4093 lines
164 KiB
Rust
4093 lines
164 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! # Debug Info Module
|
|
//!
|
|
//! This module serves the purpose of generating debug symbols. We use LLVM's
|
|
//! [source level debugging](http://llvm.org/docs/SourceLevelDebugging.html)
|
|
//! features for generating the debug information. The general principle is this:
|
|
//!
|
|
//! Given the right metadata in the LLVM IR, the LLVM code generator is able to
|
|
//! create DWARF debug symbols for the given code. The
|
|
//! [metadata](http://llvm.org/docs/LangRef.html#metadata-type) is structured much
|
|
//! like DWARF *debugging information entries* (DIE), representing type information
|
|
//! such as datatype layout, function signatures, block layout, variable location
|
|
//! and scope information, etc. It is the purpose of this module to generate correct
|
|
//! metadata and insert it into the LLVM IR.
|
|
//!
|
|
//! As the exact format of metadata trees may change between different LLVM
|
|
//! versions, we now use LLVM
|
|
//! [DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to
|
|
//! create metadata where possible. This will hopefully ease the adaption of this
|
|
//! module to future LLVM versions.
|
|
//!
|
|
//! The public API of the module is a set of functions that will insert the correct
|
|
//! metadata into the LLVM IR when called with the right parameters. The module is
|
|
//! thus driven from an outside client with functions like
|
|
//! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`.
|
|
//!
|
|
//! Internally the module will try to reuse already created metadata by utilizing a
|
|
//! cache. The way to get a shared metadata node when needed is thus to just call
|
|
//! the corresponding function in this module:
|
|
//!
|
|
//! let file_metadata = file_metadata(crate_context, path);
|
|
//!
|
|
//! The function will take care of probing the cache for an existing node for that
|
|
//! exact file path.
|
|
//!
|
|
//! All private state used by the module is stored within either the
|
|
//! CrateDebugContext struct (owned by the CrateContext) or the FunctionDebugContext
|
|
//! (owned by the FunctionContext).
|
|
//!
|
|
//! This file consists of three conceptual sections:
|
|
//! 1. The public interface of the module
|
|
//! 2. Module-internal metadata creation functions
|
|
//! 3. Minor utility functions
|
|
//!
|
|
//!
|
|
//! ## Recursive Types
|
|
//!
|
|
//! Some kinds of types, such as structs and enums can be recursive. That means that
|
|
//! the type definition of some type X refers to some other type which in turn
|
|
//! (transitively) refers to X. This introduces cycles into the type referral graph.
|
|
//! A naive algorithm doing an on-demand, depth-first traversal of this graph when
|
|
//! describing types, can get trapped in an endless loop when it reaches such a
|
|
//! cycle.
|
|
//!
|
|
//! For example, the following simple type for a singly-linked list...
|
|
//!
|
|
//! ```
|
|
//! struct List {
|
|
//! value: int,
|
|
//! tail: Option<Box<List>>,
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! will generate the following callstack with a naive DFS algorithm:
|
|
//!
|
|
//! ```
|
|
//! describe(t = List)
|
|
//! describe(t = int)
|
|
//! describe(t = Option<Box<List>>)
|
|
//! describe(t = Box<List>)
|
|
//! describe(t = List) // at the beginning again...
|
|
//! ...
|
|
//! ```
|
|
//!
|
|
//! To break cycles like these, we use "forward declarations". That is, when the
|
|
//! algorithm encounters a possibly recursive type (any struct or enum), it
|
|
//! immediately creates a type description node and inserts it into the cache
|
|
//! *before* describing the members of the type. This type description is just a
|
|
//! stub (as type members are not described and added to it yet) but it allows the
|
|
//! algorithm to already refer to the type. After the stub is inserted into the
|
|
//! cache, the algorithm continues as before. If it now encounters a recursive
|
|
//! reference, it will hit the cache and does not try to describe the type anew.
|
|
//!
|
|
//! This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which
|
|
//! represents a kind of continuation, storing all state needed to continue
|
|
//! traversal at the type members after the type has been registered with the cache.
|
|
//! (This implementation approach might be a tad over-engineered and may change in
|
|
//! the future)
|
|
//!
|
|
//!
|
|
//! ## Source Locations and Line Information
|
|
//!
|
|
//! In addition to data type descriptions the debugging information must also allow
|
|
//! to map machine code locations back to source code locations in order to be useful.
|
|
//! This functionality is also handled in this module. The following functions allow
|
|
//! to control source mappings:
|
|
//!
|
|
//! + set_source_location()
|
|
//! + clear_source_location()
|
|
//! + start_emitting_source_locations()
|
|
//!
|
|
//! `set_source_location()` allows to set the current source location. All IR
|
|
//! instructions created after a call to this function will be linked to the given
|
|
//! source location, until another location is specified with
|
|
//! `set_source_location()` or the source location is cleared with
|
|
//! `clear_source_location()`. In the later case, subsequent IR instruction will not
|
|
//! be linked to any source location. As you can see, this is a stateful API
|
|
//! (mimicking the one in LLVM), so be careful with source locations set by previous
|
|
//! calls. It's probably best to not rely on any specific state being present at a
|
|
//! given point in code.
|
|
//!
|
|
//! One topic that deserves some extra attention is *function prologues*. At the
|
|
//! beginning of a function's machine code there are typically a few instructions
|
|
//! for loading argument values into allocas and checking if there's enough stack
|
|
//! space for the function to execute. This *prologue* is not visible in the source
|
|
//! code and LLVM puts a special PROLOGUE END marker into the line table at the
|
|
//! first non-prologue instruction of the function. In order to find out where the
|
|
//! prologue ends, LLVM looks for the first instruction in the function body that is
|
|
//! linked to a source location. So, when generating prologue instructions we have
|
|
//! to make sure that we don't emit source location information until the 'real'
|
|
//! function body begins. For this reason, source location emission is disabled by
|
|
//! default for any new function being translated and is only activated after a call
|
|
//! to the third function from the list above, `start_emitting_source_locations()`.
|
|
//! This function should be called right before regularly starting to translate the
|
|
//! top-level block of the given function.
|
|
//!
|
|
//! There is one exception to the above rule: `llvm.dbg.declare` instruction must be
|
|
//! linked to the source location of the variable being declared. For function
|
|
//! parameters these `llvm.dbg.declare` instructions typically occur in the middle
|
|
//! of the prologue, however, they are ignored by LLVM's prologue detection. The
|
|
//! `create_argument_metadata()` and related functions take care of linking the
|
|
//! `llvm.dbg.declare` instructions to the correct source locations even while
|
|
//! source location emission is still disabled, so there is no need to do anything
|
|
//! special with source location handling here.
|
|
//!
|
|
//! ## Unique Type Identification
|
|
//!
|
|
//! In order for link-time optimization to work properly, LLVM needs a unique type
|
|
//! identifier that tells it across compilation units which types are the same as
|
|
//! others. This type identifier is created by TypeMap::get_unique_type_id_of_type()
|
|
//! using the following algorithm:
|
|
//!
|
|
//! (1) Primitive types have their name as ID
|
|
//! (2) Structs, enums and traits have a multipart identifier
|
|
//!
|
|
//! (1) The first part is the SVH (strict version hash) of the crate they were
|
|
//! originally defined in
|
|
//!
|
|
//! (2) The second part is the ast::NodeId of the definition in their original
|
|
//! crate
|
|
//!
|
|
//! (3) The final part is a concatenation of the type IDs of their concrete type
|
|
//! arguments if they are generic types.
|
|
//!
|
|
//! (3) Tuple-, pointer and function types are structurally identified, which means
|
|
//! that they are equivalent if their component types are equivalent (i.e. (int,
|
|
//! int) is the same regardless in which crate it is used).
|
|
//!
|
|
//! This algorithm also provides a stable ID for types that are defined in one crate
|
|
//! but instantiated from metadata within another crate. We just have to take care
|
|
//! to always map crate and node IDs back to the original crate context.
|
|
//!
|
|
//! As a side-effect these unique type IDs also help to solve a problem arising from
|
|
//! lifetime parameters. Since lifetime parameters are completely omitted in
|
|
//! debuginfo, more than one `Ty` instance may map to the same debuginfo type
|
|
//! metadata, that is, some struct `Struct<'a>` may have N instantiations with
|
|
//! different concrete substitutions for `'a`, and thus there will be N `Ty`
|
|
//! instances for the type `Struct<'a>` even though it is not generic otherwise.
|
|
//! Unfortunately this means that we cannot use `ty::type_id()` as cheap identifier
|
|
//! for type metadata---we have done this in the past, but it led to unnecessary
|
|
//! metadata duplication in the best case and LLVM assertions in the worst. However,
|
|
//! the unique type ID as described above *can* be used as identifier. Since it is
|
|
//! comparatively expensive to construct, though, `ty::type_id()` is still used
|
|
//! additionally as an optimization for cases where the exact same type has been
|
|
//! seen before (which is most of the time).
|
|
use self::FunctionDebugContextRepr::*;
|
|
use self::VariableAccess::*;
|
|
use self::VariableKind::*;
|
|
use self::MemberOffset::*;
|
|
use self::MemberDescriptionFactory::*;
|
|
use self::RecursiveTypeDescription::*;
|
|
use self::EnumDiscriminantInfo::*;
|
|
use self::DebugLocation::*;
|
|
|
|
use llvm;
|
|
use llvm::{ModuleRef, ContextRef, ValueRef};
|
|
use llvm::debuginfo::*;
|
|
use metadata::csearch;
|
|
use middle::subst::{mod, Subst, Substs};
|
|
use trans::{mod, adt, machine, type_of};
|
|
use trans::common::*;
|
|
use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef};
|
|
use trans::type_::Type;
|
|
use middle::ty::{mod, Ty};
|
|
use middle::pat_util;
|
|
use session::config::{mod, FullDebugInfo, LimitedDebugInfo, NoDebugInfo};
|
|
use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet};
|
|
use util::ppaux;
|
|
|
|
use libc::c_uint;
|
|
use std::c_str::{CString, ToCStr};
|
|
use std::cell::{Cell, RefCell};
|
|
use std::ptr;
|
|
use std::rc::{Rc, Weak};
|
|
use syntax::util::interner::Interner;
|
|
use syntax::codemap::{Span, Pos};
|
|
use syntax::{ast, codemap, ast_util, ast_map};
|
|
use syntax::ast_util::PostExpansionMethod;
|
|
use syntax::parse::token::{mod, special_idents};
|
|
|
|
static DW_LANG_RUST: c_uint = 0x9000;
|
|
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_TAG_auto_variable: c_uint = 0x100;
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_TAG_arg_variable: c_uint = 0x101;
|
|
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_ATE_boolean: c_uint = 0x02;
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_ATE_float: c_uint = 0x04;
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_ATE_signed: c_uint = 0x05;
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_ATE_unsigned: c_uint = 0x07;
|
|
#[allow(non_upper_case_globals)]
|
|
static DW_ATE_unsigned_char: c_uint = 0x08;
|
|
|
|
static UNKNOWN_LINE_NUMBER: c_uint = 0;
|
|
static UNKNOWN_COLUMN_NUMBER: c_uint = 0;
|
|
|
|
// ptr::null() doesn't work :(
|
|
static UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile);
|
|
static UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope);
|
|
|
|
static FLAGS_NONE: c_uint = 0;
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Public Interface of debuginfo module
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
#[deriving(Copy, Show, Hash, Eq, PartialEq, Clone)]
|
|
struct UniqueTypeId(ast::Name);
|
|
|
|
// The TypeMap is where the CrateDebugContext holds the type metadata nodes
|
|
// created so far. The metadata nodes are indexed by UniqueTypeId, and, for
|
|
// faster lookup, also by Ty. The TypeMap is responsible for creating
|
|
// UniqueTypeIds.
|
|
struct TypeMap<'tcx> {
|
|
// The UniqueTypeIds created so far
|
|
unique_id_interner: Interner<Rc<String>>,
|
|
// A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
|
|
unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
|
|
// A map from types to debuginfo metadata. This is a N:1 mapping.
|
|
type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
|
|
// A map from types to UniqueTypeId. This is a N:1 mapping.
|
|
type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
|
|
}
|
|
|
|
impl<'tcx> TypeMap<'tcx> {
|
|
|
|
fn new() -> TypeMap<'tcx> {
|
|
TypeMap {
|
|
unique_id_interner: Interner::new(),
|
|
type_to_metadata: FnvHashMap::new(),
|
|
unique_id_to_metadata: FnvHashMap::new(),
|
|
type_to_unique_id: FnvHashMap::new(),
|
|
}
|
|
}
|
|
|
|
// Adds a Ty to metadata mapping to the TypeMap. The method will fail if
|
|
// the mapping already exists.
|
|
fn register_type_with_metadata<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
type_: Ty<'tcx>,
|
|
metadata: DIType) {
|
|
if self.type_to_metadata.insert(type_, metadata).is_some() {
|
|
cx.sess().bug(format!("Type metadata for Ty '{}' is already in the TypeMap!",
|
|
ppaux::ty_to_string(cx.tcx(), type_))[]);
|
|
}
|
|
}
|
|
|
|
// Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
|
|
// fail if the mapping already exists.
|
|
fn register_unique_id_with_metadata(&mut self,
|
|
cx: &CrateContext,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata: DIType) {
|
|
if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
|
|
let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
|
|
cx.sess().bug(format!("Type metadata for unique id '{}' is already in the TypeMap!",
|
|
unique_type_id_str[])[]);
|
|
}
|
|
}
|
|
|
|
fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
|
|
self.type_to_metadata.get(&type_).cloned()
|
|
}
|
|
|
|
fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
|
|
self.unique_id_to_metadata.get(&unique_type_id).cloned()
|
|
}
|
|
|
|
// Get the string representation of a UniqueTypeId. This method will fail if
|
|
// the id is unknown.
|
|
fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
|
|
let UniqueTypeId(interner_key) = unique_type_id;
|
|
self.unique_id_interner.get(interner_key)
|
|
}
|
|
|
|
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
|
|
// type has been requested before, this is just a table lookup. Otherwise an
|
|
// ID will be generated and stored for later lookup.
