert!(m.get(&1).is_none());
|
||
m.insert(1, 2);
|
||
match m.get(&1) {
|
||
None => panic!(),
|
||
Some(v) => assert_eq!(*v, 2)
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_eq() {
|
||
let mut m1 = HashMap::new();
|
||
m1.insert(1, 2);
|
||
m1.insert(2, 3);
|
||
m1.insert(3, 4);
|
||
|
||
let mut m2 = HashMap::new();
|
||
m2.insert(1, 2);
|
||
m2.insert(2, 3);
|
||
|
||
assert!(m1 != m2);
|
||
|
||
m2.insert(3, 4);
|
||
|
||
assert_eq!(m1, m2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_show() {
|
||
let mut map = HashMap::new();
|
||
let empty: HashMap<i32, i32> = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(3, 4);
|
||
|
||
let map_str = format!("{:?}", map);
|
||
|
||
assert!(map_str == "{1: 2, 3: 4}" ||
|
||
map_str == "{3: 4, 1: 2}");
|
||
assert_eq!(format!("{:?}", empty), "{}");
|
||
}
|
||
|
||
#[test]
|
||
fn test_expand() {
|
||
let mut m = HashMap::new();
|
||
|
||
assert_eq!(m.len(), 0);
|
||
assert!(m.is_empty());
|
||
|
||
let mut i = 0;
|
||
let old_cap = m.table.capacity();
|
||
while old_cap == m.table.capacity() {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert!(!m.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_behavior_resize_policy() {
|
||
let mut m = HashMap::new();
|
||
|
||
assert_eq!(m.len(), 0);
|
||
assert_eq!(m.table.capacity(), 0);
|
||
assert!(m.is_empty());
|
||
|
||
m.insert(0, 0);
|
||
m.remove(&0);
|
||
assert!(m.is_empty());
|
||
let initial_cap = m.table.capacity();
|
||
m.reserve(initial_cap);
|
||
let cap = m.table.capacity();
|
||
|
||
assert_eq!(cap, initial_cap * 2);
|
||
|
||
let mut i = 0;
|
||
for _ in 0..cap * 3 / 4 {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
// three quarters full
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert_eq!(m.table.capacity(), cap);
|
||
|
||
for _ in 0..cap / 4 {
|
||
m.insert(i, i);
|
||
i += 1;
|
||
}
|
||
// half full
|
||
|
||
let new_cap = m.table.capacity();
|
||
assert_eq!(new_cap, cap * 2);
|
||
|
||
for _ in 0..cap / 2 - 1 {
|
||
i -= 1;
|
||
m.remove(&i);
|
||
assert_eq!(m.table.capacity(), new_cap);
|
||
}
|
||
// A little more than one quarter full.
|
||
m.shrink_to_fit();
|
||
assert_eq!(m.table.capacity(), cap);
|
||
// again, a little more than half full
|
||
for _ in 0..cap / 2 - 1 {
|
||
i -= 1;
|
||
m.remove(&i);
|
||
}
|
||
m.shrink_to_fit();
|
||
|
||
assert_eq!(m.len(), i);
|
||
assert!(!m.is_empty());
|
||
assert_eq!(m.table.capacity(), initial_cap);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reserve_shrink_to_fit() {
|
||
let mut m = HashMap::new();
|
||
m.insert(0, 0);
|
||
m.remove(&0);
|
||
assert!(m.capacity() >= m.len());
|
||
for i in 0..128 {
|
||
m.insert(i, i);
|
||
}
|
||
m.reserve(256);
|
||
|
||
let usable_cap = m.capacity();
|
||
for i in 128..(128 + 256) {
|
||
m.insert(i, i);
|
||
assert_eq!(m.capacity(), usable_cap);
|
||
}
|
||
|
||
for i in 100..(128 + 256) {
|
||
assert_eq!(m.remove(&i), Some(i));
|
||
}
|
||
m.shrink_to_fit();
|
||
|
||
assert_eq!(m.len(), 100);
|
||
assert!(!m.is_empty());
|
||
assert!(m.capacity() >= m.len());
|
||
|
||
for i in 0..100 {
|
||
assert_eq!(m.remove(&i), Some(i));
|
||
}
|
||
m.shrink_to_fit();
|
||
m.insert(0, 0);
|
||
|
||
assert_eq!(m.len(), 1);
|
||
assert!(m.capacity() >= m.len());
|
||
assert_eq!(m.remove(&0), Some(0));
