2015-03-23 22:43:39 +00:00

3161 lines
118 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// trans.rs: Translate the completed AST to the LLVM IR.
//
// Some functions here, such as trans_block and trans_expr, return a value --
// the result of the translation to LLVM -- while others, such as trans_fn,
// trans_impl, and trans_item, are called only for the side effect of adding a
// particular definition to the LLVM IR output we're producing.
//
// Hopefully useful general knowledge about trans:
//
// * There's no way to find out the Ty type of a ValueRef. Doing so
// would be "trying to get the eggs out of an omelette" (credit:
// pcwalton). You can, instead, find out its TypeRef by calling val_ty,
// but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
// int) and rec(x=int, y=int, z=int) will have the same TypeRef.
#![allow(non_camel_case_types)]
pub use self::ValueOrigin::*;
use super::CrateTranslation;
use super::ModuleTranslation;
use back::link::{mangle_exported_name};
use back::{link, abi};
use lint;
use llvm::{AttrHelper, BasicBlockRef, Linkage, ValueRef, Vector, get_param};
use llvm;
use metadata::{csearch, encoder, loader};
use middle::astencode;
use middle::cfg;
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
use middle::weak_lang_items;
use middle::subst::{Subst, Substs};
use middle::ty::{self, Ty, ClosureTyper};
use session::config::{self, NoDebugInfo};
use session::Session;
use trans::_match;
use trans::adt;
use trans::build::*;
use trans::builder::{Builder, noname};
use trans::callee;
use trans::cleanup::CleanupMethods;
use trans::cleanup;
use trans::closure;
use trans::common::{Block, C_bool, C_bytes_in_context, C_i32, C_integral};
use trans::common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef};
use trans::common::{CrateContext, ExternMap, FunctionContext};
use trans::common::{Result, NodeIdAndSpan};
use trans::common::{node_id_type, return_type_is_void};
use trans::common::{type_is_immediate, type_is_zero_size, val_ty};
use trans::common;
use trans::consts;
use trans::context::SharedCrateContext;
use trans::controlflow;
use trans::datum;
use trans::debuginfo::{self, DebugLoc, ToDebugLoc};
use trans::expr;
use trans::foreign;
use trans::glue;
use trans::inline;
use trans::intrinsic;
use trans::machine;
use trans::machine::{llsize_of, llsize_of_real};
use trans::meth;
use trans::monomorphize;
use trans::tvec;
use trans::type_::Type;
use trans::type_of;
use trans::type_of::*;
use trans::value::Value;
use util::common::indenter;
use util::ppaux::{Repr, ty_to_string};
use util::sha2::Sha256;
use util::nodemap::NodeMap;
use arena::TypedArena;
use libc::{c_uint, uint64_t};
use std::ffi::{CStr, CString};
use std::cell::{Cell, RefCell};
use std::collections::HashSet;
use std::mem;
use std::str;
use std::{i8, i16, i32, i64};
use syntax::abi::{Rust, RustCall, RustIntrinsic, Abi};
use syntax::ast_util::local_def;
use syntax::attr::AttrMetaMethods;
use syntax::attr;
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
use syntax::visit::Visitor;
use syntax::visit;
use syntax::{ast, ast_util, ast_map};
thread_local! {
static TASK_LOCAL_INSN_KEY: RefCell<Option<Vec<&'static str>>> = {
RefCell::new(None)
}
}
pub fn with_insn_ctxt<F>(blk: F) where
F: FnOnce(&[&'static str]),
{
TASK_LOCAL_INSN_KEY.with(move |slot| {
slot.borrow().as_ref().map(move |s| blk(s));
})
}
pub fn init_insn_ctxt() {
TASK_LOCAL_INSN_KEY.with(|slot| {
*slot.borrow_mut() = Some(Vec::new());
});
}
pub struct _InsnCtxt {
_cannot_construct_outside_of_this_module: ()
}
#[unsafe_destructor]
impl Drop for _InsnCtxt {
fn drop(&mut self) {
TASK_LOCAL_INSN_KEY.with(|slot| {
match slot.borrow_mut().as_mut() {
Some(ctx) => { ctx.pop(); }
None => {}
}
})
}
}
pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
debug!("new InsnCtxt: {}", s);
TASK_LOCAL_INSN_KEY.with(|slot| {
match slot.borrow_mut().as_mut() {
Some(ctx) => ctx.push(s),
None => {}
}
});
_InsnCtxt { _cannot_construct_outside_of_this_module: () }
}
pub struct StatRecorder<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
name: Option<String>,
istart: uint,
}
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String)
-> StatRecorder<'a, 'tcx> {
let istart = ccx.stats().n_llvm_insns.get();
StatRecorder {
ccx: ccx,
name: Some(name),
istart: istart,
}
}
}
#[unsafe_destructor]
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
fn drop(&mut self) {
if self.ccx.sess().trans_stats() {
let iend = self.ccx.stats().n_llvm_insns.get();
self.ccx.stats().fn_stats.borrow_mut().push((self.name.take().unwrap(),
iend - self.istart));
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
// Reset LLVM insn count to avoid compound costs.
self.ccx.stats().n_llvm_insns.set(self.istart);
}
}
}
// only use this for foreign function ABIs and glue, use `decl_rust_fn` for Rust functions
pub fn decl_fn(ccx: &CrateContext, name: &str, cc: llvm::CallConv,
ty: Type, output: ty::FnOutput) -> ValueRef {
let buf = CString::new(name).unwrap();
let llfn: ValueRef = unsafe {
llvm::LLVMGetOrInsertFunction(ccx.llmod(), buf.as_ptr(), ty.to_ref())
};
// diverging functions may unwind, but can never return normally
if output == ty::FnDiverging {
llvm::SetFunctionAttribute(llfn, llvm::NoReturnAttribute);
}
if ccx.tcx().sess.opts.cg.no_redzone
.unwrap_or(ccx.tcx().sess.target.target.options.disable_redzone) {
llvm::SetFunctionAttribute(llfn, llvm::NoRedZoneAttribute)
}
llvm::SetFunctionCallConv(llfn, cc);
// Function addresses in Rust are never significant, allowing functions to be merged.
llvm::SetUnnamedAddr(llfn, true);
if ccx.is_split_stack_supported() && !ccx.sess().opts.cg.no_stack_check {
set_split_stack(llfn);
}
llfn
}
// only use this for foreign function ABIs and glue, use `decl_rust_fn` for Rust functions
pub fn decl_cdecl_fn(ccx: &CrateContext,
name: &str,
ty: Type,
output: Ty) -> ValueRef {
decl_fn(ccx, name, llvm::CCallConv, ty, ty::FnConverging(output))
}
// only use this for foreign function ABIs and glue, use `get_extern_rust_fn` for Rust functions
pub fn get_extern_fn(ccx: &CrateContext,
externs: &mut ExternMap,
name: &str,
cc: llvm::CallConv,
ty: Type,
output: Ty)
-> ValueRef {
match externs.get(name) {
Some(n) => return *n,
None => {}
}
let f = decl_fn(ccx, name, cc, ty, ty::FnConverging(output));
externs.insert(name.to_string(), f);
f
}
fn get_extern_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_ty: Ty<'tcx>,
name: &str, did: ast::DefId) -> ValueRef {
match ccx.externs().borrow().get(name) {
Some(n) => return *n,
None => ()
}
let f = decl_rust_fn(ccx, fn_ty, name);
let attrs = csearch::get_item_attrs(&ccx.sess().cstore, did);
set_llvm_fn_attrs(ccx, &attrs[..], f);
ccx.externs().borrow_mut().insert(name.to_string(), f);
f
}
pub fn self_type_for_closure<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
closure_id: ast::DefId,
fn_ty: Ty<'tcx>)
-> Ty<'tcx>
{
let closure_kind = ccx.tcx().closure_kind(closure_id);
match closure_kind {
ty::FnClosureKind => {
ty::mk_imm_rptr(ccx.tcx(), ccx.tcx().mk_region(ty::ReStatic), fn_ty)
}
ty::FnMutClosureKind => {
ty::mk_mut_rptr(ccx.tcx(), ccx.tcx().mk_region(ty::ReStatic), fn_ty)
}
ty::FnOnceClosureKind => fn_ty
}
}
pub fn kind_for_closure(ccx: &CrateContext, closure_id: ast::DefId) -> ty::ClosureKind {
*ccx.tcx().closure_kinds.borrow().get(&closure_id).unwrap()
}
pub fn decl_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn_ty: Ty<'tcx>, name: &str) -> ValueRef {
debug!("decl_rust_fn(fn_ty={}, name={:?})",
fn_ty.repr(ccx.tcx()),
name);
let fn_ty = monomorphize::normalize_associated_type(ccx.tcx(), &fn_ty);
debug!("decl_rust_fn: fn_ty={} (after normalized associated types)",
fn_ty.repr(ccx.tcx()));
let function_type; // placeholder so that the memory ownership works out ok
let (sig, abi, env) = match fn_ty.sty {
ty::ty_bare_fn(_, ref f) => {
(&f.sig, f.abi, None)
}
ty::ty_closure(closure_did, substs) => {
let typer = common::NormalizingClosureTyper::new(ccx.tcx());
function_type = typer.closure_type(closure_did, substs);
let self_type = self_type_for_closure(ccx, closure_did, fn_ty);
let llenvironment_type = type_of_explicit_arg(ccx, self_type);
debug!("decl_rust_fn: function_type={} self_type={}",
function_type.repr(ccx.tcx()),
self_type.repr(ccx.tcx()));
(&function_type.sig, RustCall, Some(llenvironment_type))
}
_ => ccx.sess().bug("expected closure or fn")
};
let sig = ty::erase_late_bound_regions(ccx.tcx(), sig);
let sig = ty::Binder(sig);
debug!("decl_rust_fn: sig={} (after erasing regions)",
sig.repr(ccx.tcx()));
let llfty = type_of_rust_fn(ccx, env, &sig, abi);
debug!("decl_rust_fn: llfty={}",
ccx.tn().type_to_string(llfty));
let llfn = decl_fn(ccx, name, llvm::CCallConv, llfty, sig.0.output /* (1) */);
let attrs = get_fn_llvm_attributes(ccx, fn_ty);
attrs.apply_llfn(llfn);
// (1) it's ok to directly access sig.0.output because we erased all late-bound-regions above
llfn
}
pub fn decl_internal_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn_ty: Ty<'tcx>, name: &str) -> ValueRef {
let llfn = decl_rust_fn(ccx, fn_ty, name);
llvm::SetLinkage(llfn, llvm::InternalLinkage);
llfn
}
pub fn get_extern_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: ast::DefId,
t: Ty<'tcx>) -> ValueRef {
let name = csearch::get_symbol(&ccx.sess().cstore, did);
let ty = type_of(ccx, t);
match ccx.externs().borrow_mut().get(&name) {
Some(n) => return *n,
None => ()
}
unsafe {
let buf = CString::new(name.clone()).unwrap();
let c = llvm::LLVMAddGlobal(ccx.llmod(), ty.to_ref(), buf.as_ptr());
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
for attr in &*ty::get_attrs(ccx.tcx(), did) {
if attr.check_name("thread_local") {
llvm::set_thread_local(c, true);
}
}
ccx.externs().borrow_mut().insert(name.to_string(), c);
return c;
}
}
fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
info_ty: Ty<'tcx>, it: LangItem) -> ast::DefId {
match bcx.tcx().lang_items.require(it) {
Ok(id) => id,
Err(s) => {
bcx.sess().fatal(&format!("allocation of `{}` {}",
bcx.ty_to_string(info_ty),
s));
}
}
}
// The following malloc_raw_dyn* functions allocate a box to contain
// a given type, but with a potentially dynamic size.
pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
llty_ptr: Type,
info_ty: Ty<'tcx>,
size: ValueRef,
align: ValueRef,
debug_loc: DebugLoc)
-> Result<'blk, 'tcx> {
let _icx = push_ctxt("malloc_raw_exchange");
// Allocate space:
let r = callee::trans_lang_call(bcx,
require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem),
&[size, align],
None,
debug_loc);
Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr))
}
#[allow(dead_code)] // useful
pub fn set_optimize_for_size(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::OptimizeForSizeAttribute)
}
pub fn set_no_inline(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::NoInlineAttribute)
}
#[allow(dead_code)] // useful
pub fn set_no_unwind(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::NoUnwindAttribute)
}
// Tell LLVM to emit the information necessary to unwind the stack for the
// function f.
