6e3d78f06f
These are in scope for 1.0, and this is good to e.g. find as many bugs as possible.
4877 lines
196 KiB
Rust
4877 lines
196 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![crate_name = "rustc_resolve"]
|
|
#![experimental]
|
|
#![crate_type = "dylib"]
|
|
#![crate_type = "rlib"]
|
|
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
|
|
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
|
|
html_root_url = "http://doc.rust-lang.org/nightly/")]
|
|
|
|
#![feature(globs, phase, slicing_syntax)]
|
|
#![feature(rustc_diagnostic_macros)]
|
|
#![feature(associated_types)]
|
|
#![feature(old_orphan_check)]
|
|
|
|
#[phase(plugin, link)] extern crate log;
|
|
#[phase(plugin, link)] extern crate syntax;
|
|
|
|
extern crate rustc;
|
|
|
|
use self::PatternBindingMode::*;
|
|
use self::Namespace::*;
|
|
use self::NamespaceResult::*;
|
|
use self::NameDefinition::*;
|
|
use self::ImportDirectiveSubclass::*;
|
|
use self::ResolveResult::*;
|
|
use self::FallbackSuggestion::*;
|
|
use self::TypeParameters::*;
|
|
use self::RibKind::*;
|
|
use self::MethodSort::*;
|
|
use self::UseLexicalScopeFlag::*;
|
|
use self::ModulePrefixResult::*;
|
|
use self::NameSearchType::*;
|
|
use self::BareIdentifierPatternResolution::*;
|
|
use self::ParentLink::*;
|
|
use self::ModuleKind::*;
|
|
use self::TraitReferenceType::*;
|
|
use self::FallbackChecks::*;
|
|
|
|
use rustc::session::Session;
|
|
use rustc::lint;
|
|
use rustc::metadata::csearch;
|
|
use rustc::metadata::decoder::{DefLike, DlDef, DlField, DlImpl};
|
|
use rustc::middle::def::*;
|
|
use rustc::middle::lang_items::LanguageItems;
|
|
use rustc::middle::pat_util::pat_bindings;
|
|
use rustc::middle::privacy::*;
|
|
use rustc::middle::subst::{ParamSpace, FnSpace, TypeSpace};
|
|
use rustc::middle::ty::{CaptureModeMap, Freevar, FreevarMap, TraitMap, GlobMap};
|
|
use rustc::util::nodemap::{NodeMap, NodeSet, DefIdSet, FnvHashMap};
|
|
use rustc::util::lev_distance::lev_distance;
|
|
|
|
use syntax::ast::{Arm, BindByRef, BindByValue, BindingMode, Block, Crate, CrateNum};
|
|
use syntax::ast::{DefId, Expr, ExprAgain, ExprBreak, ExprField};
|
|
use syntax::ast::{ExprClosure, ExprForLoop, ExprLoop, ExprWhile, ExprMethodCall};
|
|
use syntax::ast::{ExprPath, ExprStruct, FnDecl};
|
|
use syntax::ast::{ForeignItemFn, ForeignItemStatic, Generics};
|
|
use syntax::ast::{Ident, ImplItem, Item, ItemConst, ItemEnum, ItemFn};
|
|
use syntax::ast::{ItemForeignMod, ItemImpl, ItemMac, ItemMod, ItemStatic};
|
|
use syntax::ast::{ItemStruct, ItemTrait, ItemTy, Local, LOCAL_CRATE};
|
|
use syntax::ast::{MethodImplItem, Mod, Name, NodeId};
|
|
use syntax::ast::{Pat, PatEnum, PatIdent, PatLit};
|
|
use syntax::ast::{PatRange, PatStruct, Path};
|
|
use syntax::ast::{PolyTraitRef, PrimTy, SelfExplicit};
|
|
use syntax::ast::{RegionTyParamBound, StructField};
|
|
use syntax::ast::{TraitRef, TraitTyParamBound};
|
|
use syntax::ast::{Ty, TyBool, TyChar, TyClosure, TyF32};
|
|
use syntax::ast::{TyF64, TyFloat, TyI, TyI8, TyI16, TyI32, TyI64, TyInt, TyObjectSum};
|
|
use syntax::ast::{TyParam, TyParamBound, TyPath, TyPtr, TyPolyTraitRef, TyQPath};
|
|
use syntax::ast::{TyRptr, TyStr, TyU, TyU8, TyU16, TyU32, TyU64, TyUint};
|
|
use syntax::ast::{TypeImplItem};
|
|
use syntax::ast;
|
|
use syntax::ast_map;
|
|
use syntax::ast_util::{PostExpansionMethod, local_def, walk_pat};
|
|
use syntax::attr::AttrMetaMethods;
|
|
use syntax::ext::mtwt;
|
|
use syntax::parse::token::{self, special_names, special_idents};
|
|
use syntax::codemap::{Span, Pos};
|
|
use syntax::owned_slice::OwnedSlice;
|
|
use syntax::visit::{self, Visitor};
|
|
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
|
use std::cell::{Cell, RefCell};
|
|
use std::fmt;
|
|
use std::mem::replace;
|
|
use std::rc::{Rc, Weak};
|
|
use std::uint;
|
|
|
|
mod check_unused;
|
|
mod record_exports;
|
|
mod build_reduced_graph;
|
|
|
|
#[derive(Copy)]
|
|
struct BindingInfo {
|
|
span: Span,
|
|
binding_mode: BindingMode,
|
|
}
|
|
|
|
// Map from the name in a pattern to its binding mode.