|
|
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
|
|
type_: Ty<'tcx>) -> UniqueTypeId {
|
|
|
|
// basic type -> {:name of the type:}
|
|
// tuple -> {tuple_(:param-uid:)*}
|
|
// struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// enum variant -> {variant_:variant-name:_:enum-uid:}
|
|
// reference (&) -> {& :pointee-uid:}
|
|
// mut reference (&mut) -> {&mut :pointee-uid:}
|
|
// ptr (*) -> {* :pointee-uid:}
|
|
// mut ptr (*mut) -> {*mut :pointee-uid:}
|
|
// unique ptr (~) -> {~ :pointee-uid:}
|
|
// @-ptr (@) -> {@ :pointee-uid:}
|
|
// sized vec ([T; x]) -> {[:size:] :element-uid:}
|
|
// unsized vec ([T]) -> {[] :element-uid:}
|
|
// trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
|
|
// closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
|
|
// :return-type-uid: : (:bounds:)*}
|
|
// function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
|
|
// :return-type-uid:}
|
|
// unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>}
|
|
// gc box -> {GC_BOX<:pointee-uid:>}
|
|
|
|
match self.type_to_unique_id.get(&type_).cloned() {
|
|
Some(unique_type_id) => return unique_type_id,
|
|
None => { /* generate one */}
|
|
};
|
|
|
|
let mut unique_type_id = String::with_capacity(256);
|
|
unique_type_id.push('{');
|
|
|
|
match type_.sty {
|
|
ty::ty_bool |
|
|
ty::ty_char |
|
|
ty::ty_str |
|
|
ty::ty_int(_) |
|
|
ty::ty_uint(_) |
|
|
ty::ty_float(_) => {
|
|
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
|
|
},
|
|
ty::ty_enum(def_id, ref substs) => {
|
|
unique_type_id.push_str("enum ");
|
|
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
|
|
},
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
unique_type_id.push_str("struct ");
|
|
from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id);
|
|
},
|
|
ty::ty_tup(ref component_types) if component_types.is_empty() => {
|
|
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
|
|
},
|
|
ty::ty_tup(ref component_types) => {
|
|
unique_type_id.push_str("tuple ");
|
|
for &component_type in component_types.iter() {
|
|
let component_type_id =
|
|
self.get_unique_type_id_of_type(cx, component_type);
|
|
let component_type_id =
|
|
self.get_unique_type_id_as_string(component_type_id);
|
|
unique_type_id.push_str(component_type_id[]);
|
|
}
|
|
},
|
|
ty::ty_uniq(inner_type) => {
|
|
unique_type_id.push('~');
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(inner_type_id[]);
|
|
},
|
|
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
|
|
unique_type_id.push('*');
|
|
if mutbl == ast::MutMutable {
|
|
unique_type_id.push_str("mut");
|
|
}
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(inner_type_id[]);
|
|
},
|
|
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
|
|
unique_type_id.push('&');
|
|
if mutbl == ast::MutMutable {
|
|
unique_type_id.push_str("mut");
|
|
}
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(inner_type_id[]);
|
|
},
|
|
ty::ty_vec(inner_type, optional_length) => {
|
|
match optional_length {
|
|
Some(len) => {
|
|
unique_type_id.push_str(format!("[{}]", len)[]);
|
|
}
|
|
None => {
|
|
unique_type_id.push_str("[]");
|
|
}
|
|
};
|
|
|
|
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
|
|
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
|
|
unique_type_id.push_str(inner_type_id[]);
|
|
},
|
|
ty::ty_trait(ref trait_data) => {
|
|
unique_type_id.push_str("trait ");
|
|
|
|
from_def_id_and_substs(self,
|
|
cx,
|
|
trait_data.principal.def_id(),
|
|
trait_data.principal.substs(),
|
|
&mut unique_type_id);
|
|
},
|
|
ty::ty_bare_fn(_, ty::BareFnTy{ unsafety, abi, ref sig } ) => {
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
unique_type_id.push_str("unsafe ");
|
|
}
|
|
|
|
unique_type_id.push_str(abi.name());
|
|
|
|
unique_type_id.push_str(" fn(");
|
|
|
|
for ¶meter_type in sig.0.inputs.iter() {
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_of_type(cx, parameter_type);
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_as_string(parameter_type_id);
|
|
unique_type_id.push_str(parameter_type_id[]);
|
|
unique_type_id.push(',');
|
|
}
|
|
|
|
if sig.0.variadic {
|
|
unique_type_id.push_str("...");
|
|
}
|
|
|
|
unique_type_id.push_str(")->");
|
|
match sig.0.output {
|
|
ty::FnConverging(ret_ty) => {
|
|
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
|
|
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
|
|
unique_type_id.push_str(return_type_id[]);
|
|
}
|
|
ty::FnDiverging => {
|
|
unique_type_id.push_str("!");
|
|
}
|
|
}
|
|
},
|
|
ty::ty_closure(box ref closure_ty) => {
|
|
self.get_unique_type_id_of_closure_type(cx,
|
|
closure_ty.clone(),
|
|
&mut unique_type_id);
|
|
},
|
|
ty::ty_unboxed_closure(ref def_id, _, ref substs) => {
|
|
let closure_ty = cx.tcx().unboxed_closures.borrow()
|
|
.get(def_id).unwrap().closure_type.subst(cx.tcx(), substs);
|
|
self.get_unique_type_id_of_closure_type(cx,
|
|
closure_ty,
|
|
&mut unique_type_id);
|
|
},
|
|
_ => {
|
|
cx.sess().bug(format!("get_unique_type_id_of_type() - unexpected type: {}, {}",
|
|
ppaux::ty_to_string(cx.tcx(), type_)[],
|
|
type_.sty)[])
|
|
}
|
|
};
|
|
|
|
unique_type_id.push('}');
|
|
|
|
// Trim to size before storing permanently
|
|
unique_type_id.shrink_to_fit();
|
|
|
|
let key = self.unique_id_interner.intern(Rc::new(unique_type_id));
|
|
self.type_to_unique_id.insert(type_, UniqueTypeId(key));
|
|
|
|
return UniqueTypeId(key);
|
|
|
|
fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
def_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>,
|
|
output: &mut String) {
|
|
// First, find out the 'real' def_id of the type. Items inlined from
|
|
// other crates have to be mapped back to their source.
|
|
let source_def_id = if def_id.krate == ast::LOCAL_CRATE {
|
|
match cx.external_srcs().borrow().get(&def_id.node).cloned() {
|
|
Some(source_def_id) => {
|
|
// The given def_id identifies the inlined copy of a
|
|
// type definition, let's take the source of the copy.
|
|
source_def_id
|
|
}
|
|
None => def_id
|
|
}
|
|
} else {
|
|
def_id
|
|
};
|
|
|
|
// Get the crate hash as first part of the identifier.
|
|
let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE {
|
|
cx.link_meta().crate_hash.clone()
|
|
} else {
|
|
cx.sess().cstore.get_crate_hash(source_def_id.krate)
|
|
};
|
|
|
|
output.push_str(crate_hash.as_str());
|
|
output.push_str("/");
|
|
output.push_str(format!("{:x}", def_id.node)[]);
|
|
|
|
// Maybe check that there is no self type here.
|
|
|
|
let tps = substs.types.get_slice(subst::TypeSpace);
|
|
if tps.len() > 0 {
|
|
output.push('<');
|
|
|
|
for &type_parameter in tps.iter() {
|
|
let param_type_id =
|
|
type_map.get_unique_type_id_of_type(cx, type_parameter);
|
|
let param_type_id =
|
|
type_map.get_unique_type_id_as_string(param_type_id);
|
|
output.push_str(param_type_id[]);
|
|
output.push(',');
|
|
}
|
|
|
|
output.push('>');
|
|
}
|
|
}
|
|
}
|
|
|
|
fn get_unique_type_id_of_closure_type<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
closure_ty: ty::ClosureTy<'tcx>,
|
|
unique_type_id: &mut String) {
|
|
let ty::ClosureTy { unsafety,
|
|
onceness,
|
|
store,
|
|
ref bounds,
|
|
ref sig,
|
|
abi: _ } = closure_ty;
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
unique_type_id.push_str("unsafe ");
|
|
}
|
|
|
|
if onceness == ast::Once {
|
|
unique_type_id.push_str("once ");
|
|
}
|
|
|
|
match store {
|
|
ty::UniqTraitStore => unique_type_id.push_str("~|"),
|
|
ty::RegionTraitStore(_, ast::MutMutable) => {
|
|
unique_type_id.push_str("&mut|")
|
|
}
|
|
ty::RegionTraitStore(_, ast::MutImmutable) => {
|
|
unique_type_id.push_str("&|")
|
|
}
|
|
};
|
|
|
|
for ¶meter_type in sig.0.inputs.iter() {
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_of_type(cx, parameter_type);
|
|
let parameter_type_id =
|
|
self.get_unique_type_id_as_string(parameter_type_id);
|
|
unique_type_id.push_str(parameter_type_id[]);
|
|
unique_type_id.push(',');
|
|
}
|
|
|
|
if sig.0.variadic {
|
|
unique_type_id.push_str("...");
|
|
}
|
|
|
|
unique_type_id.push_str("|->");
|
|
|
|
match sig.0.output {
|
|
ty::FnConverging(ret_ty) => {
|
|
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
|
|
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
|
|
unique_type_id.push_str(return_type_id[]);
|
|
}
|
|
ty::FnDiverging => {
|
|
unique_type_id.push_str("!");
|
|
}
|
|
}
|
|
|
|
unique_type_id.push(':');
|
|
|
|
for bound in bounds.builtin_bounds.iter() {
|
|
match bound {
|
|
ty::BoundSend => unique_type_id.push_str("Send"),
|
|
ty::BoundSized => unique_type_id.push_str("Sized"),
|
|
ty::BoundCopy => unique_type_id.push_str("Copy"),
|
|
ty::BoundSync => unique_type_id.push_str("Sync"),
|
|
};
|
|
unique_type_id.push('+');
|
|
}
|
|
}
|
|
|
|
// Get the UniqueTypeId for an enum variant. Enum variants are not really
|
|
// types of their own, so they need special handling. We still need a
|
|
// UniqueTypeId for them, since to debuginfo they *are* real types.
|
|
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
variant_name: &str)
|
|
-> UniqueTypeId {
|
|
let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
|
|
let enum_variant_type_id = format!("{}::{}",
|
|
self.get_unique_type_id_as_string(enum_type_id)
|
|
[],
|
|
variant_name);
|
|
let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id));
|
|
UniqueTypeId(interner_key)
|
|
}
|
|
}
|
|
|
|
// Returns from the enclosing function if the type metadata with the given
|
|
// unique id can be found in the type map
|
|
macro_rules! return_if_metadata_created_in_meantime {
|
|
($cx: expr, $unique_type_id: expr) => (
|
|
match debug_context($cx).type_map
|
|
.borrow()
|
|
.find_metadata_for_unique_id($unique_type_id) {
|
|
Some(metadata) => return MetadataCreationResult::new(metadata, true),
|
|
None => { /* proceed normally */ }
|
|
};
|
|
)
|
|
}
|
|
|
|
|
|
/// A context object for maintaining all state needed by the debuginfo module.
|
|
pub struct CrateDebugContext<'tcx> {
|
|
llcontext: ContextRef,
|
|
builder: DIBuilderRef,
|
|
current_debug_location: Cell<DebugLocation>,
|
|
created_files: RefCell<FnvHashMap<String, DIFile>>,
|
|
created_enum_disr_types: RefCell<DefIdMap<DIType>>,
|
|
|
|
type_map: RefCell<TypeMap<'tcx>>,
|
|
namespace_map: RefCell<FnvHashMap<Vec<ast::Name>, Rc<NamespaceTreeNode>>>,
|
|
|
|
// This collection is used to assert that composite types (structs, enums,
|
|
// ...) have their members only set once:
|
|
composite_types_completed: RefCell<FnvHashSet<DIType>>,
|
|
}
|
|
|
|
impl<'tcx> CrateDebugContext<'tcx> {
|
|
pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> {
|
|
debug!("CrateDebugContext::new");
|
|
let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) };
|
|
// DIBuilder inherits context from the module, so we'd better use the same one
|
|
let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) };
|
|
return CrateDebugContext {
|
|
llcontext: llcontext,
|
|
builder: builder,
|
|
current_debug_location: Cell::new(UnknownLocation),
|
|
created_files: RefCell::new(FnvHashMap::new()),
|
|
created_enum_disr_types: RefCell::new(DefIdMap::new()),
|
|
type_map: RefCell::new(TypeMap::new()),
|
|
namespace_map: RefCell::new(FnvHashMap::new()),
|
|
composite_types_completed: RefCell::new(FnvHashSet::new()),
|
|
};
|
|
}
|
|
}
|
|
|
|
pub struct FunctionDebugContext {
|
|
repr: FunctionDebugContextRepr,
|
|
}
|
|
|
|
enum FunctionDebugContextRepr {
|
|
DebugInfo(Box<FunctionDebugContextData>),
|
|
DebugInfoDisabled,
|
|
FunctionWithoutDebugInfo,
|
|
}
|
|
|
|
impl FunctionDebugContext {
|
|
fn get_ref<'a>(&'a self,
|
|
cx: &CrateContext,
|
|
span: Span)
|
|
-> &'a FunctionDebugContextData {
|
|
match self.repr {
|
|
DebugInfo(box ref data) => data,
|
|
DebugInfoDisabled => {
|
|
cx.sess().span_bug(span,
|
|
FunctionDebugContext::debuginfo_disabled_message());
|
|
}
|
|
FunctionWithoutDebugInfo => {
|
|
cx.sess().span_bug(span,
|
|
FunctionDebugContext::should_be_ignored_message());
|
|
}
|
|
}
|
|
}
|
|
|
|
fn debuginfo_disabled_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!"
|
|
}
|
|
|
|
fn should_be_ignored_message() -> &'static str {
|
|
"debuginfo: Error trying to access FunctionDebugContext for function that should be \
|
|
ignored by debug info!"
|
|
}
|
|
}
|
|
|
|
struct FunctionDebugContextData {
|
|
scope_map: RefCell<NodeMap<DIScope>>,
|
|
fn_metadata: DISubprogram,
|
|
argument_counter: Cell<uint>,
|
|
source_locations_enabled: Cell<bool>,
|
|
}
|
|
|
|
enum VariableAccess<'a> {
|
|
// The llptr given is an alloca containing the variable's value
|
|
DirectVariable { alloca: ValueRef },
|
|
// The llptr given is an alloca containing the start of some pointer chain
|
|
// leading to the variable's content.
|
|
IndirectVariable { alloca: ValueRef, address_operations: &'a [ValueRef] }
|
|
}
|
|
|
|
enum VariableKind {
|
|
ArgumentVariable(uint /*index*/),
|
|
LocalVariable,
|
|
CapturedVariable,
|
|
}
|
|
|
|
/// Create any deferred debug metadata nodes
|
|
pub fn finalize(cx: &CrateContext) {
|
|
if cx.dbg_cx().is_none() {
|
|
return;
|
|
}
|
|
|
|
debug!("finalize");
|
|
compile_unit_metadata(cx);
|
|
unsafe {
|
|
llvm::LLVMDIBuilderFinalize(DIB(cx));
|
|
llvm::LLVMDIBuilderDispose(DIB(cx));
|
|
// Debuginfo generation in LLVM by default uses a higher
|
|
// version of dwarf than OS X currently understands. We can
|
|
// instruct LLVM to emit an older version of dwarf, however,
|
|
// for OS X to understand. For more info see #11352
|
|
// This can be overridden using --llvm-opts -dwarf-version,N.
|
|
if cx.sess().target.target.options.is_like_osx {
|
|
"Dwarf Version".with_c_str(
|
|
|s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, 2));
|
|
}
|
|
|
|
// Prevent bitcode readers from deleting the debug info.
|
|
"Debug Info Version".with_c_str(
|
|
|s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s,
|
|
llvm::LLVMRustDebugMetadataVersion));
|
|
};
|
|
}
|
|
|
|
/// Creates debug information for the given global variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_global_var_metadata(cx: &CrateContext,
|
|
node_id: ast::NodeId,
|
|
global: ValueRef) {
|
|
if cx.dbg_cx().is_none() {
|
|
return;
|
|
}
|
|
|
|
// Don't create debuginfo for globals inlined from other crates. The other
|
|
// crate should already contain debuginfo for it. More importantly, the
|
|
// global might not even exist in un-inlined form anywhere which would lead
|
|
// to a linker errors.
|
|
if cx.external_srcs().borrow().contains_key(&node_id) {
|
|
return;
|
|
}
|
|
|
|
let var_item = cx.tcx().map.get(node_id);
|
|
|
|
let (ident, span) = match var_item {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemStatic(..) => (item.ident, item.span),
|
|
ast::ItemConst(..) => (item.ident, item.span),
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(item.span,
|
|
format!("debuginfo::\
|
|
create_global_var_metadata() -
|
|
Captured var-id refers to \
|
|
unexpected ast_item variant: {}",
|
|
var_item)[])
|
|
}
|
|
}
|
|
},
|
|
_ => cx.sess().bug(format!("debuginfo::create_global_var_metadata() \
|
|
- Captured var-id refers to unexpected \
|
|
ast_map variant: {}",
|
|
var_item)[])
|
|
};
|
|
|
|
let (file_metadata, line_number) = if span != codemap::DUMMY_SP {
|
|
let loc = span_start(cx, span);
|
|
(file_metadata(cx, loc.file.name[]), loc.line as c_uint)
|
|
} else {
|
|
(UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER)
|
|
};
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
|
|
let variable_type = ty::node_id_to_type(cx.tcx(), node_id);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id));
|
|
let var_name = token::get_ident(ident).get().to_string();
|
|
let linkage_name =
|
|
namespace_node.mangled_name_of_contained_item(var_name[]);
|
|
let var_scope = namespace_node.scope;
|
|
|
|
var_name.with_c_str(|var_name| {
|
|
linkage_name.with_c_str(|linkage_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx),
|
|
var_scope,
|
|
var_name,
|
|
linkage_name,
|
|
file_metadata,
|
|
line_number,
|
|
type_metadata,
|
|
is_local_to_unit,
|
|
global,
|
|
ptr::null_mut());
|
|
}
|
|
})
|
|
});
|
|
}
|
|
|
|
/// Creates debug information for the given local variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
let def_map = &cx.tcx().def_map;
|
|
|
|
pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, path1| {
|
|
let var_ident = path1.node;
|
|
|
|
let datum = match bcx.fcx.lllocals.borrow().get(&node_id).cloned() {
|
|
Some(datum) => datum,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
format!("no entry in lllocals table for {}",
|
|
node_id)[]);
|
|
}
|
|
};
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
|
|
|
|
declare_local(bcx,
|
|
var_ident,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
LocalVariable,
|
|
span);
|
|
})
|
|
}
|
|
|
|
/// Creates debug information for a variable captured in a closure.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
node_id: ast::NodeId,
|
|
env_pointer: ValueRef,
|
|
env_index: uint,
|
|
captured_by_ref: bool,
|
|
span: Span) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let cx = bcx.ccx();
|
|
|
|
let ast_item = cx.tcx().map.find(node_id);
|
|
|
|
let variable_ident = match ast_item {
|
|
None => {
|
|
cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found");
|
|
}
|
|
Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => {
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path1, _) => {
|
|
path1.node
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(span,
|
|
format!(
|
|
"debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected \
|
|
ast_map variant: {}",
|
|
ast_item)[]);
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.span_bug(span,
|
|
format!("debuginfo::create_captured_var_metadata() - \
|
|
Captured var-id refers to unexpected \
|
|
ast_map variant: {}",
|
|
ast_item)[]);
|
|
}
|
|
};
|
|
|
|
let variable_type = node_id_type(bcx, node_id);
|
|
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata;
|
|
|
|
// env_pointer is the alloca containing the pointer to the environment,
|
|
// so it's type is **EnvironmentType. In order to find out the type of
|
|
// the environment we have to "dereference" two times.