pub fn set_uwtable(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::UWTableAttribute)
}
pub fn set_inline_hint(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::InlineHintAttribute)
}
pub fn set_llvm_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) {
use syntax::attr::{find_inline_attr, InlineAttr};
// Set the inline hint if there is one
match find_inline_attr(Some(ccx.sess().diagnostic()), attrs) {
InlineAttr::Hint => set_inline_hint(llfn),
InlineAttr::Always => set_always_inline(llfn),
InlineAttr::Never => set_no_inline(llfn),
InlineAttr::None => { /* fallthrough */ }
}
for attr in attrs {
let mut used = true;
match &attr.name()[..] {
"no_stack_check" => unset_split_stack(llfn),
"cold" => unsafe {
llvm::LLVMAddFunctionAttribute(llfn,
llvm::FunctionIndex as c_uint,
llvm::ColdAttribute as uint64_t)
},
"allocator" => {
llvm::NoAliasAttribute.apply_llfn(llvm::ReturnIndex as c_uint, llfn);
}
_ => used = false,
}
if used {
attr::mark_used(attr);
}
}
}
pub fn set_always_inline(f: ValueRef) {
llvm::SetFunctionAttribute(f, llvm::AlwaysInlineAttribute)
}
pub fn set_split_stack(f: ValueRef) {
unsafe {
llvm::LLVMAddFunctionAttrString(f, llvm::FunctionIndex as c_uint,
"split-stack\0".as_ptr() as *const _);
}
}
pub fn unset_split_stack(f: ValueRef) {
unsafe {
llvm::LLVMRemoveFunctionAttrString(f, llvm::FunctionIndex as c_uint,
"split-stack\0".as_ptr() as *const _);
}
}
// Double-check that we never ask LLVM to declare the same symbol twice. It
// silently mangles such symbols, breaking our linkage model.
pub fn note_unique_llvm_symbol(ccx: &CrateContext, sym: String) {
if ccx.all_llvm_symbols().borrow().contains(&sym) {
ccx.sess().bug(&format!("duplicate LLVM symbol: {}", sym));
}
ccx.all_llvm_symbols().borrow_mut().insert(sym);
}
pub fn get_res_dtor<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
did: ast::DefId,
t: Ty<'tcx>,
parent_id: ast::DefId,
substs: &Substs<'tcx>)
-> ValueRef {
let _icx = push_ctxt("trans_res_dtor");
let did = inline::maybe_instantiate_inline(ccx, did);
if !substs.types.is_empty() {
assert_eq!(did.krate, ast::LOCAL_CRATE);
// Since we're in trans we don't care for any region parameters
let substs = ccx.tcx().mk_substs(Substs::erased(substs.types.clone()));
let (val, _, _) = monomorphize::monomorphic_fn(ccx, did, substs, None);
val
} else if did.krate == ast::LOCAL_CRATE {
get_item_val(ccx, did.node)
} else {
let tcx = ccx.tcx();
let name = csearch::get_symbol(&ccx.sess().cstore, did);
let class_ty = ty::lookup_item_type(tcx, parent_id).ty.subst(tcx, substs);
let llty = type_of_dtor(ccx, class_ty);
let dtor_ty = ty::mk_ctor_fn(ccx.tcx(),
did,
&[glue::get_drop_glue_type(ccx, t)],
ty::mk_nil(ccx.tcx()));
get_extern_fn(ccx,
&mut *ccx.externs().borrow_mut(),
&name[..],
llvm::CCallConv,
llty,
dtor_ty)
}
}
pub fn bin_op_to_icmp_predicate(ccx: &CrateContext, op: ast::BinOp_, signed: bool)
-> llvm::IntPredicate {
match op {
ast::BiEq => llvm::IntEQ,
ast::BiNe => llvm::IntNE,
ast::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
ast::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
ast::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
ast::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
op => {
ccx.sess().bug(&format!("comparison_op_to_icmp_predicate: expected \
comparison operator, found {:?}", op));
}
}
}
pub fn bin_op_to_fcmp_predicate(ccx: &CrateContext, op: ast::BinOp_)
-> llvm::RealPredicate {
match op {
ast::BiEq => llvm::RealOEQ,
ast::BiNe => llvm::RealUNE,
ast::BiLt => llvm::RealOLT,
ast::BiLe => llvm::RealOLE,
ast::BiGt => llvm::RealOGT,
ast::BiGe => llvm::RealOGE,
op => {
ccx.sess().bug(&format!("comparison_op_to_fcmp_predicate: expected \
comparison operator, found {:?}", op));
}
}
}
pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
op: ast::BinOp_,
debug_loc: DebugLoc)
-> ValueRef {
match t.sty {
ty::ty_tup(ref tys) if tys.is_empty() => {
// We don't need to do actual comparisons for nil.
// () == () holds but () < () does not.
match op {
ast::BiEq | ast::BiLe | ast::BiGe => return C_bool(bcx.ccx(), true),
ast::BiNe | ast::BiLt | ast::BiGt => return C_bool(bcx.ccx(), false),
// refinements would be nice
_ => bcx.sess().bug("compare_scalar_types: must be a comparison operator")
}
}
ty::ty_bool | ty::ty_uint(_) | ty::ty_char => {
ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc)
}
ty::ty_ptr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => {
ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc)
}
ty::ty_int(_) => {
ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, true), lhs, rhs, debug_loc)
}
ty::ty_float(_) => {
FCmp(bcx, bin_op_to_fcmp_predicate(bcx.ccx(), op), lhs, rhs, debug_loc)
}
// Should never get here, because t is scalar.
_ => bcx.sess().bug("non-scalar type passed to compare_scalar_types")
}
}
pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
op: ast::BinOp_,
debug_loc: DebugLoc)
-> ValueRef {
let signed = match t.sty {
ty::ty_float(_) => {
// The comparison operators for floating point vectors are challenging.
// LLVM outputs a `< size x i1 >`, but if we perform a sign extension
// then bitcast to a floating point vector, the result will be `-NaN`
// for each truth value. Because of this they are unsupported.
bcx.sess().bug("compare_simd_types: comparison operators \
not supported for floating point SIMD types")
},
ty::ty_uint(_) => false,
ty::ty_int(_) => true,
_ => bcx.sess().bug("compare_simd_types: invalid SIMD type"),
};
let cmp = bin_op_to_icmp_predicate(bcx.ccx(), op, signed);
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
// to get the correctly sized type. This will compile to a single instruction
// once the IR is converted to assembly if the SIMD instruction is supported
// by the target architecture.
SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), val_ty(lhs))
}
// Iterates through the elements of a structural type.
pub fn iter_structural_ty<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
av: ValueRef,
t: Ty<'tcx>,
mut f: F)
-> Block<'blk, 'tcx> where
F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>,
{
let _icx = push_ctxt("iter_structural_ty");
fn iter_variant<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
repr: &adt::Repr<'tcx>,
av: ValueRef,
variant: &ty::VariantInfo<'tcx>,
substs: &Substs<'tcx>,
f: &mut F)
-> Block<'blk, 'tcx> where
F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>,
{
let _icx = push_ctxt("iter_variant");
let tcx = cx.tcx();
let mut cx = cx;
for (i, &arg) in variant.args.iter().enumerate() {
let arg = monomorphize::apply_param_substs(tcx, substs, &arg);
cx = f(cx, adt::trans_field_ptr(cx, repr, av, variant.disr_val, i), arg);
}
return cx;
}
let (data_ptr, info) = if common::type_is_sized(cx.tcx(), t) {
(av, None)
} else {
let data = GEPi(cx, av, &[0, abi::FAT_PTR_ADDR]);
let info = GEPi(cx, av, &[0, abi::FAT_PTR_EXTRA]);
(Load(cx, data), Some(Load(cx, info)))
};
let mut cx = cx;
match t.sty {
ty::ty_struct(..) => {
let repr = adt::represent_type(cx.ccx(), t);
expr::with_field_tys(cx.tcx(), t, None, |discr, field_tys| {
for (i, field_ty) in field_tys.iter().enumerate() {
let field_ty = field_ty.mt.ty;
let llfld_a = adt::trans_field_ptr(cx, &*repr, data_ptr, discr, i);
let val = if common::type_is_sized(cx.tcx(), field_ty) {
llfld_a
} else {
let scratch = datum::rvalue_scratch_datum(cx, field_ty, "__fat_ptr_iter");
Store(cx, llfld_a, GEPi(cx, scratch.val, &[0, abi::FAT_PTR_ADDR]));
Store(cx, info.unwrap(), GEPi(cx, scratch.val, &[0, abi::FAT_PTR_EXTRA]));
scratch.val
};
cx = f(cx, val, field_ty);
}
})
}
ty::ty_closure(def_id, substs) => {
let repr = adt::represent_type(cx.ccx(), t);
let typer = common::NormalizingClosureTyper::new(cx.tcx());
let upvars = typer.closure_upvars(def_id, substs).unwrap();
for (i, upvar) in upvars.iter().enumerate() {
let llupvar = adt::trans_field_ptr(cx, &*repr, data_ptr, 0, i);
cx = f(cx, llupvar, upvar.ty);
}
}
ty::ty_vec(_, Some(n)) => {
let (base, len) = tvec::get_fixed_base_and_len(cx, data_ptr, n);
let unit_ty = ty::sequence_element_type(cx.tcx(), t);
cx = tvec::iter_vec_raw(cx, base, unit_ty, len, f);
}
ty::ty_vec(_, None) | ty::ty_str => {
let unit_ty = ty::sequence_element_type(cx.tcx(), t);
cx = tvec::iter_vec_raw(cx, data_ptr, unit_ty, info.unwrap(), f);
}
ty::ty_tup(ref args) => {
let repr = adt::represent_type(cx.ccx(), t);
for (i, arg) in args.iter().enumerate() {
let llfld_a = adt::trans_field_ptr(cx, &*repr, data_ptr, 0, i);
cx = f(cx, llfld_a, *arg);
}
}
ty::ty_enum(tid, substs) => {
let fcx = cx.fcx;
let ccx = fcx.ccx;
let repr = adt::represent_type(ccx, t);
let variants = ty::enum_variants(ccx.tcx(), tid);
let n_variants = (*variants).len();
// NB: we must hit the discriminant first so that structural
// comparison know not to proceed when the discriminants differ.
match adt::trans_switch(cx, &*repr, av) {
(_match::Single, None) => {
cx = iter_variant(cx, &*repr, av, &*(*variants)[0],
substs, &mut f);
}
(_match::Switch, Some(lldiscrim_a)) => {
cx = f(cx, lldiscrim_a, cx.tcx().types.int);
let unr_cx = fcx.new_temp_block("enum-iter-unr");
Unreachable(unr_cx);
let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb,
n_variants);
let next_cx = fcx.new_temp_block("enum-iter-next");
for variant in &(*variants) {
let variant_cx =
fcx.new_temp_block(
&format!("enum-iter-variant-{}",
&variant.disr_val.to_string())
);
match adt::trans_case(cx, &*repr, variant.disr_val) {
_match::SingleResult(r) => {
AddCase(llswitch, r.val, variant_cx.llbb)
}
_ => ccx.sess().unimpl("value from adt::trans_case \
in iter_structural_ty")
}
let variant_cx =
iter_variant(variant_cx,
&*repr,
data_ptr,
&**variant,
substs,
&mut f);
Br(variant_cx, next_cx.llbb, DebugLoc::None);
}
cx = next_cx;
}
_ => ccx.sess().unimpl("value from adt::trans_switch \
in iter_structural_ty")
}
}
_ => {
cx.sess().unimpl(&format!("type in iter_structural_ty: {}",
ty_to_string(cx.tcx(), t)))
}
}
return cx;
}
pub fn cast_shift_expr_rhs(cx: Block,
op: ast::BinOp_,
lhs: ValueRef,
rhs: ValueRef)
-> ValueRef {
cast_shift_rhs(op, lhs, rhs,
|a,b| Trunc(cx, a, b),
|a,b| ZExt(cx, a, b))
}
pub fn cast_shift_const_rhs(op: ast::BinOp_,
lhs: ValueRef, rhs: ValueRef) -> ValueRef {
cast_shift_rhs(op, lhs, rhs,
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}
fn cast_shift_rhs<F, G>(op: ast::BinOp_,
lhs: ValueRef,
rhs: ValueRef,
trunc: F,
zext: G)
-> ValueRef where
F: FnOnce(ValueRef, Type) -> ValueRef,
G: FnOnce(ValueRef, Type) -> ValueRef,
{
// Shifts may have any size int on the rhs
if ast_util::is_shift_binop(op) {
let mut rhs_llty = val_ty(rhs);
let mut lhs_llty = val_ty(lhs);
if rhs_llty.kind() == Vector { rhs_llty = rhs_llty.element_type() }
if lhs_llty.kind() == Vector { lhs_llty = lhs_llty.element_type() }
let rhs_sz = rhs_llty.int_width();
let lhs_sz = lhs_llty.int_width();
if lhs_sz < rhs_sz {
trunc(rhs, lhs_llty)
} else if lhs_sz > rhs_sz {
// FIXME (#1877: If shifting by negative
// values becomes not undefined then this is wrong.
zext(rhs, lhs_llty)
} else {
rhs
}
} else {
rhs
}
}
pub fn fail_if_zero_or_overflows<'blk, 'tcx>(
cx: Block<'blk, 'tcx>,
call_info: NodeIdAndSpan,
divrem: ast::BinOp,
lhs: ValueRef,
rhs: ValueRef,
rhs_t: Ty<'tcx>)
-> Block<'blk, 'tcx> {
let (zero_text, overflow_text) = if divrem.node == ast::BiDiv {
("attempted to divide by zero",
"attempted to divide with overflow")
} else {
("attempted remainder with a divisor of zero",
"attempted remainder with overflow")
};
let debug_loc = call_info.debug_loc();
let (is_zero, is_signed) = match rhs_t.sty {
ty::ty_int(t) => {
let zero = C_integral(Type::int_from_ty(cx.ccx(), t), 0, false);
(ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), true)
}
ty::ty_uint(t) => {
let zero = C_integral(Type::uint_from_ty(cx.ccx(), t), 0, false);
(ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), false)
}
_ => {
cx.sess().bug(&format!("fail-if-zero on unexpected type: {}",
ty_to_string(cx.tcx(), rhs_t)));
}
};
let bcx = with_cond(cx, is_zero, |bcx| {
controlflow::trans_fail(bcx, call_info, InternedString::new(zero_text))
});
// To quote LLVM's documentation for the sdiv instruction:
//
// Division by zero leads to undefined behavior. Overflow also leads
// to undefined behavior; this is a rare case, but can occur, for
// example, by doing a 32-bit division of -2147483648 by -1.
