64faafba19
We were previously reading metadata via `ar p`, but as learned from rustdoc awhile back, spawning a process to do something is pretty slow. Turns out LLVM has an Archive class to read archives, but it cannot write archives. This commits adds bindings to the read-only version of the LLVM archive class (with a new type that only has a read() method), and then it uses this class when reading the metadata out of rlibs. When you put this in tandem of not compressing the metadata, reading the metadata is 4x faster than it used to be The timings I got for reading metadata from the respective libraries was: libstd-04ff901e-0.9-pre.dylib => 100ms libstd-04ff901e-0.9-pre.rlib => 23ms librustuv-7945354c-0.9-pre.dylib => 4ms librustuv-7945354c-0.9-pre.rlib => 1ms librustc-5b94a16f-0.9-pre.dylib => 87ms librustc-5b94a16f-0.9-pre.rlib => 35ms libextra-a6ebb16f-0.9-pre.dylib => 63ms libextra-a6ebb16f-0.9-pre.rlib => 15ms libsyntax-2e4c0458-0.9-pre.dylib => 86ms libsyntax-2e4c0458-0.9-pre.rlib => 22ms In order to always take advantage of these faster metadata read-times, I sort the files in filesearch based on whether they have an rlib extension or not (prefer all rlib files first). Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to 0.095s on my system (when preferring dynamic linking). Reading metadata is still the slowest pass of the compiler at 0.035s, but it's getting pretty close to linking at 0.021s! The next best optimization is to just not copy the metadata from LLVM because that's the most expensive part of reading metadata right now. |
||
---|---|---|
.. | ||
llvm-auto-clean-trigger | ||
PassWrapper.cpp | ||
README | ||
rustllvm.def.in | ||
rustllvm.h | ||
RustWrapper.cpp |
This directory currently contains some LLVM support code. This will generally be sent upstream to LLVM in time; for now it lives here.