|
|
type BindingMap = HashMap<Name, BindingInfo>;
|
|
|
|
#[derive(Copy, PartialEq)]
|
|
enum PatternBindingMode {
|
|
RefutableMode,
|
|
LocalIrrefutableMode,
|
|
ArgumentIrrefutableMode,
|
|
}
|
|
|
|
#[derive(Copy, PartialEq, Eq, Hash, Show)]
|
|
enum Namespace {
|
|
TypeNS,
|
|
ValueNS
|
|
}
|
|
|
|
/// A NamespaceResult represents the result of resolving an import in
|
|
/// a particular namespace. The result is either definitely-resolved,
|
|
/// definitely- unresolved, or unknown.
|
|
#[derive(Clone)]
|
|
enum NamespaceResult {
|
|
/// Means that resolve hasn't gathered enough information yet to determine
|
|
/// whether the name is bound in this namespace. (That is, it hasn't
|
|
/// resolved all `use` directives yet.)
|
|
UnknownResult,
|
|
/// Means that resolve has determined that the name is definitely
|
|
/// not bound in the namespace.
|
|
UnboundResult,
|
|
/// Means that resolve has determined that the name is bound in the Module
|
|
/// argument, and specified by the NameBindings argument.
|
|
BoundResult(Rc<Module>, Rc<NameBindings>)
|
|
}
|
|
|
|
impl NamespaceResult {
|
|
fn is_unknown(&self) -> bool {
|
|
match *self {
|
|
UnknownResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
fn is_unbound(&self) -> bool {
|
|
match *self {
|
|
UnboundResult => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
enum NameDefinition {
|
|
NoNameDefinition, //< The name was unbound.
|
|
ChildNameDefinition(Def, LastPrivate), //< The name identifies an immediate child.
|
|
ImportNameDefinition(Def, LastPrivate) //< The name identifies an import.
|
|
}
|
|
|
|
impl<'a, 'v, 'tcx> Visitor<'v> for Resolver<'a, 'tcx> {
|
|
fn visit_item(&mut self, item: &Item) {
|
|
self.resolve_item(item);
|
|
}
|
|
fn visit_arm(&mut self, arm: &Arm) {
|
|
self.resolve_arm(arm);
|
|
}
|
|
fn visit_block(&mut self, block: &Block) {
|
|
self.resolve_block(block);
|
|
}
|
|
fn visit_expr(&mut self, expr: &Expr) {
|
|
self.resolve_expr(expr);
|
|
}
|
|
fn visit_local(&mut self, local: &Local) {
|
|
self.resolve_local(local);
|
|
}
|
|
fn visit_ty(&mut self, ty: &Ty) {
|
|
self.resolve_type(ty);
|
|
}
|
|
}
|
|
|
|
/// Contains data for specific types of import directives.
|
|
#[derive(Copy,Show)]
|
|
enum ImportDirectiveSubclass {
|
|
SingleImport(Name /* target */, Name /* source */),
|
|
GlobImport
|
|
}
|
|
|
|
type ErrorMessage = Option<(Span, String)>;
|
|
|
|
enum ResolveResult<T> {
|
|
Failed(ErrorMessage), // Failed to resolve the name, optional helpful error message.
|
|
Indeterminate, // Couldn't determine due to unresolved globs.
|
|
Success(T) // Successfully resolved the import.