//
// In order to avoid undefined behavior, we perform runtime checks for
// signed division/remainder which would trigger overflow. For unsigned
// integers, no action beyond checking for zero need be taken.
if is_signed {
let (llty, min) = match rhs_t.sty {
ty::ty_int(t) => {
let llty = Type::int_from_ty(cx.ccx(), t);
let min = match t {
ast::TyIs(_) if llty == Type::i32(cx.ccx()) => i32::MIN as u64,
ast::TyIs(_) => i64::MIN as u64,
ast::TyI8 => i8::MIN as u64,
ast::TyI16 => i16::MIN as u64,
ast::TyI32 => i32::MIN as u64,
ast::TyI64 => i64::MIN as u64,
};
(llty, min)
}
_ => unreachable!(),
};
let minus_one = ICmp(bcx, llvm::IntEQ, rhs,
C_integral(llty, -1, false), debug_loc);
with_cond(bcx, minus_one, |bcx| {
let is_min = ICmp(bcx, llvm::IntEQ, lhs,
C_integral(llty, min, true), debug_loc);
with_cond(bcx, is_min, |bcx| {
controlflow::trans_fail(bcx,
call_info,
InternedString::new(overflow_text))
})
})
} else {
bcx
}
}
pub fn trans_external_path<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
did: ast::DefId, t: Ty<'tcx>) -> ValueRef {
let name = csearch::get_symbol(&ccx.sess().cstore, did);
match t.sty {
ty::ty_bare_fn(_, ref fn_ty) => {
match ccx.sess().target.target.adjust_abi(fn_ty.abi) {
Rust | RustCall => {
get_extern_rust_fn(ccx, t, &name[..], did)
}
RustIntrinsic => {
ccx.sess().bug("unexpected intrinsic in trans_external_path")
}
_ => {
let llfn = foreign::register_foreign_item_fn(ccx, fn_ty.abi, t, &name[..]);
let attrs = csearch::get_item_attrs(&ccx.sess().cstore, did);
set_llvm_fn_attrs(ccx, &attrs, llfn);
llfn
}
}
}
_ => {
get_extern_const(ccx, did, t)
}
}
}
pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
llfn: ValueRef,
llargs: &[ValueRef],
fn_ty: Ty<'tcx>,
debug_loc: DebugLoc)
-> (ValueRef, Block<'blk, 'tcx>) {
let _icx = push_ctxt("invoke_");
if bcx.unreachable.get() {
return (C_null(Type::i8(bcx.ccx())), bcx);
}
let attributes = get_fn_llvm_attributes(bcx.ccx(), fn_ty);
match bcx.opt_node_id {
None => {
debug!("invoke at ???");
}
Some(id) => {
debug!("invoke at {}", bcx.tcx().map.node_to_string(id));
}
}
if need_invoke(bcx) {
debug!("invoking {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
for &llarg in llargs {
debug!("arg: {}", bcx.val_to_string(llarg));
}
let normal_bcx = bcx.fcx.new_temp_block("normal-return");
let landing_pad = bcx.fcx.get_landing_pad();
let llresult = Invoke(bcx,
llfn,
&llargs[..],
normal_bcx.llbb,
landing_pad,
Some(attributes),
debug_loc);
return (llresult, normal_bcx);
} else {
debug!("calling {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
for &llarg in llargs {
debug!("arg: {}", bcx.val_to_string(llarg));
}
let llresult = Call(bcx,
llfn,
&llargs[..],
Some(attributes),
debug_loc);
return (llresult, bcx);
}
}
pub fn need_invoke(bcx: Block) -> bool {
if bcx.sess().no_landing_pads() {
return false;
}
// Avoid using invoke if we are already inside a landing pad.
if bcx.is_lpad {
return false;
}
bcx.fcx.needs_invoke()
}
pub fn load_if_immediate<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
v: ValueRef, t: Ty<'tcx>) -> ValueRef {
let _icx = push_ctxt("load_if_immediate");
if type_is_immediate(cx.ccx(), t) { return load_ty(cx, v, t); }
return v;
}
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values. Also handles various special cases where the type
/// gives us better information about what we are loading.
pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
if cx.unreachable.get() || type_is_zero_size(cx.ccx(), t) {
return C_undef(type_of::type_of(cx.ccx(), t));
}
let ptr = to_arg_ty_ptr(cx, ptr, t);
if type_is_immediate(cx.ccx(), t) && type_of::type_of(cx.ccx(), t).is_aggregate() {
return Load(cx, ptr);
}
unsafe {
let global = llvm::LLVMIsAGlobalVariable(ptr);
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
let val = llvm::LLVMGetInitializer(global);
if !val.is_null() {
return from_arg_ty(cx, val, t);
}
}
}
let val = if ty::type_is_bool(t) {
LoadRangeAssert(cx, ptr, 0, 2, llvm::False)
} else if ty::type_is_char(t) {
// a char is a Unicode codepoint, and so takes values from 0
// to 0x10FFFF inclusive only.
LoadRangeAssert(cx, ptr, 0, 0x10FFFF + 1, llvm::False)
} else if (ty::type_is_region_ptr(t) || ty::type_is_unique(t))
&& !common::type_is_fat_ptr(cx.tcx(), t) {
LoadNonNull(cx, ptr)
} else {
Load(cx, ptr)
};
from_arg_ty(cx, val, t)
}
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values.
pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
Store(cx, to_arg_ty(cx, v, t), to_arg_ty_ptr(cx, dst, t));
}
pub fn to_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
if ty::type_is_bool(ty) {
ZExt(bcx, val, Type::i8(bcx.ccx()))
} else {
val
}
}
pub fn from_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
if ty::type_is_bool(ty) {
Trunc(bcx, val, Type::i1(bcx.ccx()))
} else {
val
}
}
pub fn to_arg_ty_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ptr: ValueRef, ty: Ty<'tcx>) -> ValueRef {
if type_is_immediate(bcx.ccx(), ty) && type_of::type_of(bcx.ccx(), ty).is_aggregate() {
// We want to pass small aggregates as immediate values, but using an aggregate LLVM type
// for this leads to bad optimizations, so its arg type is an appropriately sized integer
// and we have to convert it
BitCast(bcx, ptr, type_of::arg_type_of(bcx.ccx(), ty).ptr_to())
} else {
ptr
}
}
pub fn init_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, local: &ast::Local)
-> Block<'blk, 'tcx> {
debug!("init_local(bcx={}, local.id={})", bcx.to_str(), local.id);
let _indenter = indenter();
let _icx = push_ctxt("init_local");
_match::store_local(bcx, local)
}
pub fn raw_block<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
is_lpad: bool,
llbb: BasicBlockRef)
-> Block<'blk, 'tcx> {
common::BlockS::new(llbb, is_lpad, None, fcx)
}
pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
val: ValueRef,
f: F)
-> Block<'blk, 'tcx> where
F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>,
{
let _icx = push_ctxt("with_cond");
if bcx.unreachable.get() ||
(common::is_const(val) && common::const_to_uint(val) == 0) {
return bcx;
}
let fcx = bcx.fcx;
let next_cx = fcx.new_temp_block("next");
let cond_cx = fcx.new_temp_block("cond");
CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None);
let after_cx = f(cond_cx);
if !after_cx.terminated.get() {
Br(after_cx, next_cx.llbb, DebugLoc::None);
}
next_cx
}
pub fn call_lifetime_start(cx: Block, ptr: ValueRef) {
if cx.sess().opts.optimize == config::No {
return;
}
let _icx = push_ctxt("lifetime_start");
let ccx = cx.ccx();
let llsize = C_u64(ccx, machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()));
let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
let lifetime_start = ccx.get_intrinsic(&"llvm.lifetime.start");
Call(cx, lifetime_start, &[llsize, ptr], None, DebugLoc::None);
}
pub fn call_lifetime_end(cx: Block, ptr: ValueRef) {
if cx.sess().opts.optimize == config::No {
return;
}
let _icx = push_ctxt("lifetime_end");
let ccx = cx.ccx();
let llsize = C_u64(ccx, machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()));
let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
let lifetime_end = ccx.get_intrinsic(&"llvm.lifetime.end");
Call(cx, lifetime_end, &[llsize, ptr], None, DebugLoc::None);
}
pub fn call_memcpy(cx: Block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef, align: u32) {
let _icx = push_ctxt("call_memcpy");
let ccx = cx.ccx();
let key = match &ccx.sess().target.target.target_pointer_width[..] {
"32" => "llvm.memcpy.p0i8.p0i8.i32",
"64" => "llvm.memcpy.p0i8.p0i8.i64",
tws => panic!("Unsupported target word size for memcpy: {}", tws),
};
let memcpy = ccx.get_intrinsic(&key);
let src_ptr = PointerCast(cx, src, Type::i8p(ccx));
let dst_ptr = PointerCast(cx, dst, Type::i8p(ccx));
let size = IntCast(cx, n_bytes, ccx.int_type());
let align = C_i32(ccx, align as i32);
let volatile = C_bool(ccx, false);
Call(cx, memcpy, &[dst_ptr, src_ptr, size, align, volatile], None, DebugLoc::None);
}
pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
dst: ValueRef, src: ValueRef,
t: Ty<'tcx>) {
let _icx = push_ctxt("memcpy_ty");
let ccx = bcx.ccx();
if ty::type_is_structural(t) {
let llty = type_of::type_of(ccx, t);
let llsz = llsize_of(ccx, llty);
let llalign = type_of::align_of(ccx, t);
call_memcpy(bcx, dst, src, llsz, llalign as u32);
} else {
store_ty(bcx, load_ty(bcx, src, t), dst, t);
}
}
pub fn zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
if cx.unreachable.get() { return; }
let _icx = push_ctxt("zero_mem");
let bcx = cx;
memzero(&B(bcx), llptr, t);
}
// Always use this function instead of storing a zero constant to the memory
// in question. If you store a zero constant, LLVM will drown in vreg
// allocation for large data structures, and the generated code will be
// awful. (A telltale sign of this is large quantities of
// `mov [byte ptr foo],0` in the generated code.)