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_iter() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
for &(k, v) in &xs {
|
||
assert_eq!(map.get(&k), Some(&v));
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_size_hint() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.size_hint(), (3, Some(3)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_len() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.len(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_size_hint() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter_mut();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.size_hint(), (3, Some(3)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_mut_len() {
|
||
let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
let mut iter = map.iter_mut();
|
||
|
||
for _ in iter.by_ref().take(3) {}
|
||
|
||
assert_eq!(iter.len(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_index() {
|
||
let mut map = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(2, 1);
|
||
map.insert(3, 4);
|
||
|
||
assert_eq!(map[&2], 1);
|
||
}
|
||
|
||
#[test]
|
||
#[should_panic]
|
||
fn test_index_nonexistent() {
|
||
let mut map = HashMap::new();
|
||
|
||
map.insert(1, 2);
|
||
map.insert(2, 1);
|
||
map.insert(3, 4);
|
||
|
||
map[&4];
|
||
}
|
||
|
||
#[test]
|
||
fn test_entry(){
|
||
let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)];
|
||
|
||
let mut map: HashMap<_, _> = xs.iter().cloned().collect();
|
||
|
||
// Existing key (insert)
|
||
match map.entry(1) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(mut view) => {
|
||
assert_eq!(view.get(), &10);
|
||
assert_eq!(view.insert(100), 10);
|
||
}
|
||
}
|
||
assert_eq!(map.get(&1).unwrap(), &100);
|
||
assert_eq!(map.len(), 6);
|
||
|
||
|
||
// Existing key (update)
|
||
match map.entry(2) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(mut view) => {
|
||
let v = view.get_mut();
|
||
let new_v = (*v) * 10;
|
||
*v = new_v;
|
||
}
|
||
}
|
||
assert_eq!(map.get(&2).unwrap(), &200);
|
||
assert_eq!(map.len(), 6);
|
||
|
||
// Existing key (take)
|
||
match map.entry(3) {
|
||
Vacant(_) => unreachable!(),
|
||
Occupied(view) => {
|
||
assert_eq!(view.remove(), 30);
|
||
}
|
||
}
|
||
assert_eq!(map.get(&3), None);
|
||
assert_eq!(map.len(), 5);
|
||
|
||
|
||
// Inexistent key (insert)
|
||
match map.entry(10) {
|
||
Occupied(_) => unreachable!(),
|
||
Vacant(view) => {
|
||
assert_eq!(*view.insert(1000), 1000);
|
||
}
|
||
}
|
||
assert_eq!(map.get(&10).unwrap(), &1000);
|
||
assert_eq!(map.len(), 6);
|
||
}
|
||
|
||
#[test]
|
||
fn test_entry_take_doesnt_corrupt() {
|
||
#![allow(deprecated)] //rand
|
||
// Test for #19292
|
||
fn check(m: &HashMap<isize, ()>) {
|
||
for k in m.keys() {
|
||
assert!(m.contains_key(k),
|
||
"{} is in keys() but not in the map?", k);
|
||
}
|
||
}
|
||
|
||
let mut m = HashMap::new();
|
||
let mut rng = thread_rng();
|
||
|
||
// Populate the map with some items.
|
||
for _ in 0..50 {
|
||
let x = rng.gen_range(-10, 10);
|
||
m.insert(x, ());
|
||
}
|
||
|
||
for i in 0..1000 {
|
||
let x = rng.gen_range(-10, 10);
|
||
match m.entry(x) {
|
||
Vacant(_) => {},
|
||
Occupied(e) => {
|
||
println!("{}: remove {}", i, x);
|
||
e.remove();
|
||
},
|
||
}
|
||
|
||
check(&m);
|
||
}
|
||
}
|
||
}
|