rust/src/librustuv/timer.rs
2013-12-16 22:55:49 -08:00

319 lines
9.5 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::libc::c_int;
use std::rt::BlockedTask;
use std::rt::local::Local;
use std::rt::rtio::RtioTimer;
use std::rt::sched::{Scheduler, SchedHandle};
use std::util;
use uvll;
use super::{Loop, UvHandle, ForbidUnwind, ForbidSwitch};
use uvio::HomingIO;
pub struct TimerWatcher {
handle: *uvll::uv_timer_t,
home: SchedHandle,
action: Option<NextAction>,
id: uint, // see comments in timer_cb
}
pub enum NextAction {
WakeTask(BlockedTask),
SendOnce(Chan<()>),
SendMany(Chan<()>, uint),
}
impl TimerWatcher {
pub fn new(loop_: &mut Loop) -> ~TimerWatcher {
let handle = UvHandle::alloc(None::<TimerWatcher>, uvll::UV_TIMER);
assert_eq!(unsafe {
uvll::uv_timer_init(loop_.handle, handle)
}, 0);
let me = ~TimerWatcher {
handle: handle,
action: None,
home: get_handle_to_current_scheduler!(),
id: 0,
};
return me.install();
}
fn start(&mut self, msecs: u64, period: u64) {
assert_eq!(unsafe {
uvll::uv_timer_start(self.handle, timer_cb, msecs, period)
}, 0)
}
fn stop(&mut self) {
assert_eq!(unsafe { uvll::uv_timer_stop(self.handle) }, 0)
}
}
impl HomingIO for TimerWatcher {
fn home<'r>(&'r mut self) -> &'r mut SchedHandle { &mut self.home }
}
impl UvHandle<uvll::uv_timer_t> for TimerWatcher {
fn uv_handle(&self) -> *uvll::uv_timer_t { self.handle }
}
impl RtioTimer for TimerWatcher {
fn sleep(&mut self, msecs: u64) {
// As with all of the below functions, we must be extra careful when
// destroying the previous action. If the previous action was a channel,
// destroying it could invoke a context switch. For these situtations,
// we must temporarily un-home ourselves, then destroy the action, and
// then re-home again.
let missile = self.fire_homing_missile();
self.id += 1;
self.stop();
let _missile = match util::replace(&mut self.action, None) {
None => missile, // no need to do a homing dance
Some(action) => {
drop(missile); // un-home ourself
drop(action); // destroy the previous action
self.fire_homing_missile() // re-home ourself
}
};
// If the descheduling operation unwinds after the timer has been
// started, then we need to call stop on the timer.
let _f = ForbidUnwind::new("timer");
let sched: ~Scheduler = Local::take();
sched.deschedule_running_task_and_then(|_sched, task| {
self.action = Some(WakeTask(task));
self.start(msecs, 0);
});
self.stop();
}
fn oneshot(&mut self, msecs: u64) -> Port<()> {
let (port, chan) = Chan::new();
// similarly to the destructor, we must drop the previous action outside
// of the homing missile
let _prev_action = {
let _m = self.fire_homing_missile();
self.id += 1;
self.stop();
self.start(msecs, 0);
util::replace(&mut self.action, Some(SendOnce(chan)))
};
return port;
}
fn period(&mut self, msecs: u64) -> Port<()> {
let (port, chan) = Chan::new();
// similarly to the destructor, we must drop the previous action outside
// of the homing missile
let _prev_action = {
let _m = self.fire_homing_missile();
self.id += 1;
self.stop();
self.start(msecs, msecs);
util::replace(&mut self.action, Some(SendMany(chan, self.id)))
};
return port;
}
}
extern fn timer_cb(handle: *uvll::uv_timer_t, status: c_int) {
let _f = ForbidSwitch::new("timer callback can't switch");
assert_eq!(status, 0);
let timer: &mut TimerWatcher = unsafe { UvHandle::from_uv_handle(&handle) };
match timer.action.take_unwrap() {
WakeTask(task) => {
let sched: ~Scheduler = Local::take();
sched.resume_blocked_task_immediately(task);
}
SendOnce(chan) => { chan.try_send_deferred(()); }
SendMany(chan, id) => {
chan.try_send_deferred(());
// Note that the above operation could have performed some form of
// scheduling. This means that the timer may have decided to insert
// some other action to happen. This 'id' keeps track of the updates
// to the timer, so we only reset the action back to sending on this
// channel if the id has remained the same. This is essentially a
// bug in that we have mutably aliasable memory, but that's libuv
// for you. We're guaranteed to all be running on the same thread,
// so there's no need for any synchronization here.