fn memzero<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>) {
let _icx = push_ctxt("memzero");
let ccx = b.ccx;
let llty = type_of::type_of(ccx, ty);
let intrinsic_key = match &ccx.sess().target.target.target_pointer_width[..] {
"32" => "llvm.memset.p0i8.i32",
"64" => "llvm.memset.p0i8.i64",
tws => panic!("Unsupported target word size for memset: {}", tws),
};
let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key);
let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to());
let llzeroval = C_u8(ccx, 0);
let size = machine::llsize_of(ccx, llty);
let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
let volatile = C_bool(ccx, false);
b.call(llintrinsicfn, &[llptr, llzeroval, size, align, volatile], None);
}
pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, name: &str) -> ValueRef {
let _icx = push_ctxt("alloc_ty");
let ccx = bcx.ccx();
let ty = type_of::type_of(ccx, t);
assert!(!ty::type_has_params(t));
let val = alloca(bcx, ty, name);
return val;
}
pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
let p = alloca_no_lifetime(cx, ty, name);
call_lifetime_start(cx, p);
p
}
pub fn alloca_no_lifetime(cx: Block, ty: Type, name: &str) -> ValueRef {
let _icx = push_ctxt("alloca");
if cx.unreachable.get() {
unsafe {
return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
}
}
debuginfo::clear_source_location(cx.fcx);
Alloca(cx, ty, name)
}
// Creates the alloca slot which holds the pointer to the slot for the final return value
pub fn make_return_slot_pointer<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>,
output_type: Ty<'tcx>) -> ValueRef {
let lloutputtype = type_of::type_of(fcx.ccx, output_type);
// We create an alloca to hold a pointer of type `output_type`
// which will hold the pointer to the right alloca which has the
// final ret value
if fcx.needs_ret_allocas {
// Let's create the stack slot
let slot = AllocaFcx(fcx, lloutputtype.ptr_to(), "llretslotptr");
// and if we're using an out pointer, then store that in our newly made slot
if type_of::return_uses_outptr(fcx.ccx, output_type) {
let outptr = get_param(fcx.llfn, 0);
let b = fcx.ccx.builder();
b.position_before(fcx.alloca_insert_pt.get().unwrap());
b.store(outptr, slot);
}
slot
// But if there are no nested returns, we skip the indirection and have a single
// retslot
} else {
if type_of::return_uses_outptr(fcx.ccx, output_type) {
get_param(fcx.llfn, 0)
} else {
AllocaFcx(fcx, lloutputtype, "sret_slot")
}
}
}
struct FindNestedReturn {
found: bool,
}
impl FindNestedReturn {
fn new() -> FindNestedReturn {
FindNestedReturn { found: false }
}
}
impl<'v> Visitor<'v> for FindNestedReturn {
fn visit_expr(&mut self, e: &ast::Expr) {
match e.node {
ast::ExprRet(..) => {
self.found = true;
}
_ => visit::walk_expr(self, e)
}
}
}
fn build_cfg(tcx: &ty::ctxt, id: ast::NodeId) -> (ast::NodeId, Option<cfg::CFG>) {
let blk = match tcx.map.find(id) {
Some(ast_map::NodeItem(i)) => {
match i.node {
ast::ItemFn(_, _, _, _, ref blk) => {
blk
}
_ => tcx.sess.bug("unexpected item variant in has_nested_returns")
}
}
Some(ast_map::NodeTraitItem(trait_item)) => {
match trait_item.node {
ast::MethodTraitItem(_, Some(ref body)) => body,
ast::MethodTraitItem(_, None) => {
tcx.sess.bug("unexpected variant: required trait method \
in has_nested_returns")
}
ast::TypeTraitItem(..) => {
tcx.sess.bug("unexpected variant: associated type trait item in \
has_nested_returns")
}
}
}
Some(ast_map::NodeImplItem(impl_item)) => {
match impl_item.node {
ast::MethodImplItem(_, ref body) => body,
ast::TypeImplItem(_) => {
tcx.sess.bug("unexpected variant: associated type impl item in \
has_nested_returns")
}
ast::MacImplItem(_) => {
tcx.sess.bug("unexpected variant: unexpanded macro impl item in \
has_nested_returns")
}
}
}
Some(ast_map::NodeExpr(e)) => {
match e.node {
ast::ExprClosure(_, _, ref blk) => blk,
_ => tcx.sess.bug("unexpected expr variant in has_nested_returns")
}
}
Some(ast_map::NodeVariant(..)) |
Some(ast_map::NodeStructCtor(..)) => return (ast::DUMMY_NODE_ID, None),
// glue, shims, etc
None if id == ast::DUMMY_NODE_ID => return (ast::DUMMY_NODE_ID, None),
_ => tcx.sess.bug(&format!("unexpected variant in has_nested_returns: {}",
tcx.map.path_to_string(id)))
};
(blk.id, Some(cfg::CFG::new(tcx, blk)))
}
// Checks for the presence of "nested returns" in a function.
// Nested returns are when the inner expression of a return expression
// (the 'expr' in 'return expr') contains a return expression. Only cases
// where the outer return is actually reachable are considered. Implicit
// returns from the end of blocks are considered as well.
//
// This check is needed to handle the case where the inner expression is
// part of a larger expression that may have already partially-filled the
// return slot alloca. This can cause errors related to clean-up due to
// the clobbering of the existing value in the return slot.
fn has_nested_returns(tcx: &ty::ctxt, cfg: &cfg::CFG, blk_id: ast::NodeId) -> bool {
for n in cfg.graph.depth_traverse(cfg.entry) {
match tcx.map.find(n.id()) {
Some(ast_map::NodeExpr(ex)) => {
if let ast::ExprRet(Some(ref ret_expr)) = ex.node {
let mut visitor = FindNestedReturn::new();
visit::walk_expr(&mut visitor, &**ret_expr);
if visitor.found {
return true;
}
}
}
Some(ast_map::NodeBlock(blk)) if blk.id == blk_id => {
let mut visitor = FindNestedReturn::new();
visit::walk_expr_opt(&mut visitor, &blk.expr);
if visitor.found {
return true;
}
}
_ => {}
}
}
return false;
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_datums_for_fn_args.
// - new_fn_ctxt
// - trans_args
//
// Be warned! You must call `init_function` before doing anything with the
// returned function context.
pub fn new_fn_ctxt<'a, 'tcx>(ccx: &'a CrateContext<'a, 'tcx>,
llfndecl: ValueRef,
id: ast::NodeId,
has_env: bool,
output_type: ty::FnOutput<'tcx>,
param_substs: &'tcx Substs<'tcx>,
sp: Option<Span>,
block_arena: &'a TypedArena<common::BlockS<'a, 'tcx>>)
-> FunctionContext<'a, 'tcx> {
common::validate_substs(param_substs);
debug!("new_fn_ctxt(path={}, id={}, param_substs={})",
if id == -1 {
"".to_string()
} else {
ccx.tcx().map.path_to_string(id).to_string()
},
id, param_substs.repr(ccx.tcx()));
let uses_outptr = match output_type {
ty::FnConverging(output_type) => {
let substd_output_type =
monomorphize::apply_param_substs(ccx.tcx(), param_substs, &output_type);
type_of::return_uses_outptr(ccx, substd_output_type)
}
ty::FnDiverging => false
};
let debug_context = debuginfo::create_function_debug_context(ccx, id, param_substs, llfndecl);
let (blk_id, cfg) = build_cfg(ccx.tcx(), id);
let nested_returns = if let Some(ref cfg) = cfg {
has_nested_returns(ccx.tcx(), cfg, blk_id)
} else {
false
};
let mut fcx = FunctionContext {
llfn: llfndecl,
llenv: None,
llretslotptr: Cell::new(None),
param_env: ty::empty_parameter_environment(ccx.tcx()),
alloca_insert_pt: Cell::new(None),
llreturn: Cell::new(None),
needs_ret_allocas: nested_returns,
personality: Cell::new(None),
caller_expects_out_pointer: uses_outptr,
lllocals: RefCell::new(NodeMap()),
llupvars: RefCell::new(NodeMap()),
id: id,
param_substs: param_substs,
span: sp,
block_arena: block_arena,
ccx: ccx,
debug_context: debug_context,
scopes: RefCell::new(Vec::new()),
cfg: cfg
};
if has_env {
fcx.llenv = Some(get_param(fcx.llfn, fcx.env_arg_pos() as c_uint))
}
fcx
}
/// Performs setup on a newly created function, creating the entry scope block
/// and allocating space for the return pointer.
pub fn init_function<'a, 'tcx>(fcx: &'a FunctionContext<'a, 'tcx>,
skip_retptr: bool,
output: ty::FnOutput<'tcx>)
-> Block<'a, 'tcx> {
let entry_bcx = fcx.new_temp_block("entry-block");
// Use a dummy instruction as the insertion point for all allocas.
// This is later removed in FunctionContext::cleanup.
fcx.alloca_insert_pt.set(Some(unsafe {
Load(entry_bcx, C_null(Type::i8p(fcx.ccx)));
llvm::LLVMGetFirstInstruction(entry_bcx.llbb)
}));
if let ty::FnConverging(output_type) = output {
// This shouldn't need to recompute the return type,
// as new_fn_ctxt did it already.
let substd_output_type = fcx.monomorphize(&output_type);
if !return_type_is_void(fcx.ccx, substd_output_type) {
// If the function returns nil/bot, there is no real return
// value, so do not set `llretslotptr`.
if !skip_retptr || fcx.caller_expects_out_pointer {
// Otherwise, we normally allocate the llretslotptr, unless we
// have been instructed to skip it for immediate return
// values.
fcx.llretslotptr.set(Some(make_return_slot_pointer(fcx, substd_output_type)));
}
}
}
entry_bcx
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_datums_for_fn_args.
// - new_fn_ctxt
// - trans_args
pub fn arg_kind<'a, 'tcx>(cx: &FunctionContext<'a, 'tcx>, t: Ty<'tcx>)
-> datum::Rvalue {
use trans::datum::{ByRef, ByValue};
datum::Rvalue {
mode: if arg_is_indirect(cx.ccx, t) { ByRef } else { ByValue }
}
}
// work around bizarre resolve errors
pub type RvalueDatum<'tcx> = datum::Datum<'tcx, datum::Rvalue>;
// create_datums_for_fn_args: creates rvalue datums for each of the
// incoming function arguments. These will later be stored into
// appropriate lvalue datums.
pub fn create_datums_for_fn_args<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>,
arg_tys: &[Ty<'tcx>])
-> Vec<RvalueDatum<'tcx>> {
let _icx = push_ctxt("create_datums_for_fn_args");
// Return an array wrapping the ValueRefs that we get from `get_param` for
// each argument into datums.
arg_tys.iter().enumerate().map(|(i, &arg_ty)| {
let llarg = get_param(fcx.llfn, fcx.arg_pos(i) as c_uint);
datum::Datum::new(llarg, arg_ty, arg_kind(fcx, arg_ty))
}).collect()
}
/// Creates rvalue datums for each of the incoming function arguments and
/// tuples the arguments. These will later be stored into appropriate lvalue
/// datums.
///
/// FIXME(pcwalton): Reduce the amount of code bloat this is responsible for.
fn create_datums_for_fn_args_under_call_abi<'blk, 'tcx>(
mut bcx: Block<'blk, 'tcx>,
arg_scope: cleanup::CustomScopeIndex,
arg_tys: &[Ty<'tcx>])
-> Vec<RvalueDatum<'tcx>> {
let mut result = Vec::new();
for (i, &arg_ty) in arg_tys.iter().enumerate() {
if i < arg_tys.len() - 1 {
// Regular argument.
let llarg = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(i) as c_uint);
result.push(datum::Datum::new(llarg, arg_ty, arg_kind(bcx.fcx,
arg_ty)));
continue
}
// This is the last argument. Tuple it.
match arg_ty.sty {
ty::ty_tup(ref tupled_arg_tys) => {
let tuple_args_scope_id = cleanup::CustomScope(arg_scope);
let tuple =
unpack_datum!(bcx,
datum::lvalue_scratch_datum(bcx,
arg_ty,
"tupled_args",
tuple_args_scope_id,
(),
|(),
mut bcx,
llval| {
for (j, &tupled_arg_ty) in
tupled_arg_tys.iter().enumerate() {
let llarg =
get_param(bcx.fcx.llfn,
bcx.fcx.arg_pos(i + j) as c_uint);
let lldest = GEPi(bcx, llval, &[0, j]);
let datum = datum::Datum::new(
llarg,
tupled_arg_ty,
arg_kind(bcx.fcx, tupled_arg_ty));
bcx = datum.store_to(bcx, lldest);
}
bcx
}));
let tuple = unpack_datum!(bcx,
tuple.to_expr_datum()
.to_rvalue_datum(bcx,
"argtuple"));
result.push(tuple);
}
_ => {
bcx.tcx().sess.bug("last argument of a function with \
`rust-call` ABI isn't a tuple?!")
}
};
}
result
}
fn copy_args_to_allocas<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
arg_scope: cleanup::CustomScopeIndex,
args: &[ast::Arg],
arg_datums: Vec<RvalueDatum<'tcx>>)
-> Block<'blk, 'tcx> {
debug!("copy_args_to_allocas");
let _icx = push_ctxt("copy_args_to_allocas");
let mut bcx = bcx;
let arg_scope_id = cleanup::CustomScope(arg_scope);
for (i, arg_datum) in arg_datums.into_iter().enumerate() {
// For certain mode/type combinations, the raw llarg values are passed
// by value. However, within the fn body itself, we want to always
// have all locals and arguments be by-ref so that we can cancel the
// cleanup and for better interaction with LLVM's debug info. So, if
// the argument would be passed by value, we store it into an alloca.