|
|
let llvm_env_data_type = val_ty(env_pointer).element_type().element_type();
|
|
let byte_offset_of_var_in_env = machine::llelement_offset(cx,
|
|
llvm_env_data_type,
|
|
env_index);
|
|
|
|
let address_operations = unsafe {
|
|
[llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref()),
|
|
llvm::LLVMDIBuilderCreateOpPlus(Type::i64(cx).to_ref()),
|
|
C_i64(cx, byte_offset_of_var_in_env as i64),
|
|
llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref())]
|
|
};
|
|
|
|
let address_op_count = if captured_by_ref {
|
|
address_operations.len()
|
|
} else {
|
|
address_operations.len() - 1
|
|
};
|
|
|
|
let variable_access = IndirectVariable {
|
|
alloca: env_pointer,
|
|
address_operations: address_operations[..address_op_count]
|
|
};
|
|
|
|
declare_local(bcx,
|
|
variable_ident,
|
|
variable_type,
|
|
scope_metadata,
|
|
variable_access,
|
|
CapturedVariable,
|
|
span);
|
|
}
|
|
|
|
/// Creates debug information for a local variable introduced in the head of a
|
|
/// match-statement arm.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
variable_ident: ast::Ident,
|
|
binding: BindingInfo<'tcx>) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
|
|
let aops = unsafe {
|
|
[llvm::LLVMDIBuilderCreateOpDeref(bcx.ccx().int_type().to_ref())]
|
|
};
|
|
// Regardless of the actual type (`T`) we're always passed the stack slot (alloca)
|
|
// for the binding. For ByRef bindings that's a `T*` but for ByMove bindings we
|
|
// actually have `T**`. So to get the actual variable we need to dereference once
|
|
// more. For ByCopy we just use the stack slot we created for the binding.
|
|
let var_type = match binding.trmode {
|
|
TrByCopy(llbinding) => DirectVariable {
|
|
alloca: llbinding
|
|
},
|
|
TrByMove => IndirectVariable {
|
|
alloca: binding.llmatch,
|
|
address_operations: &aops
|
|
},
|
|
TrByRef => DirectVariable {
|
|
alloca: binding.llmatch
|
|
}
|
|
};
|
|
|
|
declare_local(bcx,
|
|
variable_ident,
|
|
binding.ty,
|
|
scope_metadata,
|
|
var_type,
|
|
LocalVariable,
|
|
binding.span);
|
|
}
|
|
|
|
/// Creates debug information for the given function argument.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let fcx = bcx.fcx;
|
|
let cx = fcx.ccx;
|
|
|
|
let def_map = &cx.tcx().def_map;
|
|
let scope_metadata = bcx.fcx.debug_context.get_ref(cx, arg.pat.span).fn_metadata;
|
|
|
|
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, path1| {
|
|
let llarg = match bcx.fcx.lllocals.borrow().get(&node_id).cloned() {
|
|
Some(v) => v,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
format!("no entry in lllocals table for {}",
|
|
node_id)[]);
|
|
}
|
|
};
|
|
|
|
if unsafe { llvm::LLVMIsAAllocaInst(llarg.val) } == ptr::null_mut() {
|
|
cx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \
|
|
Referenced variable location is not an alloca!");
|
|
}
|
|
|
|
let argument_index = {
|
|
let counter = &fcx.debug_context.get_ref(cx, span).argument_counter;
|
|
let argument_index = counter.get();
|
|
counter.set(argument_index + 1);
|
|
argument_index
|
|
};
|
|
|
|
declare_local(bcx,
|
|
path1.node,
|
|
llarg.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: llarg.val },
|
|
ArgumentVariable(argument_index),
|
|
span);
|
|
})
|
|
}
|
|
|
|
/// Creates debug information for the given for-loop variable.
|
|
///
|
|
/// Adds the created metadata nodes directly to the crate's IR.
|
|
pub fn create_for_loop_var_metadata(bcx: Block, pat: &ast::Pat) {
|
|
if fn_should_be_ignored(bcx.fcx) {
|
|
return;
|
|
}
|
|
|
|
let def_map = &bcx.tcx().def_map;
|
|
|
|
pat_util::pat_bindings(def_map, pat, |_, node_id, span, spanned_ident| {
|
|
let datum = match bcx.fcx.lllocals.borrow().get(&node_id).cloned() {
|
|
Some(datum) => datum,
|
|
None => {
|
|
bcx.sess().span_bug(span,
|
|
format!("no entry in lllocals table for {}",
|
|
node_id).as_slice());
|
|
}
|
|
};
|
|
|
|
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
|
|
bcx.sess().span_bug(span, "debuginfo::create_for_loop_var_metadata() - \
|
|
Referenced variable location is not an alloca!");
|
|
}
|
|
|
|
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
|
|
|
|
declare_local(bcx,
|
|
spanned_ident.node,
|
|
datum.ty,
|
|
scope_metadata,
|
|
DirectVariable { alloca: datum.val },
|
|
LocalVariable,
|
|
span);
|
|
})
|
|
}
|
|
|
|
pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
node_id: ast::NodeId,
|
|
node_span: Span,
|
|
is_block: bool)
|
|
-> NodeInfo {
|
|
// A debug location needs two things:
|
|
// (1) A span (of which only the beginning will actually be used)
|
|
// (2) An AST node-id which will be used to look up the lexical scope
|
|
// for the location in the functions scope-map
|
|
//
|
|
// This function will calculate the debug location for compiler-generated
|
|
// cleanup calls that are executed when control-flow leaves the
|
|
// scope identified by `node_id`.
|
|
//
|
|
// For everything but block-like things we can simply take id and span of
|
|
// the given expression, meaning that from a debugger's view cleanup code is
|
|
// executed at the same source location as the statement/expr itself.
|
|
//
|
|
// Blocks are a special case. Here we want the cleanup to be linked to the
|
|
// closing curly brace of the block. The *scope* the cleanup is executed in
|
|
// is up to debate: It could either still be *within* the block being
|
|
// cleaned up, meaning that locals from the block are still visible in the
|
|
// debugger.
|
|
// Or it could be in the scope that the block is contained in, so any locals
|
|
// from within the block are already considered out-of-scope and thus not
|
|
// accessible in the debugger anymore.
|
|
//
|
|
// The current implementation opts for the second option: cleanup of a block
|
|
// already happens in the parent scope of the block. The main reason for
|
|
// this decision is that scoping becomes controlflow dependent when variable
|
|
// shadowing is involved and it's impossible to decide statically which
|
|
// scope is actually left when the cleanup code is executed.
|
|
// In practice it shouldn't make much of a difference.
|
|
|
|
let mut cleanup_span = node_span;
|
|
|
|
if is_block {
|
|
// Not all blocks actually have curly braces (e.g. simple closure
|
|
// bodies), in which case we also just want to return the span of the
|
|
// whole expression.
|
|
let code_snippet = cx.sess().codemap().span_to_snippet(node_span);
|
|
if let Some(code_snippet) = code_snippet {
|
|
let bytes = code_snippet.as_bytes();
|
|
|
|
if bytes.len() > 0 && bytes[bytes.len()-1 ..] == b"}" {
|
|
cleanup_span = Span {
|
|
lo: node_span.hi - codemap::BytePos(1),
|
|
hi: node_span.hi,
|
|
expn_id: node_span.expn_id
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
NodeInfo {
|
|
id: node_id,
|
|
span: cleanup_span
|
|
}
|
|
}
|
|
|
|
/// Sets the current debug location at the beginning of the span.
|
|
///
|
|
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id
|
|
/// parameter is used to reliably find the correct visibility scope for the code
|
|
/// position.
|
|
pub fn set_source_location(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
span: Span) {
|
|
match fcx.debug_context.repr {
|
|
DebugInfoDisabled => return,
|
|
FunctionWithoutDebugInfo => {
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
return;
|
|
}
|
|
DebugInfo(box ref function_debug_context) => {
|
|
let cx = fcx.ccx;
|
|
|
|
debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span));
|
|
|
|
if function_debug_context.source_locations_enabled.get() {
|
|
let loc = span_start(cx, span);
|
|
let scope = scope_metadata(fcx, node_id, span);
|
|
|
|
set_debug_location(cx, DebugLocation::new(scope,
|
|
loc.line,
|
|
loc.col.to_uint()));
|
|
} else {
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Clears the current debug location.
|
|
///
|
|
/// Instructions generated hereafter won't be assigned a source location.
|
|
pub fn clear_source_location(fcx: &FunctionContext) {
|
|
if fn_should_be_ignored(fcx) {
|
|
return;
|
|
}
|
|
|
|
set_debug_location(fcx.ccx, UnknownLocation);
|
|
}
|
|
|
|
/// Enables emitting source locations for the given functions.
|
|
///
|
|
/// Since we don't want source locations to be emitted for the function prelude,
|
|
/// they are disabled when beginning to translate a new function. This functions
|
|
/// switches source location emitting on and must therefore be called before the
|
|
/// first real statement/expression of the function is translated.
|
|
pub fn start_emitting_source_locations(fcx: &FunctionContext) {
|
|
match fcx.debug_context.repr {
|
|
DebugInfo(box ref data) => {
|
|
data.source_locations_enabled.set(true)
|
|
},
|
|
_ => { /* safe to ignore */ }
|
|
}
|
|
}
|
|
|
|
/// Creates the function-specific debug context.
|
|
///
|
|
/// Returns the FunctionDebugContext for the function which holds state needed
|
|
/// for debug info creation. The function may also return another variant of the
|
|
/// FunctionDebugContext enum which indicates why no debuginfo should be created
|
|
/// for the function.
|
|
pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
fn_ast_id: ast::NodeId,
|
|
param_substs: &Substs<'tcx>,
|
|
llfn: ValueRef) -> FunctionDebugContext {
|
|
if cx.sess().opts.debuginfo == NoDebugInfo {
|
|
return FunctionDebugContext { repr: DebugInfoDisabled };
|
|
}
|
|
|
|
// Clear the debug location so we don't assign them in the function prelude.
|
|
// Do this here already, in case we do an early exit from this function.
|
|
set_debug_location(cx, UnknownLocation);
|
|
|
|
if fn_ast_id == ast::DUMMY_NODE_ID {
|
|
// This is a function not linked to any source location, so don't
|
|
// generate debuginfo for it.
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
|
|
let empty_generics = ast_util::empty_generics();
|
|
|
|
let fnitem = cx.tcx().map.get(fn_ast_id);
|
|
|
|
let (ident, fn_decl, generics, top_level_block, span, has_path) = match fnitem {
|
|
ast_map::NodeItem(ref item) => {
|
|
if contains_nodebug_attribute(item.attrs.as_slice()) {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
|
|
match item.node {
|
|
ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => {
|
|
(item.ident, &**fn_decl, generics, &**top_level_block, item.span, true)
|
|
}
|
|
_ => {
|
|
cx.sess().span_bug(item.span,
|
|
"create_function_debug_context: item bound to non-function");
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeImplItem(ref item) => {
|
|
match **item {
|
|
ast::MethodImplItem(ref method) => {
|
|
if contains_nodebug_attribute(method.attrs.as_slice()) {
|
|
return FunctionDebugContext {
|
|
repr: FunctionWithoutDebugInfo
|
|
};
|
|
}
|
|
|
|
(method.pe_ident(),
|
|
method.pe_fn_decl(),
|
|
method.pe_generics(),
|
|
method.pe_body(),
|
|
method.span,
|
|
true)
|
|
}
|
|
ast::TypeImplItem(ref typedef) => {
|
|
cx.sess().span_bug(typedef.span,
|
|
"create_function_debug_context() \
|
|
called on associated type?!")
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeExpr(ref expr) => {
|
|
match expr.node {
|
|
ast::ExprClosure(_, _, ref fn_decl, ref top_level_block) => {
|
|
let name = format!("fn{}", token::gensym("fn"));
|
|
let name = token::str_to_ident(name[]);
|
|
(name, &**fn_decl,
|
|
// This is not quite right. It should actually inherit
|
|
// the generics of the enclosing function.
|
|
&empty_generics,
|
|
&**top_level_block,
|
|
expr.span,
|
|
// Don't try to lookup the item path:
|
|
false)
|
|
}
|
|
_ => cx.sess().span_bug(expr.span,
|
|
"create_function_debug_context: expected an expr_fn_block here")
|
|
}
|
|
}
|
|
ast_map::NodeTraitItem(ref trait_method) => {
|
|
match **trait_method {
|
|
ast::ProvidedMethod(ref method) => {
|
|
if contains_nodebug_attribute(method.attrs.as_slice()) {
|
|
return FunctionDebugContext {
|
|
repr: FunctionWithoutDebugInfo
|
|
};
|
|
}
|
|
|
|
(method.pe_ident(),
|
|
method.pe_fn_decl(),
|
|
method.pe_generics(),
|
|
method.pe_body(),
|
|
method.span,
|
|
true)
|
|
}
|
|
_ => {
|
|
cx.sess()
|
|
.bug(format!("create_function_debug_context: \
|
|
unexpected sort of node: {}",
|
|
fnitem)[])
|
|
}
|
|
}
|
|
}
|
|
ast_map::NodeForeignItem(..) |
|
|
ast_map::NodeVariant(..) |
|
|
ast_map::NodeStructCtor(..) => {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
_ => cx.sess().bug(format!("create_function_debug_context: \
|
|
unexpected sort of node: {}",
|
|
fnitem)[])
|
|
};
|
|
|
|
// This can be the case for functions inlined from another crate
|
|
if span == codemap::DUMMY_SP {
|
|
return FunctionDebugContext { repr: FunctionWithoutDebugInfo };
|
|
}
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name[]);
|
|
|
|
let function_type_metadata = unsafe {
|
|
let fn_signature = get_function_signature(cx,
|
|
fn_ast_id,
|
|
&*fn_decl,
|
|
param_substs,
|
|
span);
|
|
llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature)
|
|
};
|
|
|
|
// Get_template_parameters() will append a `<...>` clause to the function
|
|
// name if necessary.
|
|
let mut function_name = String::from_str(token::get_ident(ident).get());
|
|
let template_parameters = get_template_parameters(cx,
|
|
generics,
|
|
param_substs,
|
|
file_metadata,
|
|
&mut function_name);
|
|
|
|
// There is no ast_map::Path for ast::ExprClosure-type functions. For now,
|
|
// just don't put them into a namespace. In the future this could be improved
|
|
// somehow (storing a path in the ast_map, or construct a path using the
|
|
// enclosing function).
|
|
let (linkage_name, containing_scope) = if has_path {
|
|
let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id));
|
|
let linkage_name = namespace_node.mangled_name_of_contained_item(
|
|
function_name[]);
|
|
let containing_scope = namespace_node.scope;
|
|
(linkage_name, containing_scope)
|
|
} else {
|
|
(function_name.clone(), file_metadata)
|
|
};
|
|
|
|
// Clang sets this parameter to the opening brace of the function's block,
|
|
// so let's do this too.
