Florian Diebold 6fb5abbc03 Refactor autoderef and method resolution
- don't return the receiver type from method resolution; instead just
 return the autorefs/autoderefs that happened and repeat them. This
 ensures all the effects like trait obligations and whatever we learned
 about type variables from derefing them are actually applied. Also, it
 allows us to get rid of `decanonicalize_ty`, which was just wrong in
 principle.

 - Autoderef itself now directly works with an inference table. Sadly
 this has the effect of making it harder to use as an iterator, often
 requiring manual `while let` loops. (rustc works around this by using
 inner mutability in the inference context, so that things like unifying
 types don't require a unique reference.)

 - We now record the adjustments (autoref/deref) for method receivers
 and index expressions, which we didn't before.

 - Removed the redundant crate parameter from method resolution, since
 the trait_env contains the crate as well.

 - in the HIR API, the methods now take a scope to determine the trait env.
 `Type` carries a trait env, but I think that's probably a bad decision
 because it's easy to create it with the wrong env, e.g. by using
 `Adt::ty`. This mostly didn't matter so far because
 `iterate_method_candidates` took a crate parameter and ignored
 `self.krate`, but the trait env would still have been wrong in those
 cases, which I think would give some wrong results in some edge cases.

Fixes #10058.
2022-02-25 11:47:14 +01:00

185 lines
7.1 KiB
Rust

//! Completes constants and paths in unqualified patterns.
use hir::{db::DefDatabase, AssocItem, ScopeDef};
use rustc_hash::FxHashSet;
use syntax::ast::Pat;
use crate::{
context::{PathCompletionCtx, PathQualifierCtx, PatternRefutability},
CompletionContext, Completions,
};
/// Completes constants and paths in unqualified patterns.
pub(crate) fn complete_pattern(acc: &mut Completions, ctx: &CompletionContext) {
let patctx = match &ctx.pattern_ctx {
Some(ctx) => ctx,
_ => return,
};
let refutable = patctx.refutability == PatternRefutability::Refutable;
if let Some(path_ctx) = &ctx.path_context {
pattern_path_completion(acc, ctx, path_ctx);
return;
}
match patctx.parent_pat.as_ref() {
Some(Pat::RangePat(_) | Pat::BoxPat(_)) => (),
Some(Pat::RefPat(r)) => {
if r.mut_token().is_none() {
acc.add_keyword(ctx, "mut");
}
}
_ => {
let tok = ctx.token.text_range().start();
match (patctx.ref_token.as_ref(), patctx.mut_token.as_ref()) {
(None, None) => {
acc.add_keyword(ctx, "ref");
acc.add_keyword(ctx, "mut");
}
(None, Some(m)) if tok < m.text_range().start() => {
acc.add_keyword(ctx, "ref");
}
(Some(r), None) if tok > r.text_range().end() => {
acc.add_keyword(ctx, "mut");
}
_ => (),
}
}
}
let single_variant_enum = |enum_: hir::Enum| ctx.db.enum_data(enum_.into()).variants.len() == 1;
if let Some(hir::Adt::Enum(e)) =
ctx.expected_type.as_ref().and_then(|ty| ty.strip_references().as_adt())
{
if refutable || single_variant_enum(e) {
super::enum_variants_with_paths(acc, ctx, e, |acc, ctx, variant, path| {
acc.add_qualified_variant_pat(ctx, variant, path.clone());
acc.add_qualified_enum_variant(ctx, variant, path);
});
}
}
// FIXME: ideally, we should look at the type we are matching against and
// suggest variants + auto-imports
ctx.process_all_names(&mut |name, res| {
let add_resolution = match res {
hir::ScopeDef::ModuleDef(def) => match def {
hir::ModuleDef::Adt(hir::Adt::Struct(strukt)) => {
acc.add_struct_pat(ctx, strukt, Some(name.clone()));
true
}
hir::ModuleDef::Variant(variant)
if refutable || single_variant_enum(variant.parent_enum(ctx.db)) =>
{
acc.add_variant_pat(ctx, variant, Some(name.clone()));
true
}
hir::ModuleDef::Adt(hir::Adt::Enum(e)) => refutable || single_variant_enum(e),
hir::ModuleDef::Const(..) | hir::ModuleDef::Module(..) => refutable,
_ => false,
},
hir::ScopeDef::MacroDef(mac) => mac.is_fn_like(),
hir::ScopeDef::ImplSelfType(impl_) => match impl_.self_ty(ctx.db).as_adt() {
Some(hir::Adt::Struct(strukt)) => {
acc.add_struct_pat(ctx, strukt, Some(name.clone()));
true
}
Some(hir::Adt::Enum(_)) => refutable,
_ => true,
},
_ => false,
};
if add_resolution {
acc.add_resolution(ctx, name, res);
}
});
}
fn pattern_path_completion(
acc: &mut Completions,
ctx: &CompletionContext,
PathCompletionCtx { qualifier, is_absolute_path, .. }: &PathCompletionCtx,
) {
match qualifier {
Some(PathQualifierCtx { resolution, is_super_chain, .. }) => {
if *is_super_chain {
acc.add_keyword(ctx, "super::");
}
let resolution = match resolution {
Some(it) => it,
None => return,
};
match resolution {
hir::PathResolution::Def(hir::ModuleDef::Module(module)) => {
let module_scope = module.scope(ctx.db, ctx.module);
for (name, def) in module_scope {
let add_resolution = match def {
ScopeDef::MacroDef(m) if m.is_fn_like() => true,
ScopeDef::ModuleDef(_) => true,
_ => false,
};
if add_resolution {
acc.add_resolution(ctx, name, def);
}
}
}
hir::PathResolution::Def(hir::ModuleDef::Adt(hir::Adt::Enum(e))) => {
cov_mark::hit!(enum_plain_qualified_use_tree);
e.variants(ctx.db)
.into_iter()
.for_each(|variant| acc.add_enum_variant(ctx, variant, None));
}
res @ (hir::PathResolution::TypeParam(_) | hir::PathResolution::SelfType(_)) => {
let ty = match res {
hir::PathResolution::TypeParam(param) => param.ty(ctx.db),
hir::PathResolution::SelfType(impl_def) => impl_def.self_ty(ctx.db),
_ => return,
};
if let Some(hir::Adt::Enum(e)) = ty.as_adt() {
e.variants(ctx.db)
.into_iter()
.for_each(|variant| acc.add_enum_variant(ctx, variant, None));
}
let traits_in_scope = ctx.scope.visible_traits();
let mut seen = FxHashSet::default();
ty.iterate_path_candidates(
ctx.db,
&ctx.scope,
&traits_in_scope,
ctx.module,
None,
|item| {
// Note associated consts cannot be referenced in patterns
if let AssocItem::TypeAlias(ta) = item {
// We might iterate candidates of a trait multiple times here, so deduplicate them.
if seen.insert(item) {
acc.add_type_alias(ctx, ta);
}
}
None::<()>
},
);
}
_ => {}
}
}
// qualifier can only be none here if we are in a TuplePat or RecordPat in which case special characters have to follow the path
None if *is_absolute_path => acc.add_crate_roots(ctx),
None => {
cov_mark::hit!(unqualified_path_only_modules_in_import);
ctx.process_all_names(&mut |name, res| {
if let ScopeDef::ModuleDef(hir::ModuleDef::Module(_)) = res {
acc.add_resolution(ctx, name, res);
}
});
acc.add_nameref_keywords(ctx);
}
}
}