// This alloca should be optimized away by LLVM's mem-to-reg pass in
// the event it's not truly needed.
bcx = _match::store_arg(bcx, &*args[i].pat, arg_datum, arg_scope_id);
debuginfo::create_argument_metadata(bcx, &args[i]);
}
bcx
}
// Ties up the llstaticallocas -> llloadenv -> lltop edges,
// and builds the return block.
pub fn finish_fn<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
last_bcx: Block<'blk, 'tcx>,
retty: ty::FnOutput<'tcx>,
ret_debug_loc: DebugLoc) {
let _icx = push_ctxt("finish_fn");
let ret_cx = match fcx.llreturn.get() {
Some(llreturn) => {
if !last_bcx.terminated.get() {
Br(last_bcx, llreturn, DebugLoc::None);
}
raw_block(fcx, false, llreturn)
}
None => last_bcx
};
// This shouldn't need to recompute the return type,
// as new_fn_ctxt did it already.
let substd_retty = fcx.monomorphize(&retty);
build_return_block(fcx, ret_cx, substd_retty, ret_debug_loc);
debuginfo::clear_source_location(fcx);
fcx.cleanup();
}
// Builds the return block for a function.
pub fn build_return_block<'blk, 'tcx>(fcx: &FunctionContext<'blk, 'tcx>,
ret_cx: Block<'blk, 'tcx>,
retty: ty::FnOutput<'tcx>,
ret_debug_location: DebugLoc) {
if fcx.llretslotptr.get().is_none() ||
(!fcx.needs_ret_allocas && fcx.caller_expects_out_pointer) {
return RetVoid(ret_cx, ret_debug_location);
}
let retslot = if fcx.needs_ret_allocas {
Load(ret_cx, fcx.llretslotptr.get().unwrap())
} else {
fcx.llretslotptr.get().unwrap()
};
let retptr = Value(retslot);
match retptr.get_dominating_store(ret_cx) {
// If there's only a single store to the ret slot, we can directly return
// the value that was stored and omit the store and the alloca
Some(s) => {
let retval = s.get_operand(0).unwrap().get();
s.erase_from_parent();
if retptr.has_no_uses() {
retptr.erase_from_parent();
}
let retval = if retty == ty::FnConverging(fcx.ccx.tcx().types.bool) {
Trunc(ret_cx, retval, Type::i1(fcx.ccx))
} else {
retval
};
if fcx.caller_expects_out_pointer {
if let ty::FnConverging(retty) = retty {
store_ty(ret_cx, retval, get_param(fcx.llfn, 0), retty);
}
RetVoid(ret_cx, ret_debug_location)
} else {
Ret(ret_cx, retval, ret_debug_location)
}
}
// Otherwise, copy the return value to the ret slot
None => match retty {
ty::FnConverging(retty) => {
if fcx.caller_expects_out_pointer {
memcpy_ty(ret_cx, get_param(fcx.llfn, 0), retslot, retty);
RetVoid(ret_cx, ret_debug_location)
} else {
Ret(ret_cx, load_ty(ret_cx, retslot, retty), ret_debug_location)
}
}
ty::FnDiverging => {
if fcx.caller_expects_out_pointer {
RetVoid(ret_cx, ret_debug_location)
} else {
Ret(ret_cx, C_undef(Type::nil(fcx.ccx)), ret_debug_location)
}
}
}
}
}
// trans_closure: Builds an LLVM function out of a source function.
// If the function closes over its environment a closure will be
// returned.
pub fn trans_closure<'a, 'b, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
decl: &ast::FnDecl,
body: &ast::Block,
llfndecl: ValueRef,
param_substs: &'tcx Substs<'tcx>,
fn_ast_id: ast::NodeId,
_attributes: &[ast::Attribute],
output_type: ty::FnOutput<'tcx>,
abi: Abi,
closure_env: closure::ClosureEnv<'b>) {
ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);
let _icx = push_ctxt("trans_closure");
set_uwtable(llfndecl);
debug!("trans_closure(..., param_substs={})",
param_substs.repr(ccx.tcx()));
let has_env = match closure_env {
closure::ClosureEnv::Closure(_) => true,
closure::ClosureEnv::NotClosure => false,
};
let (arena, fcx): (TypedArena<_>, FunctionContext);
arena = TypedArena::new();
fcx = new_fn_ctxt(ccx,
llfndecl,
fn_ast_id,
has_env,
output_type,
param_substs,
Some(body.span),
&arena);
let mut bcx = init_function(&fcx, false, output_type);
// cleanup scope for the incoming arguments
let fn_cleanup_debug_loc =
debuginfo::get_cleanup_debug_loc_for_ast_node(ccx, fn_ast_id, body.span, true);
let arg_scope = fcx.push_custom_cleanup_scope_with_debug_loc(fn_cleanup_debug_loc);
let block_ty = node_id_type(bcx, body.id);
// Set up arguments to the function.
let monomorphized_arg_types =
decl.inputs.iter()
.map(|arg| node_id_type(bcx, arg.id))
.collect::<Vec<_>>();
let monomorphized_arg_types = match closure_env {
closure::ClosureEnv::NotClosure => {
monomorphized_arg_types
}
// Tuple up closure argument types for the "rust-call" ABI.
closure::ClosureEnv::Closure(_) => {
vec![ty::mk_tup(ccx.tcx(), monomorphized_arg_types)]
}
};
for monomorphized_arg_type in &monomorphized_arg_types {
debug!("trans_closure: monomorphized_arg_type: {}",
ty_to_string(ccx.tcx(), *monomorphized_arg_type));
}
debug!("trans_closure: function lltype: {}",
bcx.fcx.ccx.tn().val_to_string(bcx.fcx.llfn));
let arg_datums = match closure_env {
closure::ClosureEnv::NotClosure if abi == RustCall => {
create_datums_for_fn_args_under_call_abi(bcx, arg_scope, &monomorphized_arg_types[..])
}
_ => {
let arg_tys = untuple_arguments_if_necessary(ccx, &monomorphized_arg_types, abi);
create_datums_for_fn_args(&fcx, &arg_tys)
}
};
bcx = copy_args_to_allocas(bcx, arg_scope, &decl.inputs, arg_datums);
bcx = closure_env.load(bcx, cleanup::CustomScope(arg_scope));
// Up until here, IR instructions for this function have explicitly not been annotated with
// source code location, so we don't step into call setup code. From here on, source location
// emitting should be enabled.
debuginfo::start_emitting_source_locations(&fcx);
let dest = match fcx.llretslotptr.get() {
Some(_) => expr::SaveIn(fcx.get_ret_slot(bcx, ty::FnConverging(block_ty), "iret_slot")),
None => {
assert!(type_is_zero_size(bcx.ccx(), block_ty));
expr::Ignore
}
};
// This call to trans_block is the place where we bridge between
// translation calls that don't have a return value (trans_crate,
// trans_mod, trans_item, et cetera) and those that do
// (trans_block, trans_expr, et cetera).
bcx = controlflow::trans_block(bcx, body, dest);
match dest {
expr::SaveIn(slot) if fcx.needs_ret_allocas => {
Store(bcx, slot, fcx.llretslotptr.get().unwrap());
}
_ => {}
}
match fcx.llreturn.get() {
Some(_) => {
Br(bcx, fcx.return_exit_block(), DebugLoc::None);
fcx.pop_custom_cleanup_scope(arg_scope);
}
None => {
// Microoptimization writ large: avoid creating a separate
// llreturn basic block
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope);
}
};
// Put return block after all other blocks.
// This somewhat improves single-stepping experience in debugger.
unsafe {
let llreturn = fcx.llreturn.get();
if let Some(llreturn) = llreturn {
llvm::LLVMMoveBasicBlockAfter(llreturn, bcx.llbb);
}
}
let ret_debug_loc = DebugLoc::At(fn_cleanup_debug_loc.id,
fn_cleanup_debug_loc.span);
// Insert the mandatory first few basic blocks before lltop.
finish_fn(&fcx, bcx, output_type, ret_debug_loc);
}
// trans_fn: creates an LLVM function corresponding to a source language
// function.
pub fn trans_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
decl: &ast::FnDecl,
body: &ast::Block,
llfndecl: ValueRef,
param_substs: &'tcx Substs<'tcx>,
id: ast::NodeId,
attrs: &[ast::Attribute]) {
let _s = StatRecorder::new(ccx, ccx.tcx().map.path_to_string(id).to_string());
debug!("trans_fn(param_substs={})", param_substs.repr(ccx.tcx()));
let _icx = push_ctxt("trans_fn");
let fn_ty = ty::node_id_to_type(ccx.tcx(), id);
let output_type = ty::erase_late_bound_regions(ccx.tcx(), &ty::ty_fn_ret(fn_ty));
let abi = ty::ty_fn_abi(fn_ty);
trans_closure(ccx,
decl,
body,
llfndecl,
param_substs,
id,
attrs,
output_type,
abi,
closure::ClosureEnv::NotClosure);
}
pub fn trans_enum_variant<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
_enum_id: ast::NodeId,
variant: &ast::Variant,
_args: &[ast::VariantArg],
disr: ty::Disr,
param_substs: &'tcx Substs<'tcx>,
llfndecl: ValueRef) {
let _icx = push_ctxt("trans_enum_variant");
trans_enum_variant_or_tuple_like_struct(
ccx,
variant.node.id,
disr,
param_substs,
llfndecl);
}
pub fn trans_named_tuple_constructor<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
ctor_ty: Ty<'tcx>,
disr: ty::Disr,
args: callee::CallArgs,
dest: expr::Dest,
debug_loc: DebugLoc)
-> Result<'blk, 'tcx> {
let ccx = bcx.fcx.ccx;
let tcx = ccx.tcx();
let result_ty = match ctor_ty.sty {
ty::ty_bare_fn(_, ref bft) => {
ty::erase_late_bound_regions(bcx.tcx(), &bft.sig.output()).unwrap()
}
_ => ccx.sess().bug(
&format!("trans_enum_variant_constructor: \
unexpected ctor return type {}",
ctor_ty.repr(tcx)))
};
// Get location to store the result. If the user does not care about
// the result, just make a stack slot
let llresult = match dest {
expr::SaveIn(d) => d,
expr::Ignore => {
if !type_is_zero_size(ccx, result_ty) {
alloc_ty(bcx, result_ty, "constructor_result")
} else {
C_undef(type_of::type_of(ccx, result_ty))
}
}
};
if !type_is_zero_size(ccx, result_ty) {
match args {
callee::ArgExprs(exprs) => {
let fields = exprs.iter().map(|x| &**x).enumerate().collect::<Vec<_>>();
bcx = expr::trans_adt(bcx,
result_ty,
disr,
&fields[..],
None,
expr::SaveIn(llresult),
debug_loc);
}
_ => ccx.sess().bug("expected expr as arguments for variant/struct tuple constructor")
}
}
// If the caller doesn't care about the result
// drop the temporary we made
let bcx = match dest {
expr::SaveIn(_) => bcx,
expr::Ignore => {
let bcx = glue::drop_ty(bcx, llresult, result_ty, debug_loc);
if !type_is_zero_size(ccx, result_ty) {
call_lifetime_end(bcx, llresult);
}
bcx
}
};
Result::new(bcx, llresult)
}
pub fn trans_tuple_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
_fields: &[ast::StructField],
ctor_id: ast::NodeId,
param_substs: &'tcx Substs<'tcx>,
llfndecl: ValueRef) {
let _icx = push_ctxt("trans_tuple_struct");
trans_enum_variant_or_tuple_like_struct(
ccx,
ctor_id,
0,
param_substs,
llfndecl);
}
fn trans_enum_variant_or_tuple_like_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
ctor_id: ast::NodeId,
disr: ty::Disr,
param_substs: &'tcx Substs<'tcx>,
llfndecl: ValueRef) {
let ctor_ty = ty::node_id_to_type(ccx.tcx(), ctor_id);
let ctor_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &ctor_ty);
let result_ty = match ctor_ty.sty {
ty::ty_bare_fn(_, ref bft) => {
ty::erase_late_bound_regions(ccx.tcx(), &bft.sig.output())
}
_ => ccx.sess().bug(
&format!("trans_enum_variant_or_tuple_like_struct: \
unexpected ctor return type {}",
ty_to_string(ccx.tcx(), ctor_ty)))
};
let (arena, fcx): (TypedArena<_>, FunctionContext);
arena = TypedArena::new();
fcx = new_fn_ctxt(ccx, llfndecl, ctor_id, false, result_ty,
param_substs, None, &arena);
let bcx = init_function(&fcx, false, result_ty);
assert!(!fcx.needs_ret_allocas);
let arg_tys =
ty::erase_late_bound_regions(
ccx.tcx(), &ty::ty_fn_args(ctor_ty));
let arg_datums = create_datums_for_fn_args(&fcx, &arg_tys[..]);
if !type_is_zero_size(fcx.ccx, result_ty.unwrap()) {
let dest = fcx.get_ret_slot(bcx, result_ty, "eret_slot");
let repr = adt::represent_type(ccx, result_ty.unwrap());
for (i, arg_datum) in arg_datums.into_iter().enumerate() {
let lldestptr = adt::trans_field_ptr(bcx,
&*repr,
dest,
disr,
i);
arg_datum.store_to(bcx, lldestptr);
}
adt::trans_set_discr(bcx, &*repr, dest, disr);
}
finish_fn(&fcx, bcx, result_ty, DebugLoc::None);
}
fn enum_variant_size_lint(ccx: &CrateContext, enum_def: &ast::EnumDef, sp: Span, id: ast::NodeId) {
let mut sizes = Vec::new(); // does no allocation if no pushes, thankfully
let print_info = ccx.sess().print_enum_sizes();
let levels = ccx.tcx().node_lint_levels.borrow();
let lint_id = lint::LintId::of(lint::builtin::VARIANT_SIZE_DIFFERENCES);
let lvlsrc = levels.get(&(id, lint_id));
let is_allow = lvlsrc.map_or(true, |&(lvl, _)| lvl == lint::Allow);
if is_allow && !print_info {
// we're not interested in anything here
return
}
let ty = ty::node_id_to_type(ccx.tcx(), id);
let avar = adt::represent_type(ccx, ty);
match *avar {
adt::General(_, ref variants, _) => {
for var in variants {
let mut size = 0;
for field in var.fields.iter().skip(1) {
// skip the discriminant
size += llsize_of_real(ccx, sizing_type_of(ccx, *field));
}
sizes.push(size);
}
},
_ => { /* its size is either constant or unimportant */ }
}
let (largest, slargest, largest_index) = sizes.iter().enumerate().fold((0, 0, 0),
|(l, s, li), (idx, &size)|
if size > l {
(size, l, idx)
} else if size > s {
(l, size, li)
} else {
(l, s, li)
}
);
if print_info {
let llty = type_of::sizing_type_of(ccx, ty);
let sess = &ccx.tcx().sess;
sess.span_note(sp, &*format!("total size: {} bytes", llsize_of_real(ccx, llty)));
match *avar {
adt::General(..) => {
for (i, var) in enum_def.variants.iter().enumerate() {
ccx.tcx().sess.span_note(var.span,
&*format!("variant data: {} bytes", sizes[i]));
}
}
_ => {}
}
}
// we only warn if the largest variant is at least thrice as large as
// the second-largest.