|
|
let scope_line = span_start(cx, top_level_block.span).line;
|
|
|
|
let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id);
|
|
|
|
let fn_metadata = function_name.with_c_str(|function_name| {
|
|
linkage_name.with_c_str(|linkage_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateFunction(
|
|
DIB(cx),
|
|
containing_scope,
|
|
function_name,
|
|
linkage_name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
function_type_metadata,
|
|
is_local_to_unit,
|
|
true,
|
|
scope_line as c_uint,
|
|
FlagPrototyped as c_uint,
|
|
cx.sess().opts.optimize != config::No,
|
|
llfn,
|
|
template_parameters,
|
|
ptr::null_mut())
|
|
}
|
|
})
|
|
});
|
|
|
|
// Initialize fn debug context (including scope map and namespace map)
|
|
let fn_debug_context = box FunctionDebugContextData {
|
|
scope_map: RefCell::new(NodeMap::new()),
|
|
fn_metadata: fn_metadata,
|
|
argument_counter: Cell::new(1),
|
|
source_locations_enabled: Cell::new(false),
|
|
};
|
|
|
|
populate_scope_map(cx,
|
|
fn_decl.inputs.as_slice(),
|
|
&*top_level_block,
|
|
fn_metadata,
|
|
fn_ast_id,
|
|
&mut *fn_debug_context.scope_map.borrow_mut());
|
|
|
|
return FunctionDebugContext { repr: DebugInfo(fn_debug_context) };
|
|
|
|
fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
fn_ast_id: ast::NodeId,
|
|
fn_decl: &ast::FnDecl,
|
|
param_substs: &Substs<'tcx>,
|
|
error_reporting_span: Span) -> DIArray {
|
|
if cx.sess().opts.debuginfo == LimitedDebugInfo {
|
|
return create_DIArray(DIB(cx), &[]);
|
|
}
|
|
|
|
let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1);
|
|
|
|
// Return type -- llvm::DIBuilder wants this at index 0
|
|
match fn_decl.output {
|
|
ast::Return(ref ret_ty) if ret_ty.node == ast::TyTup(vec![]) =>
|
|
signature.push(ptr::null_mut()),
|
|
_ => {
|
|
assert_type_for_node_id(cx, fn_ast_id, error_reporting_span);
|
|
|
|
let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id);
|
|
let return_type = return_type.subst(cx.tcx(), param_substs);
|
|
signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP));
|
|
}
|
|
}
|
|
|
|
// Arguments types
|
|
for arg in fn_decl.inputs.iter() {
|
|
assert_type_for_node_id(cx, arg.pat.id, arg.pat.span);
|
|
let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id);
|
|
let arg_type = arg_type.subst(cx.tcx(), param_substs);
|
|
signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP));
|
|
}
|
|
|
|
return create_DIArray(DIB(cx), signature[]);
|
|
}
|
|
|
|
fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
generics: &ast::Generics,
|
|
param_substs: &Substs<'tcx>,
|
|
file_metadata: DIFile,
|
|
name_to_append_suffix_to: &mut String)
|
|
-> DIArray {
|
|
let self_type = param_substs.self_ty();
|
|
|
|
// Only true for static default methods:
|
|
let has_self_type = self_type.is_some();
|
|
|
|
if !generics.is_type_parameterized() && !has_self_type {
|
|
return create_DIArray(DIB(cx), &[]);
|
|
}
|
|
|
|
name_to_append_suffix_to.push('<');
|
|
|
|
// The list to be filled with template parameters:
|
|
let mut template_params: Vec<DIDescriptor> =
|
|
Vec::with_capacity(generics.ty_params.len() + 1);
|
|
|
|
// Handle self type
|
|
if has_self_type {
|
|
let actual_self_type = self_type.unwrap();
|
|
// Add self type name to <...> clause of function name
|
|
let actual_self_type_name = compute_debuginfo_type_name(
|
|
cx,
|
|
actual_self_type,
|
|
true);
|
|
|
|
name_to_append_suffix_to.push_str(actual_self_type_name[]);
|
|
|
|
if generics.is_type_parameterized() {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_self_type_metadata = type_metadata(cx,
|
|
actual_self_type,
|
|
codemap::DUMMY_SP);
|
|
|
|
let ident = special_idents::type_self;
|
|
|
|
let param_metadata = token::get_ident(ident).get()
|
|
.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name,
|
|
actual_self_type_metadata,
|
|
ptr::null_mut(),
|
|
0,
|
|
0)
|
|
}
|
|
});
|
|
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
// Handle other generic parameters
|
|
let actual_types = param_substs.types.get_slice(subst::FnSpace);
|
|
for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() {
|
|
let actual_type = actual_types[index];
|
|
// Add actual type name to <...> clause of function name
|
|
let actual_type_name = compute_debuginfo_type_name(cx,
|
|
actual_type,
|
|
true);
|
|
name_to_append_suffix_to.push_str(actual_type_name[]);
|
|
|
|
if index != generics.ty_params.len() - 1 {
|
|
name_to_append_suffix_to.push_str(",");
|
|
}
|
|
|
|
// Again, only create type information if full debuginfo is enabled
|
|
if cx.sess().opts.debuginfo == FullDebugInfo {
|
|
let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP);
|
|
let param_metadata = token::get_ident(ident).get()
|
|
.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateTemplateTypeParameter(
|
|
DIB(cx),
|
|
file_metadata,
|
|
name,
|
|
actual_type_metadata,
|
|
ptr::null_mut(),
|
|
0,
|
|
0)
|
|
}
|
|
});
|
|
template_params.push(param_metadata);
|
|
}
|
|
}
|
|
|
|
name_to_append_suffix_to.push('>');
|
|
|
|
return create_DIArray(DIB(cx), template_params[]);
|
|
}
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Module-Internal debug info creation functions
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
|
|
{
|
|
// The is_local_to_unit flag indicates whether a function is local to the
|
|
// current compilation unit (i.e. if it is *static* in the C-sense). The
|
|
// *reachable* set should provide a good approximation of this, as it
|
|
// contains everything that might leak out of the current crate (by being
|
|
// externally visible or by being inlined into something externally visible).
|
|
// It might better to use the `exported_items` set from `driver::CrateAnalysis`
|
|
// in the future, but (atm) this set is not available in the translation pass.
|
|
!cx.reachable().contains(&node_id)
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray {
|
|
return unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32)
|
|
};
|
|
}
|
|
|
|
fn compile_unit_metadata(cx: &CrateContext) {
|
|
let work_dir = &cx.sess().working_dir;
|
|
let compile_unit_name = match cx.sess().local_crate_source_file {
|
|
None => fallback_path(cx),
|
|
Some(ref abs_path) => {
|
|
if abs_path.is_relative() {
|
|
cx.sess().warn("debuginfo: Invalid path to crate's local root source file!");
|
|
fallback_path(cx)
|
|
} else {
|
|
match abs_path.path_relative_from(work_dir) {
|
|
Some(ref p) if p.is_relative() => {
|
|
// prepend "./" if necessary
|
|
let dotdot = b"..";
|
|
let prefix = [dotdot[0], ::std::path::SEP_BYTE];
|
|
let mut path_bytes = p.as_vec().to_vec();
|
|
|
|
if path_bytes.slice_to(2) != prefix &&
|
|
path_bytes.slice_to(2) != dotdot {
|
|
path_bytes.insert(0, prefix[0]);
|
|
path_bytes.insert(1, prefix[1]);
|
|
}
|
|
|
|
path_bytes.to_c_str()
|
|
}
|
|
_ => fallback_path(cx)
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("compile_unit_metadata: {}", compile_unit_name);
|
|
let producer = format!("rustc version {}",
|
|
(option_env!("CFG_VERSION")).expect("CFG_VERSION"));
|
|
|
|
let compile_unit_name = compile_unit_name.as_ptr();
|
|
work_dir.as_vec().with_c_str(|work_dir| {
|
|
producer.with_c_str(|producer| {
|
|
"".with_c_str(|flags| {
|
|
"".with_c_str(|split_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateCompileUnit(
|
|
debug_context(cx).builder,
|
|
DW_LANG_RUST,
|
|
compile_unit_name,
|
|
work_dir,
|
|
producer,
|
|
cx.sess().opts.optimize != config::No,
|
|
flags,
|
|
0,
|
|
split_name);
|
|
}
|
|
})
|
|
})
|
|
})
|
|
});
|
|
|
|
fn fallback_path(cx: &CrateContext) -> CString {
|
|
cx.link_meta().crate_name.to_c_str()
|
|
}
|
|
}
|
|
|
|
fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
variable_ident: ast::Ident,
|
|
variable_type: Ty<'tcx>,
|
|
scope_metadata: DIScope,
|
|
variable_access: VariableAccess,
|
|
variable_kind: VariableKind,
|
|
span: Span) {
|
|
let cx: &CrateContext = bcx.ccx();
|
|
|
|
let filename = span_start(cx, span).file.name.clone();
|
|
let file_metadata = file_metadata(cx, filename[]);
|
|
|
|
let name = token::get_ident(variable_ident);
|
|
let loc = span_start(cx, span);
|
|
let type_metadata = type_metadata(cx, variable_type, span);
|
|
|
|
let (argument_index, dwarf_tag) = match variable_kind {
|
|
ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable),
|
|
LocalVariable |
|
|
CapturedVariable => (0, DW_TAG_auto_variable)
|
|
};
|
|
|
|
let (var_alloca, var_metadata) = name.get().with_c_str(|name| {
|
|
match variable_access {
|
|
DirectVariable { alloca } => (
|
|
alloca,
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateLocalVariable(
|
|
DIB(cx),
|
|
dwarf_tag,
|
|
scope_metadata,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
cx.sess().opts.optimize != config::No,
|
|
0,
|
|
argument_index)
|
|
}
|
|
),
|
|
IndirectVariable { alloca, address_operations } => (
|
|
alloca,
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateComplexVariable(
|
|
DIB(cx),
|
|
dwarf_tag,
|
|
scope_metadata,
|
|
name,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
type_metadata,
|
|
address_operations.as_ptr(),
|
|
address_operations.len() as c_uint,
|
|
argument_index)
|
|
}
|
|
)
|
|
}
|
|
});
|
|
|
|
set_debug_location(cx, DebugLocation::new(scope_metadata,
|
|
loc.line,
|
|
loc.col.to_uint()));
|
|
unsafe {
|
|
let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd(
|
|
DIB(cx),
|
|
var_alloca,
|
|
var_metadata,
|
|
bcx.llbb);
|
|
|
|
llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr);
|
|
}
|
|
|
|
match variable_kind {
|
|
ArgumentVariable(_) | CapturedVariable => {
|
|
assert!(!bcx.fcx
|
|
.debug_context
|
|
.get_ref(cx, span)
|
|
.source_locations_enabled
|
|
.get());
|
|
set_debug_location(cx, UnknownLocation);
|
|
}
|
|
_ => { /* nothing to do */ }
|
|
}
|
|
}
|
|
|
|
fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile {
|
|
match debug_context(cx).created_files.borrow().get(full_path) {
|
|
Some(file_metadata) => return *file_metadata,
|
|
None => ()
|
|
}
|
|
|
|
debug!("file_metadata: {}", full_path);
|
|
|
|
// FIXME (#9639): This needs to handle non-utf8 paths
|
|
let work_dir = cx.sess().working_dir.as_str().unwrap();
|
|
let file_name =
|
|
if full_path.starts_with(work_dir) {
|
|
full_path[work_dir.len() + 1u..full_path.len()]
|
|
} else {
|
|
full_path
|
|
};
|
|
|
|
let file_metadata =
|
|
file_name.with_c_str(|file_name| {
|
|
work_dir.with_c_str(|work_dir| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name, work_dir)
|
|
}
|
|
})
|
|
});
|
|
|
|
let mut created_files = debug_context(cx).created_files.borrow_mut();
|
|
created_files.insert(full_path.to_string(), file_metadata);
|
|
return file_metadata;
|
|
}
|
|
|
|
/// Finds the scope metadata node for the given AST node.
|
|
fn scope_metadata(fcx: &FunctionContext,
|
|
node_id: ast::NodeId,
|
|
error_reporting_span: Span)
|
|
-> DIScope {
|
|
let scope_map = &fcx.debug_context
|
|
.get_ref(fcx.ccx, error_reporting_span)
|
|
.scope_map;
|
|
match scope_map.borrow().get(&node_id).cloned() {
|
|
Some(scope_metadata) => scope_metadata,
|
|
None => {
|
|
let node = fcx.ccx.tcx().map.get(node_id);
|
|
|
|
fcx.ccx.sess().span_bug(error_reporting_span,
|
|
format!("debuginfo: Could not find scope info for node {}",
|
|
node)[]);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn diverging_type_metadata(cx: &CrateContext) -> DIType {
|
|
"!".with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateBasicType(
|
|
DIB(cx),
|
|
name,
|
|
bytes_to_bits(0),
|
|
bytes_to_bits(0),
|
|
DW_ATE_unsigned)
|
|
}
|
|
})
|
|
}
|
|
|
|
fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>) -> DIType {
|
|
|
|
debug!("basic_type_metadata: {}", t);
|
|
|
|
let (name, encoding) = match t.sty {
|
|
ty::ty_tup(ref elements) if elements.is_empty() =>
|
|
("()".to_string(), DW_ATE_unsigned),
|
|
ty::ty_bool => ("bool".to_string(), DW_ATE_boolean),
|
|
ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char),
|
|
ty::ty_int(int_ty) => match int_ty {
|
|
ast::TyI => ("int".to_string(), DW_ATE_signed),
|
|
ast::TyI8 => ("i8".to_string(), DW_ATE_signed),
|
|
ast::TyI16 => ("i16".to_string(), DW_ATE_signed),
|
|
ast::TyI32 => ("i32".to_string(), DW_ATE_signed),
|
|
ast::TyI64 => ("i64".to_string(), DW_ATE_signed)
|
|
},
|
|
ty::ty_uint(uint_ty) => match uint_ty {
|
|
ast::TyU => ("uint".to_string(), DW_ATE_unsigned),
|
|
ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned),
|
|
ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned),
|
|
ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned),
|
|
ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned)
|
|
},
|
|
ty::ty_float(float_ty) => match float_ty {
|
|
ast::TyF32 => ("f32".to_string(), DW_ATE_float),
|
|
ast::TyF64 => ("f64".to_string(), DW_ATE_float),
|
|
},
|
|
_ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type")
|
|
};
|
|
|
|
let llvm_type = type_of::type_of(cx, t);
|
|
let (size, align) = size_and_align_of(cx, llvm_type);
|
|
let ty_metadata = name.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateBasicType(
|
|
DIB(cx),
|
|
name,
|
|
bytes_to_bits(size),
|
|
bytes_to_bits(align),
|
|
encoding)
|
|
}
|
|
});
|
|
|
|
return ty_metadata;
|
|
}
|
|
|
|
fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
pointer_type: Ty<'tcx>,
|
|
pointee_type_metadata: DIType)
|
|
-> DIType {
|
|
let pointer_llvm_type = type_of::type_of(cx, pointer_type);
|
|
let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
|
|
let name = compute_debuginfo_type_name(cx, pointer_type, false);
|
|
let ptr_metadata = name.with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreatePointerType(
|
|
DIB(cx),
|
|
pointee_type_metadata,
|
|
bytes_to_bits(pointer_size),
|
|
bytes_to_bits(pointer_align),
|
|
name)
|
|
}
|
|
});
|
|
return ptr_metadata;
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Common facilities for record-like types (structs, enums, tuples)
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
enum MemberOffset {
|
|
FixedMemberOffset { bytes: uint },
|
|
// For ComputedMemberOffset, the offset is read from the llvm type definition
|
|
ComputedMemberOffset
|
|
}
|
|
|
|
// Description of a type member, which can either be a regular field (as in
|
|
// structs or tuples) or an enum variant
|
|
struct MemberDescription {
|
|
name: String,
|
|
llvm_type: Type,
|
|
type_metadata: DIType,
|
|
offset: MemberOffset,
|
|
flags: c_uint
|
|
}
|
|
|
|
// A factory for MemberDescriptions. It produces a list of member descriptions
|
|
// for some record-like type. MemberDescriptionFactories are used to defer the
|
|
// creation of type member descriptions in order to break cycles arising from
|
|
// recursive type definitions.
|
|
enum MemberDescriptionFactory<'tcx> {
|
|
StructMDF(StructMemberDescriptionFactory<'tcx>),
|
|
TupleMDF(TupleMemberDescriptionFactory<'tcx>),
|
|
EnumMDF(EnumMemberDescriptionFactory<'tcx>),
|
|
VariantMDF(VariantMemberDescriptionFactory<'tcx>)
|
|
}
|
|
|
|
impl<'tcx> MemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
match *self {
|
|
StructMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
TupleMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
EnumMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
VariantMDF(ref this) => {
|
|
this.create_member_descriptions(cx)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// A description of some recursive type. It can either be already finished (as
|
|
// with FinalMetadata) or it is not yet finished, but contains all information
|
|
// needed to generate the missing parts of the description. See the documentation
|
|
// section on Recursive Types at the top of this file for more information.