if timer.id == id {
timer.action = Some(SendMany(chan, id));
}
}
}
}
impl Drop for TimerWatcher {
fn drop(&mut self) {
// note that this drop is a little subtle. Dropping a channel which is
// held internally may invoke some scheduling operations. We can't take
// the channel unless we're on the home scheduler, but once we're on the
// home scheduler we should never move. Hence, we take the timer's
// action item and then move it outside of the homing block.
let _action = {
let _m = self.fire_homing_missile();
self.stop();
self.close_async_();
self.action.take()
};
}
}
#[cfg(test)]
mod test {
use super::*;
use std::rt::rtio::RtioTimer;
use super::super::local_loop;
#[test]
fn oneshot() {
let mut timer = TimerWatcher::new(local_loop());
let port = timer.oneshot(1);
port.recv();
let port = timer.oneshot(1);
port.recv();
}
#[test]
fn override() {
let mut timer = TimerWatcher::new(local_loop());
let oport = timer.oneshot(1);
let pport = timer.period(1);
timer.sleep(1);
assert_eq!(oport.recv_opt(), None);
assert_eq!(pport.recv_opt(), None);
timer.oneshot(1).recv();
}
#[test]
fn period() {
let mut timer = TimerWatcher::new(local_loop());
let port = timer.period(1);
port.recv();
port.recv();
let port = timer.period(1);
port.recv();
port.recv();
}
#[test]
fn sleep() {
let mut timer = TimerWatcher::new(local_loop());
timer.sleep(1);
timer.sleep(1);
}
#[test] #[should_fail]
fn oneshot_fail() {
let mut timer = TimerWatcher::new(local_loop());
let _port = timer.oneshot(1);
fail!();
}
#[test] #[should_fail]
fn period_fail() {
let mut timer = TimerWatcher::new(local_loop());
let _port = timer.period(1);
fail!();
}
#[test] #[should_fail]
fn normal_fail() {
let _timer = TimerWatcher::new(local_loop());
fail!();
}
#[test]
fn closing_channel_during_drop_doesnt_kill_everything() {
// see issue #10375
let mut timer = TimerWatcher::new(local_loop());
let timer_port = timer.period(1000);
do spawn {
timer_port.recv_opt();
}
// when we drop the TimerWatcher we're going to destroy the channel,
// which must wake up the task on the other end
}
#[test]
fn reset_doesnt_switch_tasks() {
// similar test to the one above.
let mut timer = TimerWatcher::new(local_loop());
let timer_port = timer.period(1000);
do spawn {
timer_port.recv_opt();
}
timer.oneshot(1);
}
#[test]
fn reset_doesnt_switch_tasks2() {
// similar test to the one above.
let mut timer = TimerWatcher::new(local_loop());
let timer_port = timer.period(1000);
do spawn {
timer_port.recv_opt();
}
timer.sleep(1);
}
#[test]
fn sender_goes_away_oneshot() {
let port = {
let mut timer = TimerWatcher::new(local_loop());
timer.oneshot(1000)
};
assert_eq!(port.recv_opt(), None);
}
#[test]
fn sender_goes_away_period() {
let port = {
let mut timer = TimerWatcher::new(local_loop());
timer.period(1000)
};
assert_eq!(port.recv_opt(), None);
}
#[test]
fn receiver_goes_away_oneshot() {
let mut timer1 = TimerWatcher::new(local_loop());
timer1.oneshot(1);
let mut timer2 = TimerWatcher::new(local_loop());
// while sleeping, the prevous timer should fire and not have its
// callback do something terrible.
timer2.sleep(2);
}
#[test]
fn receiver_goes_away_period() {
let mut timer1 = TimerWatcher::new(local_loop());
timer1.period(1);
let mut timer2 = TimerWatcher::new(local_loop());
// while sleeping, the prevous timer should fire and not have its
// callback do something terrible.
timer2.sleep(2);
}
}