if !is_allow && largest > slargest * 3 && slargest > 0 {
// Use lint::raw_emit_lint rather than sess.add_lint because the lint-printing
// pass for the latter already ran.
lint::raw_emit_lint(&ccx.tcx().sess, lint::builtin::VARIANT_SIZE_DIFFERENCES,
*lvlsrc.unwrap(), Some(sp),
&format!("enum variant is more than three times larger \
({} bytes) than the next largest (ignoring padding)",
largest));
ccx.sess().span_note(enum_def.variants[largest_index].span,
"this variant is the largest");
}
}
pub struct TransItemVisitor<'a, 'tcx: 'a> {
pub ccx: &'a CrateContext<'a, 'tcx>,
}
impl<'a, 'tcx, 'v> Visitor<'v> for TransItemVisitor<'a, 'tcx> {
fn visit_item(&mut self, i: &ast::Item) {
trans_item(self.ccx, i);
}
}
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
// applicable to variable declarations and may not really make sense for
// Rust code in the first place but whitelist them anyway and trust that
// the user knows what s/he's doing. Who knows, unanticipated use cases
// may pop up in the future.
//
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
// and don't have to be, LLVM treats them as no-ops.
match name {
"appending" => Some(llvm::AppendingLinkage),
"available_externally" => Some(llvm::AvailableExternallyLinkage),
"common" => Some(llvm::CommonLinkage),
"extern_weak" => Some(llvm::ExternalWeakLinkage),
"external" => Some(llvm::ExternalLinkage),
"internal" => Some(llvm::InternalLinkage),
"linkonce" => Some(llvm::LinkOnceAnyLinkage),
"linkonce_odr" => Some(llvm::LinkOnceODRLinkage),
"private" => Some(llvm::PrivateLinkage),
"weak" => Some(llvm::WeakAnyLinkage),
"weak_odr" => Some(llvm::WeakODRLinkage),
_ => None,
}
}
/// Enum describing the origin of an LLVM `Value`, for linkage purposes.
#[derive(Copy)]
pub enum ValueOrigin {
/// The LLVM `Value` is in this context because the corresponding item was
/// assigned to the current compilation unit.
OriginalTranslation,
/// The `Value`'s corresponding item was assigned to some other compilation
/// unit, but the `Value` was translated in this context anyway because the
/// item is marked `#[inline]`.
InlinedCopy,
}
/// Set the appropriate linkage for an LLVM `ValueRef` (function or global).
/// If the `llval` is the direct translation of a specific Rust item, `id`
/// should be set to the `NodeId` of that item. (This mapping should be
/// 1-to-1, so monomorphizations and drop/visit glue should have `id` set to
/// `None`.) `llval_origin` indicates whether `llval` is the translation of an
/// item assigned to `ccx`'s compilation unit or an inlined copy of an item
/// assigned to a different compilation unit.
pub fn update_linkage(ccx: &CrateContext,
llval: ValueRef,
id: Option<ast::NodeId>,
llval_origin: ValueOrigin) {
match llval_origin {
InlinedCopy => {
// `llval` is a translation of an item defined in a separate
// compilation unit. This only makes sense if there are at least
// two compilation units.
assert!(ccx.sess().opts.cg.codegen_units > 1);
// `llval` is a copy of something defined elsewhere, so use
// `AvailableExternallyLinkage` to avoid duplicating code in the
// output.
llvm::SetLinkage(llval, llvm::AvailableExternallyLinkage);
return;
},
OriginalTranslation => {},
}
if let Some(id) = id {
let item = ccx.tcx().map.get(id);
if let ast_map::NodeItem(i) = item {
if let Some(name) = attr::first_attr_value_str_by_name(&i.attrs, "linkage") {
if let Some(linkage) = llvm_linkage_by_name(&name) {
llvm::SetLinkage(llval, linkage);
} else {
ccx.sess().span_fatal(i.span, "invalid linkage specified");
}
return;
}
}
}
match id {
Some(id) if ccx.reachable().contains(&id) => {
llvm::SetLinkage(llval, llvm::ExternalLinkage);
},
_ => {
// `id` does not refer to an item in `ccx.reachable`.
if ccx.sess().opts.cg.codegen_units > 1 {
llvm::SetLinkage(llval, llvm::ExternalLinkage);
} else {
llvm::SetLinkage(llval, llvm::InternalLinkage);
}
},
}
}
pub fn trans_item(ccx: &CrateContext, item: &ast::Item) {
let _icx = push_ctxt("trans_item");
let from_external = ccx.external_srcs().borrow().contains_key(&item.id);
match item.node {
ast::ItemFn(ref decl, _fn_style, abi, ref generics, ref body) => {
if !generics.is_type_parameterized() {
let trans_everywhere = attr::requests_inline(&item.attrs);
// Ignore `trans_everywhere` for cross-crate inlined items
// (`from_external`). `trans_item` will be called once for each
// compilation unit that references the item, so it will still get
// translated everywhere it's needed.
for (ref ccx, is_origin) in ccx.maybe_iter(!from_external && trans_everywhere) {
let llfn = get_item_val(ccx, item.id);
let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
if abi != Rust {
foreign::trans_rust_fn_with_foreign_abi(ccx,
&**decl,
&**body,
&item.attrs,
llfn,
empty_substs,
item.id,
None);
} else {
trans_fn(ccx,
&**decl,
&**body,
llfn,
empty_substs,
item.id,
&item.attrs);
}
update_linkage(ccx,
llfn,
Some(item.id),
if is_origin { OriginalTranslation } else { InlinedCopy });
}
}
// Be sure to travel more than just one layer deep to catch nested
// items in blocks and such.
let mut v = TransItemVisitor{ ccx: ccx };
v.visit_block(&**body);
}
ast::ItemImpl(_, _, ref generics, _, _, ref impl_items) => {
meth::trans_impl(ccx,
item.ident,
&impl_items[..],
generics,
item.id);
}
ast::ItemMod(ref m) => {
trans_mod(&ccx.rotate(), m);
}
ast::ItemEnum(ref enum_definition, ref gens) => {
if gens.ty_params.is_empty() {
// sizes only make sense for non-generic types
enum_variant_size_lint(ccx, enum_definition, item.span, item.id);
}
}
ast::ItemConst(_, ref expr) => {
// Recurse on the expression to catch items in blocks
let mut v = TransItemVisitor{ ccx: ccx };
v.visit_expr(&**expr);
}
ast::ItemStatic(_, m, ref expr) => {
// Recurse on the expression to catch items in blocks
let mut v = TransItemVisitor{ ccx: ccx };
v.visit_expr(&**expr);
consts::trans_static(ccx, m, item.id);
let g = get_item_val(ccx, item.id);
update_linkage(ccx, g, Some(item.id), OriginalTranslation);
// Do static_assert checking. It can't really be done much earlier
// because we need to get the value of the bool out of LLVM
if attr::contains_name(&item.attrs, "static_assert") {
if !ty::type_is_bool(ty::expr_ty(ccx.tcx(), expr)) {
ccx.sess().span_fatal(expr.span,
"can only have static_assert on a static \
with type `bool`");
}
if m == ast::MutMutable {
ccx.sess().span_fatal(expr.span,
"cannot have static_assert on a mutable \
static");
}
let v = ccx.static_values().borrow().get(&item.id).unwrap().clone();
unsafe {
if !(llvm::LLVMConstIntGetZExtValue(v) != 0) {
ccx.sess().span_fatal(expr.span, "static assertion failed");
}
}
}
},
ast::ItemForeignMod(ref foreign_mod) => {
foreign::trans_foreign_mod(ccx, foreign_mod);
}
ast::ItemTrait(..) => {
// Inside of this trait definition, we won't be actually translating any
// functions, but the trait still needs to be walked. Otherwise default
// methods with items will not get translated and will cause ICE's when
// metadata time comes around.
let mut v = TransItemVisitor{ ccx: ccx };
visit::walk_item(&mut v, item);
}
_ => {/* fall through */ }
}
}
// Translate a module. Doing this amounts to translating the items in the
// module; there ends up being no artifact (aside from linkage names) of
// separate modules in the compiled program. That's because modules exist
// only as a convenience for humans working with the code, to organize names
// and control visibility.
pub fn trans_mod(ccx: &CrateContext, m: &ast::Mod) {
let _icx = push_ctxt("trans_mod");
for item in &m.items {
trans_item(ccx, &**item);
}
}
fn finish_register_fn(ccx: &CrateContext, sp: Span, sym: String, node_id: ast::NodeId,
llfn: ValueRef) {
ccx.item_symbols().borrow_mut().insert(node_id, sym);
// The stack exhaustion lang item shouldn't have a split stack because
// otherwise it would continue to be exhausted (bad), and both it and the
// eh_personality functions need to be externally linkable.
let def = ast_util::local_def(node_id);
if ccx.tcx().lang_items.stack_exhausted() == Some(def) {
unset_split_stack(llfn);
llvm::SetLinkage(llfn, llvm::ExternalLinkage);
}
if ccx.tcx().lang_items.eh_personality() == Some(def) {
llvm::SetLinkage(llfn, llvm::ExternalLinkage);
}
if is_entry_fn(ccx.sess(), node_id) {
// check for the #[rustc_error] annotation, which forces an
// error in trans. This is used to write compile-fail tests
// that actually test that compilation succeeds without
// reporting an error.
if ty::has_attr(ccx.tcx(), local_def(node_id), "rustc_error") {
ccx.tcx().sess.span_fatal(sp, "compilation successful");
}
create_entry_wrapper(ccx, sp, llfn);
}
}
fn register_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
sp: Span,
sym: String,
node_id: ast::NodeId,
node_type: Ty<'tcx>)
-> ValueRef {
if let ty::ty_bare_fn(_, ref f) = node_type.sty {
if f.abi != Rust && f.abi != RustCall {
ccx.sess().span_bug(sp, &format!("only the `{}` or `{}` calling conventions are valid \
for this function; `{}` was specified",
Rust.name(), RustCall.name(), f.abi.name()));
}
} else {
ccx.sess().span_bug(sp, "expected bare rust function")
}
let llfn = decl_rust_fn(ccx, node_type, &sym[..]);
finish_register_fn(ccx, sp, sym, node_id, llfn);
llfn
}
pub fn get_fn_llvm_attributes<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_ty: Ty<'tcx>)
-> llvm::AttrBuilder
{
use middle::ty::{BrAnon, ReLateBound};
let function_type;
let (fn_sig, abi, env_ty) = match fn_ty.sty {
ty::ty_bare_fn(_, ref f) => (&f.sig, f.abi, None),
ty::ty_closure(closure_did, substs) => {
let typer = common::NormalizingClosureTyper::new(ccx.tcx());
function_type = typer.closure_type(closure_did, substs);
let self_type = self_type_for_closure(ccx, closure_did, fn_ty);
(&function_type.sig, RustCall, Some(self_type))
}
_ => ccx.sess().bug("expected closure or function.")