|
|
enum RecursiveTypeDescription<'tcx> {
|
|
UnfinishedMetadata {
|
|
unfinished_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata_stub: DICompositeType,
|
|
llvm_type: Type,
|
|
member_description_factory: MemberDescriptionFactory<'tcx>,
|
|
},
|
|
FinalMetadata(DICompositeType)
|
|
}
|
|
|
|
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
|
|
cx: &CrateContext<'a, 'tcx>,
|
|
unfinished_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
metadata_stub: DICompositeType,
|
|
llvm_type: Type,
|
|
member_description_factory: MemberDescriptionFactory<'tcx>)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
|
|
// Insert the stub into the TypeMap in order to allow for recursive references
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub);
|
|
type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub);
|
|
|
|
UnfinishedMetadata {
|
|
unfinished_type: unfinished_type,
|
|
unique_type_id: unique_type_id,
|
|
metadata_stub: metadata_stub,
|
|
llvm_type: llvm_type,
|
|
member_description_factory: member_description_factory,
|
|
}
|
|
}
|
|
|
|
impl<'tcx> RecursiveTypeDescription<'tcx> {
|
|
// Finishes up the description of the type in question (mostly by providing
|
|
// descriptions of the fields of the given type) and returns the final type metadata.
|
|
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
|
|
match *self {
|
|
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
|
|
UnfinishedMetadata {
|
|
unfinished_type,
|
|
unique_type_id,
|
|
metadata_stub,
|
|
llvm_type,
|
|
ref member_description_factory,
|
|
..
|
|
} => {
|
|
// Make sure that we have a forward declaration of the type in
|
|
// the TypeMap so that recursive references are possible. This
|
|
// will always be the case if the RecursiveTypeDescription has
|
|
// been properly created through the
|
|
// create_and_register_recursive_type_forward_declaration() function.
|
|
{
|
|
let type_map = debug_context(cx).type_map.borrow();
|
|
if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
|
|
type_map.find_metadata_for_type(unfinished_type).is_none() {
|
|
cx.sess().bug(format!("Forward declaration of potentially recursive type \
|
|
'{}' was not found in TypeMap!",
|
|
ppaux::ty_to_string(cx.tcx(), unfinished_type))
|
|
[]);
|
|
}
|
|
}
|
|
|
|
// ... then create the member descriptions ...
|
|
let member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
// ... and attach them to the stub to complete it.
|
|
set_members_of_composite_type(cx,
|
|
metadata_stub,
|
|
llvm_type,
|
|
member_descriptions[]);
|
|
return MetadataCreationResult::new(metadata_stub, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Structs
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Creates MemberDescriptions for the fields of a struct
|
|
struct StructMemberDescriptionFactory<'tcx> {
|
|
fields: Vec<ty::field<'tcx>>,
|
|
is_simd: bool,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> StructMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
if self.fields.len() == 0 {
|
|
return Vec::new();
|
|
}
|
|
|
|
let field_size = if self.is_simd {
|
|
machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as uint
|
|
} else {
|
|
0xdeadbeef
|
|
};
|
|
|
|
self.fields.iter().enumerate().map(|(i, field)| {
|
|
let name = if field.name == special_idents::unnamed_field.name {
|
|
"".to_string()
|
|
} else {
|
|
token::get_name(field.name).get().to_string()
|
|
};
|
|
|
|
let offset = if self.is_simd {
|
|
assert!(field_size != 0xdeadbeef);
|
|
FixedMemberOffset { bytes: i * field_size }
|
|
} else {
|
|
ComputedMemberOffset
|
|
};
|
|
|
|
MemberDescription {
|
|
name: name,
|
|
llvm_type: type_of::type_of(cx, field.mt.ty),
|
|
type_metadata: type_metadata(cx, field.mt.ty, self.span),
|
|
offset: offset,
|
|
flags: FLAGS_NONE,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
|
|
fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
struct_type: Ty<'tcx>,
|
|
def_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let struct_name = compute_debuginfo_type_name(cx, struct_type, false);
|
|
let struct_llvm_type = type_of::type_of(cx, struct_type);
|
|
|
|
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let struct_metadata_stub = create_struct_stub(cx,
|
|
struct_llvm_type,
|
|
struct_name[],
|
|
unique_type_id,
|
|
containing_scope);
|
|
|
|
let fields = ty::struct_fields(cx.tcx(), def_id, substs);
|
|
|
|
create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
struct_type,
|
|
unique_type_id,
|
|
struct_metadata_stub,
|
|
struct_llvm_type,
|
|
StructMDF(StructMemberDescriptionFactory {
|
|
fields: fields,
|
|
is_simd: ty::type_is_simd(cx.tcx(), struct_type),
|
|
span: span,
|
|
})
|
|
)
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Tuples
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Creates MemberDescriptions for the fields of a tuple
|
|
struct TupleMemberDescriptionFactory<'tcx> {
|
|
component_types: Vec<Ty<'tcx>>,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
self.component_types.iter().map(|&component_type| {
|
|
MemberDescription {
|
|
name: "".to_string(),
|
|
llvm_type: type_of::type_of(cx, component_type),
|
|
type_metadata: type_metadata(cx, component_type, self.span),
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE,
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
tuple_type: Ty<'tcx>,
|
|
component_types: &[Ty<'tcx>],
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false);
|
|
let tuple_llvm_type = type_of::type_of(cx, tuple_type);
|
|
|
|
create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
tuple_type,
|
|
unique_type_id,
|
|
create_struct_stub(cx,
|
|
tuple_llvm_type,
|
|
tuple_name[],
|
|
unique_type_id,
|
|
UNKNOWN_SCOPE_METADATA),
|
|
tuple_llvm_type,
|
|
TupleMDF(TupleMemberDescriptionFactory {
|
|
component_types: component_types.to_vec(),
|
|
span: span,
|
|
})
|
|
)
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Enums
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Describes the members of an enum value: An enum is described as a union of
|
|
// structs in DWARF. This MemberDescriptionFactory provides the description for
|
|
// the members of this union; so for every variant of the given enum, this factory
|
|
// will produce one MemberDescription (all with no name and a fixed offset of
|
|
// zero bytes).
|
|
struct EnumMemberDescriptionFactory<'tcx> {
|
|
enum_type: Ty<'tcx>,
|
|
type_rep: Rc<adt::Repr<'tcx>>,
|
|
variants: Rc<Vec<Rc<ty::VariantInfo<'tcx>>>>,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
containing_scope: DIScope,
|
|
file_metadata: DIFile,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
match *self.type_rep {
|
|
adt::General(_, ref struct_defs, _) => {
|
|
let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata
|
|
.expect(""));
|
|
|
|
struct_defs
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, struct_def)| {
|
|
let (variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_desc_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[i],
|
|
discriminant_info,
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let member_descriptions = member_desc_factory
|
|
.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_descriptions[]);
|
|
MemberDescription {
|
|
name: "".to_string(),
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
}).collect()
|
|
},
|
|
adt::Univariant(ref struct_def, _) => {
|
|
assert!(self.variants.len() <= 1);
|
|
|
|
if self.variants.len() == 0 {
|
|
vec![]
|
|
} else {
|
|
let (variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[0],
|
|
NoDiscriminant,
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
member_descriptions[]);
|
|
vec![
|
|
MemberDescription {
|
|
name: "".to_string(),
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
}
|
|
}
|
|
adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => {
|
|
// As far as debuginfo is concerned, the pointer this enum
|
|
// represents is still wrapped in a struct. This is to make the
|
|
// DWARF representation of enums uniform.
|
|
|
|
// First create a description of the artificial wrapper struct:
|
|
let non_null_variant = &(*self.variants)[non_null_variant_index as uint];
|
|
let non_null_variant_name = token::get_name(non_null_variant.name);
|
|
|
|
// The llvm type and metadata of the pointer
|
|
let non_null_llvm_type = type_of::type_of(cx, nnty);
|
|
let non_null_type_metadata = type_metadata(cx, nnty, self.span);
|
|
|
|
// The type of the artificial struct wrapping the pointer
|
|
let artificial_struct_llvm_type = Type::struct_(cx,
|
|
&[non_null_llvm_type],
|
|
false);
|
|
|
|
// For the metadata of the wrapper struct, we need to create a
|
|
// MemberDescription of the struct's single field.
|
|
let sole_struct_member_description = MemberDescription {
|
|
name: match non_null_variant.arg_names {
|
|
Some(ref names) => token::get_ident(names[0]).get().to_string(),
|
|
None => "".to_string()
|
|
},
|
|
llvm_type: non_null_llvm_type,
|
|
type_metadata: non_null_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
};
|
|
|
|
let unique_type_id = debug_context(cx).type_map
|
|
.borrow_mut()
|
|
.get_unique_type_id_of_enum_variant(
|
|
cx,
|
|
self.enum_type,
|
|
non_null_variant_name.get());
|
|
|
|
// Now we can create the metadata of the artificial struct
|
|
let artificial_struct_metadata =
|
|
composite_type_metadata(cx,
|
|
artificial_struct_llvm_type,
|
|
non_null_variant_name.get(),
|
|
unique_type_id,
|
|
&[sole_struct_member_description],
|
|
self.containing_scope,
|
|
self.file_metadata,
|
|
codemap::DUMMY_SP);
|
|
|
|
// Encode the information about the null variant in the union
|
|
// member's name.
|
|
let null_variant_index = (1 - non_null_variant_index) as uint;
|
|
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
|
|
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
|
|
0u,
|
|
null_variant_name);
|
|
|
|
// Finally create the (singleton) list of descriptions of union
|
|
// members.
|
|
vec![
|
|
MemberDescription {
|
|
name: union_member_name,
|
|
llvm_type: artificial_struct_llvm_type,
|
|
type_metadata: artificial_struct_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
},
|
|
adt::StructWrappedNullablePointer { nonnull: ref struct_def,
|
|
nndiscr,
|
|
ptrfield, ..} => {
|
|
// Create a description of the non-null variant
|
|
let (variant_type_metadata, variant_llvm_type, member_description_factory) =
|
|
describe_enum_variant(cx,
|
|
self.enum_type,
|
|
struct_def,
|
|
&*(*self.variants)[nndiscr as uint],
|
|
OptimizedDiscriminant(ptrfield),
|
|
self.containing_scope,
|
|
self.span);
|
|
|
|
let variant_member_descriptions =
|
|
member_description_factory.create_member_descriptions(cx);
|
|
|
|
set_members_of_composite_type(cx,
|
|
variant_type_metadata,
|
|
variant_llvm_type,
|
|
variant_member_descriptions[]);
|
|
|
|
// Encode the information about the null variant in the union
|
|
// member's name.
|
|
let null_variant_index = (1 - nndiscr) as uint;
|
|
let null_variant_name = token::get_name((*self.variants)[null_variant_index].name);
|
|
let discrfield = match ptrfield {
|
|
adt::ThinPointer(field) => format!("{}", field),
|
|
adt::FatPointer(field) => format!("{}", field)
|
|
};
|
|
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
|
|
discrfield,
|
|
null_variant_name);
|
|
|
|
// Create the (singleton) list of descriptions of union members.
|
|
vec![
|
|
MemberDescription {
|
|
name: union_member_name,
|
|
llvm_type: variant_llvm_type,
|
|
type_metadata: variant_type_metadata,
|
|
offset: FixedMemberOffset { bytes: 0 },
|
|
flags: FLAGS_NONE
|
|
}
|
|
]
|
|
},
|
|
adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates MemberDescriptions for the fields of a single enum variant.
|
|
struct VariantMemberDescriptionFactory<'tcx> {
|
|
args: Vec<(String, Ty<'tcx>)>,
|
|
discriminant_type_metadata: Option<DIType>,
|
|
span: Span,
|
|
}
|
|
|
|
impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
|
|
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
|
|
-> Vec<MemberDescription> {
|
|
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
|
|
MemberDescription {
|
|
name: name.to_string(),
|
|
llvm_type: type_of::type_of(cx, ty),
|
|
type_metadata: match self.discriminant_type_metadata {
|
|
Some(metadata) if i == 0 => metadata,
|
|
_ => type_metadata(cx, ty, self.span)
|
|
},
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
|
|
#[deriving(Copy)]
|
|
enum EnumDiscriminantInfo {
|
|
RegularDiscriminant(DIType),
|
|
OptimizedDiscriminant(adt::PointerField),
|
|
NoDiscriminant
|
|
}
|
|
|
|
// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type
|
|
// of the variant, and (3) a MemberDescriptionFactory for producing the
|
|
// descriptions of the fields of the variant. This is a rudimentary version of a
|
|
// full RecursiveTypeDescription.
|
|
fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
struct_def: &adt::Struct<'tcx>,
|
|
variant_info: &ty::VariantInfo<'tcx>,
|
|
discriminant_info: EnumDiscriminantInfo,
|
|
containing_scope: DIScope,
|
|
span: Span)
|
|
-> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) {
|
|
let variant_llvm_type =
|
|
Type::struct_(cx, struct_def.fields
|
|
.iter()
|
|
.map(|&t| type_of::type_of(cx, t))
|
|
.collect::<Vec<_>>()
|
|
[],
|
|
struct_def.packed);
|
|
// Could do some consistency checks here: size, align, field count, discr type
|
|
|
|
let variant_name = token::get_name(variant_info.name);
|
|
let variant_name = variant_name.get();
|
|
let unique_type_id = debug_context(cx).type_map
|
|
.borrow_mut()
|
|
.get_unique_type_id_of_enum_variant(
|
|
cx,
|
|
enum_type,
|
|
variant_name);
|
|
|
|
let metadata_stub = create_struct_stub(cx,
|
|
variant_llvm_type,
|
|
variant_name,
|
|
unique_type_id,
|
|
containing_scope);
|
|
|
|
// Get the argument names from the enum variant info
|
|
let mut arg_names: Vec<_> = match variant_info.arg_names {
|
|
Some(ref names) => {
|
|
names.iter()
|
|
.map(|ident| {
|
|
token::get_ident(*ident).get().to_string()
|
|
}).collect()
|
|
}
|
|
None => variant_info.args.iter().map(|_| "".to_string()).collect()
|
|
};
|
|
|
|
// If this is not a univariant enum, there is also the discriminant field.
|
|
match discriminant_info {
|
|
RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()),
|
|
_ => { /* do nothing */ }
|
|
};
|
|
|
|
// Build an array of (field name, field type) pairs to be captured in the factory closure.
|
|
let args: Vec<(String, Ty)> = arg_names.iter()
|
|
.zip(struct_def.fields.iter())
|
|
.map(|(s, &t)| (s.to_string(), t))
|
|
.collect();
|
|
|
|
let member_description_factory =
|
|
VariantMDF(VariantMemberDescriptionFactory {
|
|
args: args,
|
|
discriminant_type_metadata: match discriminant_info {
|
|
RegularDiscriminant(discriminant_type_metadata) => {
|
|
Some(discriminant_type_metadata)
|
|
}
|
|
_ => None
|
|
},
|
|
span: span,
|
|
});
|
|
|
|
(metadata_stub, variant_llvm_type, member_description_factory)
|
|
}
|
|
|
|
fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
enum_type: Ty<'tcx>,
|
|
enum_def_id: ast::DefId,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> RecursiveTypeDescription<'tcx> {
|
|
let enum_name = compute_debuginfo_type_name(cx, enum_type, false);
|
|
|
|
let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id);
|
|
let loc = span_start(cx, definition_span);
|
|
let file_metadata = file_metadata(cx, loc.file.name[]);
|
|
|
|
let variants = ty::enum_variants(cx.tcx(), enum_def_id);
|
|
|
|
let enumerators_metadata: Vec<DIDescriptor> = variants
|
|
.iter()
|
|
.map(|v| {
|
|
token::get_name(v.name).get().with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerator(
|
|
DIB(cx),
|
|
name,
|
|
v.disr_val as u64)
|
|
}
|
|
})
|
|
})
|
|
.collect();
|
|
|
|
let discriminant_type_metadata = |inttype| {
|
|
// We can reuse the type of the discriminant for all monomorphized
|
|
// instances of an enum because it doesn't depend on any type parameters.
|
|
// The def_id, uniquely identifying the enum's polytype acts as key in
|
|
// this cache.