};
let fn_sig = ty::erase_late_bound_regions(ccx.tcx(), fn_sig);
let mut attrs = llvm::AttrBuilder::new();
let ret_ty = fn_sig.output;
// These have an odd calling convention, so we need to manually
// unpack the input ty's
let input_tys = match fn_ty.sty {
ty::ty_closure(..) => {
assert!(abi == RustCall);
match fn_sig.inputs[0].sty {
ty::ty_tup(ref inputs) => {
let mut full_inputs = vec![env_ty.expect("Missing closure environment")];
full_inputs.push_all(inputs);
full_inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
},
ty::ty_bare_fn(..) if abi == RustCall => {
let mut inputs = vec![fn_sig.inputs[0]];
match fn_sig.inputs[1].sty {
ty::ty_tup(ref t_in) => {
inputs.push_all(&t_in[..]);
inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
}
_ => fn_sig.inputs.clone()
};
// Index 0 is the return value of the llvm func, so we start at 1
let mut first_arg_offset = 1;
if let ty::FnConverging(ret_ty) = ret_ty {
// A function pointer is called without the declaration
// available, so we have to apply any attributes with ABI
// implications directly to the call instruction. Right now,
// the only attribute we need to worry about is `sret`.
if type_of::return_uses_outptr(ccx, ret_ty) {
let llret_sz = llsize_of_real(ccx, type_of::type_of(ccx, ret_ty));
// The outptr can be noalias and nocapture because it's entirely
// invisible to the program. We also know it's nonnull as well
// as how many bytes we can dereference
attrs.arg(1, llvm::StructRetAttribute)
.arg(1, llvm::NoAliasAttribute)
.arg(1, llvm::NoCaptureAttribute)
.arg(1, llvm::DereferenceableAttribute(llret_sz));
// Add one more since there's an outptr
first_arg_offset += 1;
} else {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
match ret_ty.sty {
// `~` pointer return values never alias because ownership
// is transferred
ty::ty_uniq(it) if !common::type_is_sized(ccx.tcx(), it) => {}
ty::ty_uniq(_) => {
attrs.ret(llvm::NoAliasAttribute);
}
_ => {}
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::ty_uniq(it) |
ty::ty_rptr(_, ty::mt { ty: it, .. }) if !common::type_is_sized(ccx.tcx(), it) => {}
ty::ty_uniq(inner) | ty::ty_rptr(_, ty::mt { ty: inner, .. }) => {
let llret_sz = llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.ret(llvm::DereferenceableAttribute(llret_sz));
}
_ => {}
}
if let ty::ty_bool = ret_ty.sty {
attrs.ret(llvm::ZExtAttribute);
}
}
}
for (idx, &t) in input_tys.iter().enumerate().map(|(i, v)| (i + first_arg_offset, v)) {
match t.sty {
// this needs to be first to prevent fat pointers from falling through
_ if !type_is_immediate(ccx, t) => {
let llarg_sz = llsize_of_real(ccx, type_of::type_of(ccx, t));
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
attrs.arg(idx, llvm::NoAliasAttribute)
.arg(idx, llvm::NoCaptureAttribute)
.arg(idx, llvm::DereferenceableAttribute(llarg_sz));
}
ty::ty_bool => {
attrs.arg(idx, llvm::ZExtAttribute);
}
// `~` pointer parameters never alias because ownership is transferred
ty::ty_uniq(inner) => {
let llsz = llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.arg(idx, llvm::NoAliasAttribute)
.arg(idx, llvm::DereferenceableAttribute(llsz));
}
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as both
// `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely on
// memory dependencies rather than pointer equality
ty::ty_rptr(b, mt) if mt.mutbl == ast::MutMutable ||
!ty::type_contents(ccx.tcx(), mt.ty).interior_unsafe() => {
let llsz = llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
attrs.arg(idx, llvm::NoAliasAttribute)
.arg(idx, llvm::DereferenceableAttribute(llsz));
if mt.mutbl == ast::MutImmutable {
attrs.arg(idx, llvm::ReadOnlyAttribute);
}
if let ReLateBound(_, BrAnon(_)) = *b {
attrs.arg(idx, llvm::NoCaptureAttribute);
}
}
// When a reference in an argument has no named lifetime, it's impossible for that
// reference to escape this function (returned or stored beyond the call by a closure).
ty::ty_rptr(&ReLateBound(_, BrAnon(_)), mt) => {
let llsz = llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
attrs.arg(idx, llvm::NoCaptureAttribute)
.arg(idx, llvm::DereferenceableAttribute(llsz));
}
// & pointer parameters are also never null and we know exactly how
// many bytes we can dereference
ty::ty_rptr(_, mt) => {
let llsz = llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
}
_ => ()
}
}
attrs
}
// only use this for foreign function ABIs and glue, use `register_fn` for Rust functions
pub fn register_fn_llvmty(ccx: &CrateContext,
sp: Span,
sym: String,
node_id: ast::NodeId,
cc: llvm::CallConv,
llfty: Type) -> ValueRef {
debug!("register_fn_llvmty id={} sym={}", node_id, sym);
let llfn = decl_fn(ccx,
&sym[..],
cc,
llfty,
ty::FnConverging(ty::mk_nil(ccx.tcx())));
finish_register_fn(ccx, sp, sym, node_id, llfn);
llfn
}
pub fn is_entry_fn(sess: &Session, node_id: ast::NodeId) -> bool {
match *sess.entry_fn.borrow() {
Some((entry_id, _)) => node_id == entry_id,
None => false
}
}
// Create a _rust_main(args: ~[str]) function which will be called from the
// runtime rust_start function
pub fn create_entry_wrapper(ccx: &CrateContext,
_sp: Span,
main_llfn: ValueRef) {
let et = ccx.sess().entry_type.get().unwrap();
match et {
config::EntryMain => {
create_entry_fn(ccx, main_llfn, true);
}
config::EntryStart => create_entry_fn(ccx, main_llfn, false),
config::EntryNone => {} // Do nothing.
}
fn create_entry_fn(ccx: &CrateContext,
rust_main: ValueRef,
use_start_lang_item: bool) {
let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()],
&ccx.int_type());
let llfn = decl_cdecl_fn(ccx, "main", llfty, ty::mk_nil(ccx.tcx()));
// FIXME: #16581: Marking a symbol in the executable with `dllexport`
// linkage forces MinGW's linker to output a `.reloc` section for ASLR
if ccx.sess().target.target.options.is_like_windows {
unsafe { llvm::LLVMRustSetDLLExportStorageClass(llfn) }
}
let llbb = unsafe {
llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llfn,
"top\0".as_ptr() as *const _)
};
let bld = ccx.raw_builder();
unsafe {
llvm::LLVMPositionBuilderAtEnd(bld, llbb);
debuginfo::insert_reference_to_gdb_debug_scripts_section_global(ccx);
let (start_fn, args) = if use_start_lang_item {
let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) {
Ok(id) => id,
Err(s) => { ccx.sess().fatal(&s[..]); }
};
let start_fn = if start_def_id.krate == ast::LOCAL_CRATE {
get_item_val(ccx, start_def_id.node)
} else {
let start_fn_type = csearch::get_type(ccx.tcx(),
start_def_id).ty;
trans_external_path(ccx, start_def_id, start_fn_type)
};
let args = {
let opaque_rust_main = llvm::LLVMBuildPointerCast(bld,
rust_main, Type::i8p(ccx).to_ref(),
"rust_main\0".as_ptr() as *const _);
vec!(
opaque_rust_main,
get_param(llfn, 0),
get_param(llfn, 1)
)
};
(start_fn, args)
} else {
debug!("using user-defined start fn");
let args = vec!(
get_param(llfn, 0 as c_uint),
get_param(llfn, 1 as c_uint)
);
(rust_main, args)
};
let result = llvm::LLVMBuildCall(bld,
start_fn,
args.as_ptr(),
args.len() as c_uint,
noname());
llvm::LLVMBuildRet(bld, result);
}
}
}
fn exported_name<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, id: ast::NodeId,
ty: Ty<'tcx>, attrs: &[ast::Attribute]) -> String {
match ccx.external_srcs().borrow().get(&id) {
Some(&did) => {
let sym = csearch::get_symbol(&ccx.sess().cstore, did);
debug!("found item {} in other crate...", sym);
return sym;
}
None => {}
}
match attr::first_attr_value_str_by_name(attrs, "export_name") {
// Use provided name
Some(name) => name.to_string(),
_ => ccx.tcx().map.with_path(id, |path| {
if attr::contains_name(attrs, "no_mangle") {
// Don't mangle
path.last().unwrap().to_string()
} else {
match weak_lang_items::link_name(attrs) {
Some(name) => name.to_string(),
None => {
// Usual name mangling
mangle_exported_name(ccx, path, ty, id)
}
}
}
})
}
}
fn contains_null(s: &str) -> bool {
s.bytes().any(|b| b == 0)
}
pub fn get_item_val(ccx: &CrateContext, id: ast::NodeId) -> ValueRef {
debug!("get_item_val(id=`{}`)", id);
match ccx.item_vals().borrow().get(&id).cloned() {
Some(v) => return v,
None => {}
}
let item = ccx.tcx().map.get(id);
debug!("get_item_val: id={} item={:?}", id, item);
let val = match item {
ast_map::NodeItem(i) => {
let ty = ty::node_id_to_type(ccx.tcx(), i.id);
let sym = || exported_name(ccx, id, ty, &i.attrs);
let v = match i.node {
ast::ItemStatic(_, _, ref expr) => {
// If this static came from an external crate, then
// we need to get the symbol from csearch instead of
// using the current crate's name/version
// information in the hash of the symbol
let sym = sym();
debug!("making {}", sym);
// We need the translated value here, because for enums the
// LLVM type is not fully determined by the Rust type.