|
|
let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
|
|
.borrow()
|
|
.get(&enum_def_id).cloned();
|
|
match cached_discriminant_type_metadata {
|
|
Some(discriminant_type_metadata) => discriminant_type_metadata,
|
|
None => {
|
|
let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
|
|
let (discriminant_size, discriminant_align) =
|
|
size_and_align_of(cx, discriminant_llvm_type);
|
|
let discriminant_base_type_metadata = type_metadata(cx,
|
|
adt::ty_of_inttype(inttype),
|
|
codemap::DUMMY_SP);
|
|
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
|
|
|
|
let discriminant_type_metadata = discriminant_name.get().with_c_str(|name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateEnumerationType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name,
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(discriminant_size),
|
|
bytes_to_bits(discriminant_align),
|
|
create_DIArray(DIB(cx), enumerators_metadata[]),
|
|
discriminant_base_type_metadata)
|
|
}
|
|
});
|
|
|
|
debug_context(cx).created_enum_disr_types
|
|
.borrow_mut()
|
|
.insert(enum_def_id, discriminant_type_metadata);
|
|
|
|
discriminant_type_metadata
|
|
}
|
|
}
|
|
};
|
|
|
|
let type_rep = adt::represent_type(cx, enum_type);
|
|
|
|
let discriminant_type_metadata = match *type_rep {
|
|
adt::CEnum(inttype, _, _) => {
|
|
return FinalMetadata(discriminant_type_metadata(inttype))
|
|
},
|
|
adt::RawNullablePointer { .. } |
|
|
adt::StructWrappedNullablePointer { .. } |
|
|
adt::Univariant(..) => None,
|
|
adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)),
|
|
};
|
|
|
|
let enum_llvm_type = type_of::type_of(cx, enum_type);
|
|
let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
|
|
|
|
let unique_type_id_str = debug_context(cx)
|
|
.type_map
|
|
.borrow()
|
|
.get_unique_type_id_as_string(unique_type_id);
|
|
|
|
let enum_metadata = enum_name.with_c_str(|enum_name| {
|
|
unique_type_id_str.with_c_str(|unique_type_id_str| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateUnionType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
enum_name,
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(enum_type_size),
|
|
bytes_to_bits(enum_type_align),
|
|
0, // Flags
|
|
ptr::null_mut(),
|
|
0, // RuntimeLang
|
|
unique_type_id_str)
|
|
}
|
|
})
|
|
});
|
|
|
|
return create_and_register_recursive_type_forward_declaration(
|
|
cx,
|
|
enum_type,
|
|
unique_type_id,
|
|
enum_metadata,
|
|
enum_llvm_type,
|
|
EnumMDF(EnumMemberDescriptionFactory {
|
|
enum_type: enum_type,
|
|
type_rep: type_rep.clone(),
|
|
variants: variants,
|
|
discriminant_type_metadata: discriminant_type_metadata,
|
|
containing_scope: containing_scope,
|
|
file_metadata: file_metadata,
|
|
span: span,
|
|
}),
|
|
);
|
|
|
|
fn get_enum_discriminant_name(cx: &CrateContext,
|
|
def_id: ast::DefId)
|
|
-> token::InternedString {
|
|
let name = if def_id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx().map.get_path_elem(def_id.node).name()
|
|
} else {
|
|
csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name()
|
|
};
|
|
|
|
token::get_name(name)
|
|
}
|
|
}
|
|
|
|
/// Creates debug information for a composite type, that is, anything that
|
|
/// results in a LLVM struct.
|
|
///
|
|
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
|
|
fn composite_type_metadata(cx: &CrateContext,
|
|
composite_llvm_type: Type,
|
|
composite_type_name: &str,
|
|
composite_type_unique_id: UniqueTypeId,
|
|
member_descriptions: &[MemberDescription],
|
|
containing_scope: DIScope,
|
|
|
|
// Ignore source location information as long as it
|
|
// can't be reconstructed for non-local crates.
|
|
_file_metadata: DIFile,
|
|
_definition_span: Span)
|
|
-> DICompositeType {
|
|
// Create the (empty) struct metadata node ...
|
|
let composite_type_metadata = create_struct_stub(cx,
|
|
composite_llvm_type,
|
|
composite_type_name,
|
|
composite_type_unique_id,
|
|
containing_scope);
|
|
// ... and immediately create and add the member descriptions.
|
|
set_members_of_composite_type(cx,
|
|
composite_type_metadata,
|
|
composite_llvm_type,
|
|
member_descriptions);
|
|
|
|
return composite_type_metadata;
|
|
}
|
|
|
|
fn set_members_of_composite_type(cx: &CrateContext,
|
|
composite_type_metadata: DICompositeType,
|
|
composite_llvm_type: Type,
|
|
member_descriptions: &[MemberDescription]) {
|
|
// In some rare cases LLVM metadata uniquing would lead to an existing type
|
|
// description being used instead of a new one created in create_struct_stub.
|
|
// This would cause a hard to trace assertion in DICompositeType::SetTypeArray().
|
|
// The following check makes sure that we get a better error message if this
|
|
// should happen again due to some regression.
|
|
{
|
|
let mut composite_types_completed =
|
|
debug_context(cx).composite_types_completed.borrow_mut();
|
|
if composite_types_completed.contains(&composite_type_metadata) {
|
|
let (llvm_version_major, llvm_version_minor) = unsafe {
|
|
(llvm::LLVMVersionMajor(), llvm::LLVMVersionMinor())
|
|
};
|
|
|
|
let actual_llvm_version = llvm_version_major * 1000000 + llvm_version_minor * 1000;
|
|
let min_supported_llvm_version = 3 * 1000000 + 4 * 1000;
|
|
|
|
if actual_llvm_version < min_supported_llvm_version {
|
|
cx.sess().warn(format!("This version of rustc was built with LLVM \
|
|
{}.{}. Rustc just ran into a known \
|
|
debuginfo corruption problem thatoften \
|
|
occurs with LLVM versions below 3.4. \
|
|
Please use a rustc built with anewer \
|
|
version of LLVM.",
|
|
llvm_version_major,
|
|
llvm_version_minor)[]);
|
|
} else {
|
|
cx.sess().bug("debuginfo::set_members_of_composite_type() - \
|
|
Already completed forward declaration re-encountered.");
|
|
}
|
|
} else {
|
|
composite_types_completed.insert(composite_type_metadata);
|
|
}
|
|
}
|
|
|
|
let member_metadata: Vec<DIDescriptor> = member_descriptions
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, member_description)| {
|
|
let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
|
|
let member_offset = match member_description.offset {
|
|
FixedMemberOffset { bytes } => bytes as u64,
|
|
ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
|
|
};
|
|
|
|
member_description.name.with_c_str(|member_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateMemberType(
|
|
DIB(cx),
|
|
composite_type_metadata,
|
|
member_name,
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(member_size),
|
|
bytes_to_bits(member_align),
|
|
bytes_to_bits(member_offset),
|
|
member_description.flags,
|
|
member_description.type_metadata)
|
|
}
|
|
})
|
|
})
|
|
.collect();
|
|
|
|
unsafe {
|
|
let type_array = create_DIArray(DIB(cx), member_metadata[]);
|
|
llvm::LLVMDICompositeTypeSetTypeArray(composite_type_metadata, type_array);
|
|
}
|
|
}
|
|
|
|
// A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any
|
|
// caching, does not add any fields to the struct. This can be done later with
|
|
// set_members_of_composite_type().
|
|
fn create_struct_stub(cx: &CrateContext,
|
|
struct_llvm_type: Type,
|
|
struct_type_name: &str,
|
|
unique_type_id: UniqueTypeId,
|
|
containing_scope: DIScope)
|
|
-> DICompositeType {
|
|
let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
|
|
|
|
let unique_type_id_str = debug_context(cx).type_map
|
|
.borrow()
|
|
.get_unique_type_id_as_string(unique_type_id);
|
|
let metadata_stub = unsafe {
|
|
struct_type_name.with_c_str(|name| {
|
|
unique_type_id_str.with_c_str(|unique_type_id| {
|
|
// LLVMDIBuilderCreateStructType() wants an empty array. A null
|
|
// pointer will lead to hard to trace and debug LLVM assertions
|
|
// later on in llvm/lib/IR/Value.cpp.
|
|
let empty_array = create_DIArray(DIB(cx), &[]);
|
|
|
|
llvm::LLVMDIBuilderCreateStructType(
|
|
DIB(cx),
|
|
containing_scope,
|
|
name,
|
|
UNKNOWN_FILE_METADATA,
|
|
UNKNOWN_LINE_NUMBER,
|
|
bytes_to_bits(struct_size),
|
|
bytes_to_bits(struct_align),
|
|
0,
|
|
ptr::null_mut(),
|
|
empty_array,
|
|
0,
|
|
ptr::null_mut(),
|
|
unique_type_id)
|
|
})
|
|
})
|
|
};
|
|
|
|
return metadata_stub;
|
|
}
|
|
|
|
fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
element_type: Ty<'tcx>,
|
|
len: uint,
|
|
span: Span)
|
|
-> MetadataCreationResult {
|
|
let element_type_metadata = type_metadata(cx, element_type, span);
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
let element_llvm_type = type_of::type_of(cx, element_type);
|
|
let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
|
|
|
|
let subrange = unsafe {
|
|
llvm::LLVMDIBuilderGetOrCreateSubrange(
|
|
DIB(cx),
|
|
0,
|
|
len as i64)
|
|
};
|
|
|
|
let subscripts = create_DIArray(DIB(cx), &[subrange]);
|
|
let metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateArrayType(
|
|
DIB(cx),
|
|
bytes_to_bits(element_type_size * (len as u64)),
|
|
bytes_to_bits(element_type_align),
|
|
element_type_metadata,
|
|
subscripts)
|
|
};
|
|
|
|
return MetadataCreationResult::new(metadata, false);
|
|
}
|
|
|
|
fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
vec_type: Ty<'tcx>,
|
|
element_type: Ty<'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
span: Span)
|
|
-> MetadataCreationResult {
|
|
let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt {
|
|
ty: element_type,
|
|
mutbl: ast::MutImmutable
|
|
});
|
|
|
|
let element_type_metadata = type_metadata(cx, data_ptr_type, span);
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
let slice_llvm_type = type_of::type_of(cx, vec_type);
|
|
let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true);
|
|
|
|
let member_llvm_types = slice_llvm_type.field_types();
|
|
assert!(slice_layout_is_correct(cx,
|
|
member_llvm_types[],
|
|
element_type));
|
|
let member_descriptions = [
|
|
MemberDescription {
|
|
name: "data_ptr".to_string(),
|
|
llvm_type: member_llvm_types[0],
|
|
type_metadata: element_type_metadata,
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
},
|
|
MemberDescription {
|
|
name: "length".to_string(),
|
|
llvm_type: member_llvm_types[1],
|
|
type_metadata: type_metadata(cx, ty::mk_uint(), span),
|
|
offset: ComputedMemberOffset,
|
|
flags: FLAGS_NONE
|
|
},
|
|
];
|
|
|
|
assert!(member_descriptions.len() == member_llvm_types.len());
|
|
|
|
let loc = span_start(cx, span);
|
|
let file_metadata = file_metadata(cx, loc.file.name[]);
|
|
|
|
let metadata = composite_type_metadata(cx,
|
|
slice_llvm_type,
|
|
slice_type_name[],
|
|
unique_type_id,
|
|
&member_descriptions,
|
|
UNKNOWN_SCOPE_METADATA,
|
|
file_metadata,
|
|
span);
|
|
return MetadataCreationResult::new(metadata, false);
|
|
|
|
fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
member_llvm_types: &[Type],
|
|
element_type: Ty<'tcx>)
|
|
-> bool {
|
|
member_llvm_types.len() == 2 &&
|
|
member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
|
|
member_llvm_types[1] == cx.int_type()
|
|
}
|
|
}
|
|
|
|
fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
unique_type_id: UniqueTypeId,
|
|
signature: &ty::PolyFnSig<'tcx>,
|
|
span: Span)
|
|
-> MetadataCreationResult {
|
|
let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.0.inputs.len() + 1);
|
|
|
|
// return type
|
|
signature_metadata.push(match signature.0.output {
|
|
ty::FnConverging(ret_ty) => match ret_ty.sty {
|
|
ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(),
|
|
_ => type_metadata(cx, ret_ty, span)
|
|
},
|
|
ty::FnDiverging => diverging_type_metadata(cx)
|
|
});
|
|
|
|
// regular arguments
|
|
for &argument_type in signature.0.inputs.iter() {
|
|
signature_metadata.push(type_metadata(cx, argument_type, span));
|
|
}
|
|
|
|
return_if_metadata_created_in_meantime!(cx, unique_type_id);
|
|
|
|
return MetadataCreationResult::new(
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateSubroutineType(
|
|
DIB(cx),
|
|
UNKNOWN_FILE_METADATA,
|
|
create_DIArray(DIB(cx), signature_metadata[]))
|
|
},
|
|
false);
|
|
}
|
|
|
|
// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill-
|
|
// defined concept. For the case of an actual trait pointer (i.e., Box<Trait>,
|
|
// &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and
|
|
// trait_type should be the actual trait (e.g., Trait). Where the trait is part
|
|
// of a DST struct, there is no trait_object_type and the results of this
|
|
// function will be a little bit weird.
|
|
fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
trait_type: Ty<'tcx>,
|
|
trait_object_type: Option<Ty<'tcx>>,
|
|
unique_type_id: UniqueTypeId)
|
|
-> DIType {
|
|
// The implementation provided here is a stub. It makes sure that the trait
|
|
// type is assigned the correct name, size, namespace, and source location.
|
|
// But it does not describe the trait's methods.
|
|
|
|
let def_id = match trait_type.sty {
|
|
ty::ty_trait(box ty::TyTrait { ref principal, .. }) => principal.def_id(),
|
|
_ => {
|
|
let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type);
|
|
cx.sess().bug(format!("debuginfo: Unexpected trait-object type in \
|
|
trait_pointer_metadata(): {}",
|
|
pp_type_name[])[]);
|
|
}
|
|
};
|
|
|
|
let trait_object_type = trait_object_type.unwrap_or(trait_type);
|
|
let trait_type_name =
|
|
compute_debuginfo_type_name(cx, trait_object_type, false);
|
|
|
|
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
|
|
|
|
let trait_llvm_type = type_of::type_of(cx, trait_object_type);
|
|
|
|
composite_type_metadata(cx,
|
|
trait_llvm_type,
|
|
trait_type_name[],
|
|
unique_type_id,
|
|
&[],
|
|
containing_scope,
|
|
UNKNOWN_FILE_METADATA,
|
|
codemap::DUMMY_SP)
|
|
}
|
|
|
|
fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
usage_site_span: Span)
|
|
-> DIType {
|
|
// Get the unique type id of this type.
|
|
let unique_type_id = {
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
// First, try to find the type in TypeMap. If we have seen it before, we
|
|
// can exit early here.
|
|
match type_map.find_metadata_for_type(t) {
|
|
Some(metadata) => {
|
|
return metadata;
|
|
},
|
|
None => {
|
|
// The Ty is not in the TypeMap but maybe we have already seen
|
|
// an equivalent type (e.g. only differing in region arguments).
|
|
// In order to find out, generate the unique type id and look
|
|
// that up.
|
|
let unique_type_id = type_map.get_unique_type_id_of_type(cx, t);
|
|
match type_map.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => {
|
|
// There is already an equivalent type in the TypeMap.
|
|
// Register this Ty as an alias in the cache and
|
|
// return the cached metadata.