let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
let (v, ty) = consts::const_expr(ccx, &**expr, empty_substs);
ccx.static_values().borrow_mut().insert(id, v);
unsafe {
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let llty = if ty::type_is_bool(ty) {
llvm::LLVMInt8TypeInContext(ccx.llcx())
} else {
llvm::LLVMTypeOf(v)
};
if contains_null(&sym[..]) {
ccx.sess().fatal(
&format!("Illegal null byte in export_name \
value: `{}`", sym));
}
let buf = CString::new(sym.clone()).unwrap();
let g = llvm::LLVMAddGlobal(ccx.llmod(), llty,
buf.as_ptr());
if attr::contains_name(&i.attrs,
"thread_local") {
llvm::set_thread_local(g, true);
}
ccx.item_symbols().borrow_mut().insert(i.id, sym);
g
}
}
ast::ItemFn(_, _, abi, _, _) => {
let sym = sym();
let llfn = if abi == Rust {
register_fn(ccx, i.span, sym, i.id, ty)
} else {
foreign::register_rust_fn_with_foreign_abi(ccx,
i.span,
sym,
i.id)
};
set_llvm_fn_attrs(ccx, &i.attrs, llfn);
llfn
}
_ => ccx.sess().bug("get_item_val: weird result in table")
};
match attr::first_attr_value_str_by_name(&i.attrs,
"link_section") {
Some(sect) => {
if contains_null(&sect) {
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`",
&sect));
}
unsafe {
let buf = CString::new(sect.as_bytes()).unwrap();
llvm::LLVMSetSection(v, buf.as_ptr());
}
},
None => ()
}
v
}
ast_map::NodeTraitItem(trait_item) => {
debug!("get_item_val(): processing a NodeTraitItem");
match trait_item.node {
ast::MethodTraitItem(_, None) | ast::TypeTraitItem(..) => {
ccx.sess().span_bug(trait_item.span,
"unexpected variant: required trait method in get_item_val()");
}
ast::MethodTraitItem(_, Some(_)) => {
register_method(ccx, id, &trait_item.attrs, trait_item.span)
}
}
}
ast_map::NodeImplItem(impl_item) => {
match impl_item.node {
ast::MethodImplItem(..) => {
register_method(ccx, id, &impl_item.attrs, impl_item.span)
}
ast::TypeImplItem(_) => {
ccx.sess().span_bug(impl_item.span,
"unexpected variant: associated type in get_item_val()")
}
ast::MacImplItem(_) => {
ccx.sess().span_bug(impl_item.span,
"unexpected variant: unexpanded macro in get_item_val()")
}
}
}
ast_map::NodeForeignItem(ni) => {
match ni.node {
ast::ForeignItemFn(..) => {
let abi = ccx.tcx().map.get_foreign_abi(id);
let ty = ty::node_id_to_type(ccx.tcx(), ni.id);
let name = foreign::link_name(&*ni);
let llfn = foreign::register_foreign_item_fn(ccx, abi, ty, &name);
set_llvm_fn_attrs(ccx, &ni.attrs, llfn);
llfn
}
ast::ForeignItemStatic(..) => {
foreign::register_static(ccx, &*ni)
}
}
}
ast_map::NodeVariant(ref v) => {
let llfn;
let args = match v.node.kind {
ast::TupleVariantKind(ref args) => args,
ast::StructVariantKind(_) => {
ccx.sess().bug("struct variant kind unexpected in get_item_val")
}
};
assert!(args.len() != 0);
let ty = ty::node_id_to_type(ccx.tcx(), id);
let parent = ccx.tcx().map.get_parent(id);
let enm = ccx.tcx().map.expect_item(parent);
let sym = exported_name(ccx,
id,
ty,
&enm.attrs);
llfn = match enm.node {
ast::ItemEnum(_, _) => {
register_fn(ccx, (*v).span, sym, id, ty)
}
_ => ccx.sess().bug("NodeVariant, shouldn't happen")
};
set_inline_hint(llfn);
llfn
}
ast_map::NodeStructCtor(struct_def) => {
// Only register the constructor if this is a tuple-like struct.
let ctor_id = match struct_def.ctor_id {
None => {
ccx.sess().bug("attempt to register a constructor of \
a non-tuple-like struct")
}
Some(ctor_id) => ctor_id,
};
let parent = ccx.tcx().map.get_parent(id);
let struct_item = ccx.tcx().map.expect_item(parent);
let ty = ty::node_id_to_type(ccx.tcx(), ctor_id);
let sym = exported_name(ccx,
id,
ty,
&struct_item.attrs);
let llfn = register_fn(ccx, struct_item.span,
sym, ctor_id, ty);
set_inline_hint(llfn);
llfn
}
ref variant => {
ccx.sess().bug(&format!("get_item_val(): unexpected variant: {:?}",
variant))
}
};
// All LLVM globals and functions are initially created as external-linkage
// declarations. If `trans_item`/`trans_fn` later turns the declaration
// into a definition, it adjusts the linkage then (using `update_linkage`).
//
// The exception is foreign items, which have their linkage set inside the
// call to `foreign::register_*` above. We don't touch the linkage after
// that (`foreign::trans_foreign_mod` doesn't adjust the linkage like the
// other item translation functions do).
ccx.item_vals().borrow_mut().insert(id, val);
val
}
fn register_method(ccx: &CrateContext, id: ast::NodeId,
attrs: &[ast::Attribute], span: Span) -> ValueRef {
let mty = ty::node_id_to_type(ccx.tcx(), id);
let sym = exported_name(ccx, id, mty, &attrs);
if let ty::ty_bare_fn(_, ref f) = mty.sty {
let llfn = if f.abi == Rust || f.abi == RustCall {
register_fn(ccx, span, sym, id, mty)
} else {
foreign::register_rust_fn_with_foreign_abi(ccx, span, sym, id)
};
set_llvm_fn_attrs(ccx, &attrs, llfn);
return llfn;
} else {
ccx.sess().span_bug(span, "expected bare rust function");
}
}
pub fn crate_ctxt_to_encode_parms<'a, 'tcx>(cx: &'a SharedCrateContext<'tcx>,
ie: encoder::EncodeInlinedItem<'a>)
-> encoder::EncodeParams<'a, 'tcx> {
encoder::EncodeParams {
diag: cx.sess().diagnostic(),
tcx: cx.tcx(),
reexports: cx.export_map(),
item_symbols: cx.item_symbols(),
link_meta: cx.link_meta(),
cstore: &cx.sess().cstore,
encode_inlined_item: ie,
reachable: cx.reachable(),
}
}
pub fn write_metadata(cx: &SharedCrateContext, krate: &ast::Crate) -> Vec<u8> {
use flate;
let any_library = cx.sess().crate_types.borrow().iter().any(|ty| {
*ty != config::CrateTypeExecutable
});
if !any_library {
return Vec::new()
}
let encode_inlined_item: encoder::EncodeInlinedItem =
Box::new(|ecx, rbml_w, ii| astencode::encode_inlined_item(ecx, rbml_w, ii));
let encode_parms = crate_ctxt_to_encode_parms(cx, encode_inlined_item);
let metadata = encoder::encode_metadata(encode_parms, krate);
let mut compressed = encoder::metadata_encoding_version.to_vec();
compressed.push_all(&flate::deflate_bytes(&metadata));
let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]);
let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false);
let name = format!("rust_metadata_{}_{}",
cx.link_meta().crate_name,
cx.link_meta().crate_hash);
let buf = CString::new(name).unwrap();
let llglobal = unsafe {
llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(),
buf.as_ptr())
};
unsafe {
llvm::LLVMSetInitializer(llglobal, llconst);
let name = loader::meta_section_name(cx.sess().target.target.options.is_like_osx);
let name = CString::new(name).unwrap();
llvm::LLVMSetSection(llglobal, name.as_ptr())
}
return metadata;
}
/// Find any symbols that are defined in one compilation unit, but not declared
/// in any other compilation unit. Give these symbols internal linkage.
fn internalize_symbols(cx: &SharedCrateContext, reachable: &HashSet<String>) {
unsafe {
let mut declared = HashSet::new();
let iter_globals = |llmod| {
ValueIter {
cur: llvm::LLVMGetFirstGlobal(llmod),
step: llvm::LLVMGetNextGlobal,
}
};
let iter_functions = |llmod| {
ValueIter {
cur: llvm::LLVMGetFirstFunction(llmod),
step: llvm::LLVMGetNextFunction,
}
};
// Collect all external declarations in all compilation units.
for ccx in cx.iter() {
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
let linkage = llvm::LLVMGetLinkage(val);
// We only care about external declarations (not definitions)
// and available_externally definitions.
if !(linkage == llvm::ExternalLinkage as c_uint &&
llvm::LLVMIsDeclaration(val) != 0) &&
!(linkage == llvm::AvailableExternallyLinkage as c_uint) {
continue
}
let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
.to_bytes().to_vec();
declared.insert(name);
}
}
// Examine each external definition. If the definition is not used in
// any other compilation unit, and is not reachable from other crates,
// then give it internal linkage.
for ccx in cx.iter() {
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
// We only care about external definitions.
if !(llvm::LLVMGetLinkage(val) == llvm::ExternalLinkage as c_uint &&
llvm::LLVMIsDeclaration(val) == 0) {
continue
}
let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
.to_bytes().to_vec();
if !declared.contains(&name) &&
!reachable.contains(str::from_utf8(&name).unwrap()) {
llvm::SetLinkage(val, llvm::InternalLinkage);
}
}
}
}
struct ValueIter {
cur: ValueRef,
step: unsafe extern "C" fn(ValueRef) -> ValueRef,
}
impl Iterator for ValueIter {
type Item = ValueRef;
fn next(&mut self) -> Option<ValueRef> {
let old = self.cur;
if !old.is_null() {
self.cur = unsafe {
let step: unsafe extern "C" fn(ValueRef) -> ValueRef =
mem::transmute_copy(&self.step);
step(old)
};
Some(old)
} else {
None
}
}
}
}
pub fn trans_crate<'tcx>(analysis: ty::CrateAnalysis<'tcx>)
-> (ty::ctxt<'tcx>, CrateTranslation) {
let ty::CrateAnalysis { ty_cx: tcx, export_map, reachable, name, .. } = analysis;
let krate = tcx.map.krate();
let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks {
v
} else {
tcx.sess.opts.debug_assertions
};
// Before we touch LLVM, make sure that multithreading is enabled.
unsafe {
use std::sync::{Once, ONCE_INIT};
static INIT: Once = ONCE_INIT;
static mut POISONED: bool = false;
INIT.call_once(|| {
if llvm::LLVMStartMultithreaded() != 1 {
// use an extra bool to make sure that all future usage of LLVM
// cannot proceed despite the Once not running more than once.
POISONED = true;
}
});
if POISONED {
tcx.sess.bug("couldn't enable multi-threaded LLVM");
}
}
let link_meta = link::build_link_meta(&tcx.sess, krate, name);
let codegen_units = tcx.sess.opts.cg.codegen_units;
let shared_ccx = SharedCrateContext::new(&link_meta.crate_name,
codegen_units,
tcx,
export_map,
Sha256::new(),
link_meta.clone(),
reachable,
check_overflow);
{
let ccx = shared_ccx.get_ccx(0);
// First, verify intrinsics.
intrinsic::check_intrinsics(&ccx);
// Next, translate the module.
{
let _icx = push_ctxt("text");
trans_mod(&ccx, &krate.module);
}
}
for ccx in shared_ccx.iter() {
if ccx.sess().opts.debuginfo != NoDebugInfo {
debuginfo::finalize(&ccx);
}
}
// Translate the metadata.
let metadata = write_metadata(&shared_ccx, krate);
if shared_ccx.sess().trans_stats() {
let stats = shared_ccx.stats();
println!("--- trans stats ---");
println!("n_glues_created: {}", stats.n_glues_created.get());
println!("n_null_glues: {}", stats.n_null_glues.get());
println!("n_real_glues: {}", stats.n_real_glues.get());
println!("n_fns: {}", stats.n_fns.get());
println!("n_monos: {}", stats.n_monos.get());
println!("n_inlines: {}", stats.n_inlines.get());
println!("n_closures: {}", stats.n_closures.get());
println!("fn stats:");
stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
insns_b.cmp(&insns_a)
});
for tuple in &*stats.fn_stats.borrow() {
match *tuple {
(ref name, insns) => {
println!("{} insns, {}", insns, *name);
}
}
}
}
if shared_ccx.sess().count_llvm_insns() {
for (k, v) in &*shared_ccx.stats().llvm_insns.borrow() {
println!("{:7} {}", *v, *k);
}
}
let modules = shared_ccx.iter()
.map(|ccx| ModuleTranslation { llcx: ccx.llcx(), llmod: ccx.llmod() })
.collect();
let mut reachable: Vec<String> = shared_ccx.reachable().iter().filter_map(|id| {
shared_ccx.item_symbols().borrow().get(id).map(|s| s.to_string())
}).collect();
// For the purposes of LTO, we add to the reachable set all of the upstream
// reachable extern fns. These functions are all part of the public ABI of
// the final product, so LTO needs to preserve them.
shared_ccx.sess().cstore.iter_crate_data(|cnum, _| {
let syms = csearch::get_reachable_extern_fns(&shared_ccx.sess().cstore, cnum);
reachable.extend(syms.into_iter().map(|did| {
csearch::get_symbol(&shared_ccx.sess().cstore, did)
}));
});
// Make sure that some other crucial symbols are not eliminated from the
// module. This includes the main function, the crate map (used for debug
// log settings and I/O), and finally the curious rust_stack_exhausted
// symbol. This symbol is required for use by the libmorestack library that
// we link in, so we must ensure that this symbol is not internalized (if
// defined in the crate).
reachable.push("main".to_string());
reachable.push("rust_stack_exhausted".to_string());
// referenced from .eh_frame section on some platforms
reachable.push("rust_eh_personality".to_string());
// referenced from rt/rust_try.ll
reachable.push("rust_eh_personality_catch".to_string());
if codegen_units > 1 {
internalize_symbols(&shared_ccx, &reachable.iter().cloned().collect());
}
let metadata_module = ModuleTranslation {
llcx: shared_ccx.metadata_llcx(),
llmod: shared_ccx.metadata_llmod(),
};
let formats = shared_ccx.tcx().dependency_formats.borrow().clone();
let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");
let translation = CrateTranslation {
modules: modules,
metadata_module: metadata_module,
link: link_meta,
metadata: metadata,
reachable: reachable,
crate_formats: formats,
no_builtins: no_builtins,
};
(shared_ccx.take_tcx(), translation)
}