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
return metadata;
|
|
},
|
|
None => {
|
|
// There really is no type metadata for this type, so
|
|
// proceed by creating it.
|
|
unique_type_id
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("type_metadata: {}", t);
|
|
|
|
let sty = &t.sty;
|
|
let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty {
|
|
ty::ty_bool |
|
|
ty::ty_char |
|
|
ty::ty_int(_) |
|
|
ty::ty_uint(_) |
|
|
ty::ty_float(_) => {
|
|
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
|
|
}
|
|
ty::ty_tup(ref elements) if elements.is_empty() => {
|
|
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
|
|
}
|
|
ty::ty_enum(def_id, _) => {
|
|
prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx)
|
|
}
|
|
ty::ty_vec(typ, Some(len)) => {
|
|
fixed_vec_metadata(cx, unique_type_id, typ, len, usage_site_span)
|
|
}
|
|
// FIXME Can we do better than this for unsized vec/str fields?
|
|
ty::ty_vec(typ, None) => fixed_vec_metadata(cx, unique_type_id, typ, 0, usage_site_span),
|
|
ty::ty_str => fixed_vec_metadata(cx, unique_type_id, ty::mk_i8(), 0, usage_site_span),
|
|
ty::ty_trait(..) => {
|
|
MetadataCreationResult::new(
|
|
trait_pointer_metadata(cx, t, None, unique_type_id),
|
|
false)
|
|
}
|
|
ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => {
|
|
match ty.sty {
|
|
ty::ty_vec(typ, None) => {
|
|
vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span)
|
|
}
|
|
ty::ty_str => {
|
|
vec_slice_metadata(cx, t, ty::mk_u8(), unique_type_id, usage_site_span)
|
|
}
|
|
ty::ty_trait(..) => {
|
|
MetadataCreationResult::new(
|
|
trait_pointer_metadata(cx, ty, Some(t), unique_type_id),
|
|
false)
|
|
}
|
|
_ => {
|
|
let pointee_metadata = type_metadata(cx, ty, usage_site_span);
|
|
|
|
match debug_context(cx).type_map
|
|
.borrow()
|
|
.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => return metadata,
|
|
None => { /* proceed normally */ }
|
|
};
|
|
|
|
MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata),
|
|
false)
|
|
}
|
|
}
|
|
}
|
|
ty::ty_bare_fn(_, ref barefnty) => {
|
|
subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span)
|
|
}
|
|
ty::ty_closure(ref closurety) => {
|
|
subroutine_type_metadata(cx, unique_type_id, &closurety.sig, usage_site_span)
|
|
}
|
|
ty::ty_unboxed_closure(ref def_id, _, ref substs) => {
|
|
let sig = cx.tcx().unboxed_closures.borrow()
|
|
.get(def_id).unwrap().closure_type.sig.subst(cx.tcx(), substs);
|
|
subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span)
|
|
}
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
prepare_struct_metadata(cx,
|
|
t,
|
|
def_id,
|
|
substs,
|
|
unique_type_id,
|
|
usage_site_span).finalize(cx)
|
|
}
|
|
ty::ty_tup(ref elements) => {
|
|
prepare_tuple_metadata(cx,
|
|
t,
|
|
elements[],
|
|
unique_type_id,
|
|
usage_site_span).finalize(cx)
|
|
}
|
|
_ => {
|
|
cx.sess().bug(format!("debuginfo: unexpected type in type_metadata: {}",
|
|
sty)[])
|
|
}
|
|
};
|
|
|
|
{
|
|
let mut type_map = debug_context(cx).type_map.borrow_mut();
|
|
|
|
if already_stored_in_typemap {
|
|
// Also make sure that we already have a TypeMap entry entry for the unique type id.
|
|
let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) {
|
|
Some(metadata) => metadata,
|
|
None => {
|
|
let unique_type_id_str =
|
|
type_map.get_unique_type_id_as_string(unique_type_id);
|
|
let error_message = format!("Expected type metadata for unique \
|
|
type id '{}' to already be in \
|
|
the debuginfo::TypeMap but it \
|
|
was not. (Ty = {})",
|
|
unique_type_id_str[],
|
|
ppaux::ty_to_string(cx.tcx(), t));
|
|
cx.sess().span_bug(usage_site_span, error_message[]);
|
|
}
|
|
};
|
|
|
|
match type_map.find_metadata_for_type(t) {
|
|
Some(metadata) => {
|
|
if metadata != metadata_for_uid {
|
|
let unique_type_id_str =
|
|
type_map.get_unique_type_id_as_string(unique_type_id);
|
|
let error_message = format!("Mismatch between Ty and \
|
|
UniqueTypeId maps in \
|
|
debuginfo::TypeMap. \
|
|
UniqueTypeId={}, Ty={}",
|
|
unique_type_id_str[],
|
|
ppaux::ty_to_string(cx.tcx(), t));
|
|
cx.sess().span_bug(usage_site_span, error_message[]);
|
|
}
|
|
}
|
|
None => {
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
}
|
|
}
|
|
} else {
|
|
type_map.register_type_with_metadata(cx, t, metadata);
|
|
type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata);
|
|
}
|
|
}
|
|
|
|
metadata
|
|
}
|
|
|
|
struct MetadataCreationResult {
|
|
metadata: DIType,
|
|
already_stored_in_typemap: bool
|
|
}
|
|
|
|
impl MetadataCreationResult {
|
|
fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult {
|
|
MetadataCreationResult {
|
|
metadata: metadata,
|
|
already_stored_in_typemap: already_stored_in_typemap
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Copy, PartialEq)]
|
|
enum DebugLocation {
|
|
KnownLocation { scope: DIScope, line: uint, col: uint },
|
|
UnknownLocation
|
|
}
|
|
|
|
impl DebugLocation {
|
|
fn new(scope: DIScope, line: uint, col: uint) -> DebugLocation {
|
|
KnownLocation {
|
|
scope: scope,
|
|
line: line,
|
|
col: col,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn set_debug_location(cx: &CrateContext, debug_location: DebugLocation) {
|
|
if debug_location == debug_context(cx).current_debug_location.get() {
|
|
return;
|
|
}
|
|
|
|
let metadata_node;
|
|
|
|
match debug_location {
|
|
KnownLocation { scope, line, .. } => {
|
|
// Always set the column to zero like Clang and GCC
|
|
let col = UNKNOWN_COLUMN_NUMBER;
|
|
debug!("setting debug location to {} {}", line, col);
|
|
let elements = [C_i32(cx, line as i32), C_i32(cx, col as i32),
|
|
scope, ptr::null_mut()];
|
|
unsafe {
|
|
metadata_node = llvm::LLVMMDNodeInContext(debug_context(cx).llcontext,
|
|
elements.as_ptr(),
|
|
elements.len() as c_uint);
|
|
}
|
|
}
|
|
UnknownLocation => {
|
|
debug!("clearing debug location ");
|
|
metadata_node = ptr::null_mut();
|
|
}
|
|
};
|
|
|
|
unsafe {
|
|
llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node);
|
|
}
|
|
|
|
debug_context(cx).current_debug_location.set(debug_location);
|
|
}
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Utility Functions
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool {
|
|
attributes.iter().any(|attr| {
|
|
let meta_item: &ast::MetaItem = &*attr.node.value;
|
|
match meta_item.node {
|
|
ast::MetaWord(ref value) => value.get() == "no_debug",
|
|
_ => false
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Return codemap::Loc corresponding to the beginning of the span
|
|
fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc {
|
|
cx.sess().codemap().lookup_char_pos(span.lo)
|
|
}
|
|
|
|
fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) {
|
|
(machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64)
|
|
}
|
|
|
|
fn bytes_to_bits(bytes: u64) -> u64 {
|
|
bytes * 8
|
|
}
|
|
|
|
#[inline]
|
|
fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>)
|
|
-> &'a CrateDebugContext<'tcx> {
|
|
let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap();
|
|
debug_context
|
|
}
|
|
|
|
#[inline]
|
|
#[allow(non_snake_case)]
|
|
fn DIB(cx: &CrateContext) -> DIBuilderRef {
|
|
cx.dbg_cx().as_ref().unwrap().builder
|
|
}
|
|
|
|
fn fn_should_be_ignored(fcx: &FunctionContext) -> bool {
|
|
match fcx.debug_context.repr {
|
|
DebugInfo(_) => false,
|
|
_ => true
|
|
}
|
|
}
|
|
|
|
fn assert_type_for_node_id(cx: &CrateContext,
|
|
node_id: ast::NodeId,
|
|
error_reporting_span: Span) {
|
|
if !cx.tcx().node_types.borrow().contains_key(&node_id) {
|
|
cx.sess().span_bug(error_reporting_span,
|
|
"debuginfo: Could not find type for node id!");
|
|
}
|
|
}
|
|
|
|
fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId)
|
|
-> (DIScope, Span) {
|
|
let containing_scope = namespace_for_item(cx, def_id).scope;
|
|
let definition_span = if def_id.krate == ast::LOCAL_CRATE {
|
|
cx.tcx().map.span(def_id.node)
|
|
} else {
|
|
// For external items there is no span information
|
|
codemap::DUMMY_SP
|
|
};
|
|
|
|
(containing_scope, definition_span)
|
|
}
|
|
|
|
// This procedure builds the *scope map* for a given function, which maps any
|
|
// given ast::NodeId in the function's AST to the correct DIScope metadata instance.
|
|
//
|
|
// This builder procedure walks the AST in execution order and keeps track of
|
|
// what belongs to which scope, creating DIScope DIEs along the way, and
|
|
// introducing *artificial* lexical scope descriptors where necessary. These
|
|
// artificial scopes allow GDB to correctly handle name shadowing.
|
|
fn populate_scope_map(cx: &CrateContext,
|
|
args: &[ast::Arg],
|
|
fn_entry_block: &ast::Block,
|
|
fn_metadata: DISubprogram,
|
|
fn_ast_id: ast::NodeId,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
let def_map = &cx.tcx().def_map;
|
|
|
|
struct ScopeStackEntry {
|
|
scope_metadata: DIScope,
|
|
ident: Option<ast::Ident>
|
|
}
|
|
|
|
let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata,
|
|
ident: None });
|
|
scope_map.insert(fn_ast_id, fn_metadata);
|
|
|
|
// Push argument identifiers onto the stack so arguments integrate nicely
|
|
// with variable shadowing.
|
|
for arg in args.iter() {
|
|
pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| {
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata,
|
|
ident: Some(path1.node) });
|
|
scope_map.insert(node_id, fn_metadata);
|
|
})
|
|
}
|
|
|
|
// Clang creates a separate scope for function bodies, so let's do this too.
|
|
with_new_scope(cx,
|
|
fn_entry_block.span,
|
|
&mut scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, fn_entry_block, scope_stack, scope_map);
|
|
});
|
|
|
|
// local helper functions for walking the AST.
|
|
fn with_new_scope<F>(cx: &CrateContext,
|
|
scope_span: Span,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>,
|
|
inner_walk: F) where
|
|
F: FnOnce(&CrateContext, &mut Vec<ScopeStackEntry>, &mut NodeMap<DIScope>),
|
|
{
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo);
|
|
let file_metadata = file_metadata(cx, loc.file.name[]);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_uint() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata,
|
|
ident: None });
|
|
|
|
inner_walk(cx, scope_stack, scope_map);
|
|
|
|
// pop artificial scopes
|
|
while scope_stack.last().unwrap().ident.is_some() {
|
|
scope_stack.pop();
|
|
}
|
|
|
|
if scope_stack.last().unwrap().scope_metadata != scope_metadata {
|
|
cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management.");
|
|
}
|
|
|
|
scope_stack.pop();
|
|
}
|
|
|
|
fn walk_block(cx: &CrateContext,
|
|
block: &ast::Block,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
// The interesting things here are statements and the concluding expression.
|
|
for statement in block.stmts.iter() {
|
|
scope_map.insert(ast_util::stmt_id(&**statement),
|
|
scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match statement.node {
|
|
ast::StmtDecl(ref decl, _) =>
|
|
walk_decl(cx, &**decl, scope_stack, scope_map),
|
|
ast::StmtExpr(ref exp, _) |
|
|
ast::StmtSemi(ref exp, _) =>
|
|
walk_expr(cx, &**exp, scope_stack, scope_map),
|
|
ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway).
|
|
}
|
|
}
|
|
|
|
for exp in block.expr.iter() {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
fn walk_decl(cx: &CrateContext,
|
|
decl: &ast::Decl,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
match *decl {
|
|
codemap::Spanned { node: ast::DeclLocal(ref local), .. } => {
|
|
scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
walk_pattern(cx, &*local.pat, scope_stack, scope_map);
|
|
|
|
for exp in local.init.iter() {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
fn walk_pattern(cx: &CrateContext,
|
|
pat: &ast::Pat,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
|
|
let def_map = &cx.tcx().def_map;
|
|
|
|
// Unfortunately, we cannot just use pat_util::pat_bindings() or
|
|
// ast_util::walk_pat() here because we have to visit *all* nodes in
|
|
// order to put them into the scope map. The above functions don't do that.
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path1, ref sub_pat_opt) => {
|
|
|
|
// Check if this is a binding. If so we need to put it on the
|
|
// scope stack and maybe introduce an artificial scope
|
|
if pat_util::pat_is_binding(def_map, &*pat) {
|
|
|
|
let ident = path1.node;
|
|
|
|
// LLVM does not properly generate 'DW_AT_start_scope' fields
|
|
// for variable DIEs. For this reason we have to introduce
|
|
// an artificial scope at bindings whenever a variable with
|
|
// the same name is declared in *any* parent scope.
|
|
//
|
|
// Otherwise the following error occurs:
|
|
//
|
|
// let x = 10;
|
|
//
|
|
// do_something(); // 'gdb print x' correctly prints 10
|
|
//
|
|
// {
|
|
// do_something(); // 'gdb print x' prints 0, because it
|
|
// // already reads the uninitialized 'x'
|
|
// // from the next line...
|
|
// let x = 100;
|
|
// do_something(); // 'gdb print x' correctly prints 100
|
|
// }
|
|
|
|
// Is there already a binding with that name?
|
|
// N.B.: this comparison must be UNhygienic... because
|
|
// gdb knows nothing about the context, so any two
|
|
// variables with the same name will cause the problem.
|
|
let need_new_scope = scope_stack
|
|
.iter()
|
|
.any(|entry| entry.ident.iter().any(|i| i.name == ident.name));
|
|
|
|
if need_new_scope {
|
|
// Create a new lexical scope and push it onto the stack
|
|
let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo);
|
|
let file_metadata = file_metadata(cx,
|
|
loc.file
|
|
.name
|
|
[]);
|
|
let parent_scope = scope_stack.last().unwrap().scope_metadata;
|
|
|
|
let scope_metadata = unsafe {
|
|
llvm::LLVMDIBuilderCreateLexicalBlock(
|
|
DIB(cx),
|
|
parent_scope,
|
|
file_metadata,
|
|
loc.line as c_uint,
|
|
loc.col.to_uint() as c_uint)
|
|
};
|
|
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: scope_metadata,
|
|
ident: Some(ident)
|
|
});
|
|
|
|
} else {
|
|
// Push a new entry anyway so the name can be found
|
|
let prev_metadata = scope_stack.last().unwrap().scope_metadata;
|
|
scope_stack.push(ScopeStackEntry {
|
|
scope_metadata: prev_metadata,
|
|
ident: Some(ident)
|
|
});
|
|
}
|
|
}
|
|
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pat in sub_pat_opt.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatWild(_) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
}
|
|
|
|
ast::PatEnum(_, ref sub_pats_opt) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pats in sub_pats_opt.iter() {
|
|
for p in sub_pats.iter() {
|
|
walk_pattern(cx, &**p, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::PatStruct(_, ref field_pats, _) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for &codemap::Spanned {
|
|
node: ast::FieldPat { pat: ref sub_pat, .. },
|
|
..
|
|
} in field_pats.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatTup(ref sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pat in sub_pats.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatLit(ref exp) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatRange(ref exp1, ref exp2) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
walk_expr(cx, &**exp1, scope_stack, scope_map);
|
|
walk_expr(cx, &**exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => {
|
|
scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
for sub_pat in front_sub_pats.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for sub_pat in middle_sub_pats.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for sub_pat in back_sub_pats.iter() {
|
|
walk_pattern(cx, &**sub_pat, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::PatMac(_) => {
|
|
cx.sess().span_bug(pat.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded macro.");
|
|
}
|
|
}
|
|
}
|
|
|
|
fn walk_expr(cx: &CrateContext,
|
|
exp: &ast::Expr,
|
|
scope_stack: &mut Vec<ScopeStackEntry> ,
|
|
scope_map: &mut NodeMap<DIScope>) {
|
|
|
|
scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata);
|
|
|
|
match exp.node {
|
|
ast::ExprLit(_) |
|
|
ast::ExprBreak(_) |
|
|
ast::ExprAgain(_) |
|
|
ast::ExprPath(_) => {}
|
|
|
|
ast::ExprCast(ref sub_exp, _) |
|
|
ast::ExprAddrOf(_, ref sub_exp) |
|
|
ast::ExprField(ref sub_exp, _) |
|
|
ast::ExprTupField(ref sub_exp, _) |
|
|
ast::ExprParen(ref sub_exp) =>
|
|
walk_expr(cx, &**sub_exp, scope_stack, scope_map),
|
|
|
|
ast::ExprBox(ref place, ref sub_expr) => {
|
|
place.as_ref().map(
|
|
|e| walk_expr(cx, &**e, scope_stack, scope_map));
|
|
walk_expr(cx, &**sub_expr, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprRet(ref exp_opt) => match *exp_opt {
|
|
Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map),
|
|
None => ()
|
|
},
|
|
|
|
ast::ExprUnary(_, ref sub_exp) => {
|
|
walk_expr(cx, &**sub_exp, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprAssignOp(_, ref lhs, ref rhs) |
|
|
ast::ExprIndex(ref lhs, ref rhs) |
|
|
ast::ExprBinary(_, ref lhs, ref rhs) => {
|
|
walk_expr(cx, &**lhs, scope_stack, scope_map);
|
|
walk_expr(cx, &**rhs, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprSlice(ref base, ref start, ref end, _) => {
|
|
walk_expr(cx, &**base, scope_stack, scope_map);
|
|
start.as_ref().map(|x| walk_expr(cx, &**x, scope_stack, scope_map));
|
|
end.as_ref().map(|x| walk_expr(cx, &**x, scope_stack, scope_map));
|
|
}
|
|
|
|
ast::ExprVec(ref init_expressions) |
|
|
ast::ExprTup(ref init_expressions) => {
|
|
for ie in init_expressions.iter() {
|
|
walk_expr(cx, &**ie, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprAssign(ref sub_exp1, ref sub_exp2) |
|
|
ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => {
|
|
walk_expr(cx, &**sub_exp1, scope_stack, scope_map);
|
|
walk_expr(cx, &**sub_exp2, scope_stack, scope_map);
|
|
}
|
|
|
|
ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => {
|
|
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
then_block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**then_block, scope_stack, scope_map);
|
|
});
|
|
|
|
match *opt_else_exp {
|
|
Some(ref else_exp) =>
|
|
walk_expr(cx, &**else_exp, scope_stack, scope_map),
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
ast::ExprIfLet(..) => {
|
|
cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded if-let.");
|
|
}
|
|
|
|
ast::ExprWhile(ref cond_exp, ref loop_body, _) => {
|
|
walk_expr(cx, &**cond_exp, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
loop_body.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**loop_body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprWhileLet(..) => {
|
|
cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded while-let.");
|
|
}
|
|
|
|
ast::ExprForLoop(ref pattern, ref head, ref body, _) => {
|
|
walk_expr(cx, &**head, scope_stack, scope_map);
|
|
|
|
with_new_scope(cx,
|
|
exp.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
scope_map.insert(exp.id,
|
|
scope_stack.last()
|
|
.unwrap()
|
|
.scope_metadata);
|
|
walk_pattern(cx,
|
|
&**pattern,
|
|
scope_stack,
|
|
scope_map);
|
|
walk_block(cx, &**body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprMac(_) => {
|
|
cx.sess().span_bug(exp.span, "debuginfo::populate_scope_map() - \
|
|
Found unexpanded macro.");
|
|
}
|
|
|
|
ast::ExprLoop(ref block, _) |
|
|
ast::ExprBlock(ref block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
walk_block(cx, &**block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprClosure(_, _, ref decl, ref block) => {
|
|
with_new_scope(cx,
|
|
block.span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for &ast::Arg { pat: ref pattern, .. } in decl.inputs.iter() {
|
|
walk_pattern(cx, &**pattern, scope_stack, scope_map);
|
|
}
|
|
|
|
walk_block(cx, &**block, scope_stack, scope_map);
|
|
})
|
|
}
|
|
|
|
ast::ExprCall(ref fn_exp, ref args) => {
|
|
walk_expr(cx, &**fn_exp, scope_stack, scope_map);
|
|
|
|
for arg_exp in args.iter() {
|
|
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprMethodCall(_, _, ref args) => {
|
|
for arg_exp in args.iter() {
|
|
walk_expr(cx, &**arg_exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
|
|
ast::ExprMatch(ref discriminant_exp, ref arms, _) => {
|
|
walk_expr(cx, &**discriminant_exp, scope_stack, scope_map);
|
|
|
|
// For each arm we have to first walk the pattern as these might
|
|
// introduce new artificial scopes. It should be sufficient to
|
|
// walk only one pattern per arm, as they all must contain the
|
|
// same binding names.
|
|
|
|
for arm_ref in arms.iter() {
|
|
let arm_span = arm_ref.pats[0].span;
|
|
|
|
with_new_scope(cx,
|
|
arm_span,
|
|
scope_stack,
|
|
scope_map,
|
|
|cx, scope_stack, scope_map| {
|
|
for pat in arm_ref.pats.iter() {
|
|
walk_pattern(cx, &**pat, scope_stack, scope_map);
|
|
}
|
|
|
|
for guard_exp in arm_ref.guard.iter() {
|
|
walk_expr(cx, &**guard_exp, scope_stack, scope_map)
|
|
}
|
|
|
|
walk_expr(cx, &*arm_ref.body, scope_stack, scope_map);
|
|
})
|
|
}
|
|
}
|
|
|
|
ast::ExprStruct(_, ref fields, ref base_exp) => {
|
|
for &ast::Field { expr: ref exp, .. } in fields.iter() {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
match *base_exp {
|
|
Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map),
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
ast::ExprInlineAsm(ast::InlineAsm { ref inputs,
|
|
ref outputs,
|
|
.. }) => {
|
|
// inputs, outputs: Vec<(String, P<Expr>)>
|
|
for &(_, ref exp) in inputs.iter() {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
|
|
for &(_, ref exp, _) in outputs.iter() {
|
|
walk_expr(cx, &**exp, scope_stack, scope_map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Type Names for Debug Info
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
// Compute the name of the type as it should be stored in debuginfo. Does not do
|
|
// any caching, i.e. calling the function twice with the same type will also do
|
|
// the work twice. The `qualified` parameter only affects the first level of the
|
|
// type name, further levels (i.e. type parameters) are always fully qualified.
|
|
fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
qualified: bool)
|
|
-> String {
|
|
let mut result = String::with_capacity(64);
|
|
push_debuginfo_type_name(cx, t, qualified, &mut result);
|
|
result
|
|
}
|
|
|
|
// Pushes the name of the type as it should be stored in debuginfo on the
|
|
// `output` String. See also compute_debuginfo_type_name().
|
|
fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>,
|
|
qualified: bool,
|
|
output: &mut String) {
|
|
match t.sty {
|
|
ty::ty_bool => output.push_str("bool"),
|
|
ty::ty_char => output.push_str("char"),
|
|
ty::ty_str => output.push_str("str"),
|
|
ty::ty_int(ast::TyI) => output.push_str("int"),
|
|
ty::ty_int(ast::TyI8) => output.push_str("i8"),
|
|
ty::ty_int(ast::TyI16) => output.push_str("i16"),
|
|
ty::ty_int(ast::TyI32) => output.push_str("i32"),
|
|
ty::ty_int(ast::TyI64) => output.push_str("i64"),
|
|
ty::ty_uint(ast::TyU) => output.push_str("uint"),
|
|
ty::ty_uint(ast::TyU8) => output.push_str("u8"),
|
|
ty::ty_uint(ast::TyU16) => output.push_str("u16"),
|
|
ty::ty_uint(ast::TyU32) => output.push_str("u32"),
|
|
ty::ty_uint(ast::TyU64) => output.push_str("u64"),
|
|
ty::ty_float(ast::TyF32) => output.push_str("f32"),
|
|
ty::ty_float(ast::TyF64) => output.push_str("f64"),
|
|
ty::ty_struct(def_id, ref substs) |
|
|
ty::ty_enum(def_id, ref substs) => {
|
|
push_item_name(cx, def_id, qualified, output);
|
|
push_type_params(cx, substs, output);
|
|
},
|
|
ty::ty_tup(ref component_types) => {
|
|
output.push('(');
|
|
for &component_type in component_types.iter() {
|
|
push_debuginfo_type_name(cx, component_type, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
if !component_types.is_empty() {
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
output.push(')');
|
|
},
|
|
ty::ty_uniq(inner_type) => {
|
|
output.push_str("Box<");
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
output.push('>');
|
|
},
|
|
ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => {
|
|
output.push('*');
|
|
match mutbl {
|
|
ast::MutImmutable => output.push_str("const "),
|
|
ast::MutMutable => output.push_str("mut "),
|
|
}
|
|
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
},
|
|
ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => {
|
|
output.push('&');
|
|
if mutbl == ast::MutMutable {
|
|
output.push_str("mut ");
|
|
}
|
|
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
},
|
|
ty::ty_vec(inner_type, optional_length) => {
|
|
output.push('[');
|
|
push_debuginfo_type_name(cx, inner_type, true, output);
|
|
|
|
match optional_length {
|
|
Some(len) => {
|
|
output.push_str(format!("; {}", len).as_slice());
|
|
}
|
|
None => { /* nothing to do */ }
|
|
};
|
|
|
|
output.push(']');
|
|
},
|
|
ty::ty_trait(ref trait_data) => {
|
|
push_item_name(cx, trait_data.principal.def_id(), false, output);
|
|
push_type_params(cx, trait_data.principal.substs(), output);
|
|
},
|
|
ty::ty_bare_fn(_, ty::BareFnTy{ unsafety, abi, ref sig } ) => {
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
output.push_str("unsafe ");
|
|
}
|
|
|
|
if abi != ::syntax::abi::Rust {
|
|
output.push_str("extern \"");
|
|
output.push_str(abi.name());
|
|
output.push_str("\" ");
|
|
}
|
|
|
|
output.push_str("fn(");
|
|
|
|
if sig.0.inputs.len() > 0 {
|
|
for ¶meter_type in sig.0.inputs.iter() {
|
|
push_debuginfo_type_name(cx, parameter_type, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
|
|
if sig.0.variadic {
|
|
if sig.0.inputs.len() > 0 {
|
|
output.push_str(", ...");
|
|
} else {
|
|
output.push_str("...");
|
|
}
|
|
}
|
|
|
|
output.push(')');
|
|
|
|
match sig.0.output {
|
|
ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {}
|
|
ty::FnConverging(result_type) => {
|
|
output.push_str(" -> ");
|
|
push_debuginfo_type_name(cx, result_type, true, output);
|
|
}
|
|
ty::FnDiverging => {
|
|
output.push_str(" -> !");
|
|
}
|
|
}
|
|
},
|
|
ty::ty_closure(box ty::ClosureTy { unsafety,
|
|
onceness,
|
|
store,
|
|
ref sig,
|
|
.. // omitting bounds ...
|
|
}) => {
|
|
if unsafety == ast::Unsafety::Unsafe {
|
|
output.push_str("unsafe ");
|
|
}
|
|
|
|
if onceness == ast::Once {
|
|
output.push_str("once ");
|
|
}
|
|
|
|
let param_list_closing_char;
|
|
match store {
|
|
ty::UniqTraitStore => {
|
|
output.push_str("proc(");
|
|
param_list_closing_char = ')';
|
|
}
|
|
ty::RegionTraitStore(_, ast::MutMutable) => {
|
|
output.push_str("&mut|");
|
|
param_list_closing_char = '|';
|
|
}
|
|
ty::RegionTraitStore(_, ast::MutImmutable) => {
|
|
output.push_str("&|");
|
|
param_list_closing_char = '|';
|
|
}
|
|
};
|
|
|
|
if sig.0.inputs.len() > 0 {
|
|
for ¶meter_type in sig.0.inputs.iter() {
|
|
push_debuginfo_type_name(cx, parameter_type, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
output.pop();
|
|
output.pop();
|
|
}
|
|
|
|
if sig.0.variadic {
|
|
if sig.0.inputs.len() > 0 {
|
|
output.push_str(", ...");
|
|
} else {
|
|
output.push_str("...");
|
|
}
|
|
}
|
|
|
|
output.push(param_list_closing_char);
|
|
|
|
match sig.0.output {
|
|
ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {}
|
|
ty::FnConverging(result_type) => {
|
|
output.push_str(" -> ");
|
|
push_debuginfo_type_name(cx, result_type, true, output);
|
|
}
|
|
ty::FnDiverging => {
|
|
output.push_str(" -> !");
|
|
}
|
|
}
|
|
},
|
|
ty::ty_unboxed_closure(..) => {
|
|
output.push_str("closure");
|
|
}
|
|
ty::ty_err |
|
|
ty::ty_infer(_) |
|
|
ty::ty_open(_) |
|
|
ty::ty_param(_) => {
|
|
cx.sess().bug(format!("debuginfo: Trying to create type name for \
|
|
unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t))[]);
|
|
}
|
|
}
|
|
|
|
fn push_item_name(cx: &CrateContext,
|
|
def_id: ast::DefId,
|
|
qualified: bool,
|
|
output: &mut String) {
|
|
ty::with_path(cx.tcx(), def_id, |mut path| {
|
|
if qualified {
|
|
if def_id.krate == ast::LOCAL_CRATE {
|
|
output.push_str(crate_root_namespace(cx));
|
|
output.push_str("::");
|
|
}
|
|
|
|
let mut path_element_count = 0u;
|
|
for path_element in path {
|
|
let name = token::get_name(path_element.name());
|
|
output.push_str(name.get());
|
|
output.push_str("::");
|
|
path_element_count += 1;
|
|
}
|
|
|
|
if path_element_count == 0 {
|
|
cx.sess().bug("debuginfo: Encountered empty item path!");
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
} else {
|
|
let name = token::get_name(path.last()
|
|
.expect("debuginfo: Empty item path?")
|
|
.name());
|
|
output.push_str(name.get());
|
|
}
|
|
});
|
|
}
|
|
|
|
// Pushes the type parameters in the given `Substs` to the output string.
|
|
// This ignores region parameters, since they can't reliably be
|
|
// reconstructed for items from non-local crates. For local crates, this
|
|
// would be possible but with inlining and LTO we have to use the least
|
|
// common denominator - otherwise we would run into conflicts.
|
|
fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
substs: &subst::Substs<'tcx>,
|
|
output: &mut String) {
|
|
if substs.types.is_empty() {
|
|
return;
|
|
}
|
|
|
|
output.push('<');
|
|
|
|
for &type_parameter in substs.types.iter() {
|
|
push_debuginfo_type_name(cx, type_parameter, true, output);
|
|
output.push_str(", ");
|
|
}
|
|
|
|
output.pop();
|
|
output.pop();
|
|
|
|
output.push('>');
|
|
}
|
|
}
|
|
|
|
|
|
//=-----------------------------------------------------------------------------
|
|
// Namespace Handling
|
|
//=-----------------------------------------------------------------------------
|
|
|
|
struct NamespaceTreeNode {
|
|
name: ast::Name,
|
|
scope: DIScope,
|
|
parent: Option<Weak<NamespaceTreeNode>>,
|
|
}
|
|
|
|
impl NamespaceTreeNode {
|
|
fn mangled_name_of_contained_item(&self, item_name: &str) -> String {
|
|
fn fill_nested(node: &NamespaceTreeNode, output: &mut String) {
|
|
match node.parent {
|
|
Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output),
|
|
None => {}
|
|
}
|
|
let string = token::get_name(node.name);
|
|
output.push_str(format!("{}", string.get().len())[]);
|
|
output.push_str(string.get());
|
|
}
|
|
|
|
let mut name = String::from_str("_ZN");
|
|
fill_nested(self, &mut name);
|
|
name.push_str(format!("{}", item_name.len())[]);
|
|
name.push_str(item_name);
|
|
name.push('E');
|
|
name
|
|
}
|
|
}
|
|
|
|
fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str {
|
|
cx.link_meta().crate_name[]
|
|
}
|
|
|
|
fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc<NamespaceTreeNode> {
|
|
ty::with_path(cx.tcx(), def_id, |path| {
|
|
// prepend crate name if not already present
|
|
let krate = if def_id.krate == ast::LOCAL_CRATE {
|
|
let crate_namespace_ident = token::str_to_ident(crate_root_namespace(cx));
|
|
Some(ast_map::PathMod(crate_namespace_ident.name))
|
|
} else {
|
|
None
|
|
};
|
|
let mut path = krate.into_iter().chain(path).peekable();
|
|
|
|
let mut current_key = Vec::new();
|
|
let mut parent_node: Option<Rc<NamespaceTreeNode>> = None;
|
|
|
|
// Create/Lookup namespace for each element of the path.
|
|
loop {
|
|
// Emulate a for loop so we can use peek below.
|
|
let path_element = match path.next() {
|
|
Some(e) => e,
|
|
None => break
|
|
};
|
|
// Ignore the name of the item (the last path element).
|
|
if path.peek().is_none() {
|
|
break;
|
|
}
|
|
|
|
let name = path_element.name();
|
|
current_key.push(name);
|
|
|
|
let existing_node = debug_context(cx).namespace_map.borrow()
|
|
.get(¤t_key).cloned();
|
|
let current_node = match existing_node {
|
|
Some(existing_node) => existing_node,
|
|
None => {
|
|
// create and insert
|
|
let parent_scope = match parent_node {
|
|
Some(ref node) => node.scope,
|
|
None => ptr::null_mut()
|
|
};
|
|
let namespace_name = token::get_name(name);
|
|
let scope = namespace_name.get().with_c_str(|namespace_name| {
|
|
unsafe {
|
|
llvm::LLVMDIBuilderCreateNameSpace(
|
|
DIB(cx),
|
|
parent_scope,
|
|
namespace_name,
|
|
// cannot reconstruct file ...
|
|
ptr::null_mut(),
|
|
// ... or line information, but that's not so important.
|
|
0)
|
|
}
|
|
});
|
|
|
|
let node = Rc::new(NamespaceTreeNode {
|
|
name: name,
|
|
scope: scope,
|
|
parent: parent_node.map(|parent| parent.downgrade()),
|
|
});
|
|
|
|
debug_context(cx).namespace_map.borrow_mut()
|
|
.insert(current_key.clone(), node.clone());
|
|
|
|
node
|
|
}
|
|
};
|
|
|
|
parent_node = Some(current_node);
|
|
}
|
|
|
|
match parent_node {
|
|
Some(node) => node,
|
|
None => {
|
|
cx.sess().bug(format!("debuginfo::namespace_for_item(): \
|
|
path too short for {}",
|
|
def_id)[]);
|
|
}
|
|
}
|
|
})
|
|
}
|