|
|
}
|
|
|
|
impl<T> ResolveResult<T> {
|
|
fn indeterminate(&self) -> bool {
|
|
match *self { Indeterminate => true, _ => false }
|
|
}
|
|
}
|
|
|
|
enum FallbackSuggestion {
|
|
NoSuggestion,
|
|
Field,
|
|
Method,
|
|
TraitItem,
|
|
StaticMethod(String),
|
|
TraitMethod(String),
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum TypeParameters<'a> {
|
|
NoTypeParameters,
|
|
HasTypeParameters(
|
|
// Type parameters.
|
|
&'a Generics,
|
|
|
|
// Identifies the things that these parameters
|
|
// were declared on (type, fn, etc)
|
|
ParamSpace,
|
|
|
|
// ID of the enclosing item.
|
|
NodeId,
|
|
|
|
// The kind of the rib used for type parameters.
|
|
RibKind)
|
|
}
|
|
|
|
// The rib kind controls the translation of local
|
|
// definitions (`DefLocal`) to upvars (`DefUpvar`).
|
|
#[derive(Copy, Show)]
|
|
enum RibKind {
|
|
// No translation needs to be applied.
|
|
NormalRibKind,
|
|
|
|
// We passed through a closure scope at the given node ID.
|
|
// Translate upvars as appropriate.
|
|
ClosureRibKind(NodeId /* func id */, NodeId /* body id if proc or unboxed */),
|
|
|
|
// We passed through an impl or trait and are now in one of its
|
|
// methods. Allow references to ty params that impl or trait
|
|
// binds. Disallow any other upvars (including other ty params that are
|
|
// upvars).
|
|
// parent; method itself
|
|
MethodRibKind(NodeId, MethodSort),
|
|
|
|
// We passed through an item scope. Disallow upvars.
|
|
ItemRibKind,
|
|
|
|
// We're in a constant item. Can't refer to dynamic stuff.
|
|
ConstantItemRibKind
|
|
}
|
|
|
|
// Methods can be required or provided. RequiredMethod methods only occur in traits.
|
|
#[derive(Copy, Show)]
|
|
enum MethodSort {
|
|
RequiredMethod,
|
|
ProvidedMethod(NodeId)
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum UseLexicalScopeFlag {
|
|
DontUseLexicalScope,
|
|
UseLexicalScope
|
|
}
|
|
|
|
enum ModulePrefixResult {
|
|
NoPrefixFound,
|
|
PrefixFound(Rc<Module>, uint)
|
|
}
|
|
|
|
#[derive(Copy, PartialEq)]
|
|
enum NameSearchType {
|
|
/// We're doing a name search in order to resolve a `use` directive.
|
|
ImportSearch,
|
|
|
|
/// We're doing a name search in order to resolve a path type, a path
|
|
/// expression, or a path pattern.
|
|
PathSearch,
|
|
}
|
|
|
|
#[derive(Copy)]
|
|
enum BareIdentifierPatternResolution {
|
|
FoundStructOrEnumVariant(Def, LastPrivate),
|
|
FoundConst(Def, LastPrivate),
|
|
BareIdentifierPatternUnresolved
|
|
}
|
|
|
|
/// One local scope.
|
|
#[derive(Show)]
|
|
struct Rib {
|
|
bindings: HashMap<Name, DefLike>,
|
|
kind: RibKind,
|
|
}
|
|
|
|
impl Rib {
|
|
fn new(kind: RibKind) -> Rib {
|
|
Rib {
|
|
bindings: HashMap::new(),
|
|
kind: kind
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Whether an import can be shadowed by another import.
|
|
#[derive(Show,PartialEq,Clone,Copy)]
|
|
enum Shadowable {
|
|
Always,
|
|
Never
|
|
}
|
|
|
|
/// One import directive.
|
|
#[derive(Show)]
|
|
struct ImportDirective {
|
|
module_path: Vec<Name>,
|
|
subclass: ImportDirectiveSubclass,
|
|
span: Span,
|
|
id: NodeId,
|
|
is_public: bool, // see note in ImportResolution about how to use this
|
|
shadowable: Shadowable,
|
|
}
|
|
|
|
impl ImportDirective {
|
|
fn new(module_path: Vec<Name> ,
|
|
subclass: ImportDirectiveSubclass,
|
|
span: Span,
|
|
id: NodeId,
|
|
is_public: bool,
|
|
shadowable: Shadowable)
|
|
-> ImportDirective {
|
|
ImportDirective {
|
|
module_path: module_path,
|
|
subclass: subclass,
|
|
span: span,
|
|
id: id,
|
|
is_public: is_public,
|
|
shadowable: shadowable,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The item that an import resolves to.
|
|
#[derive(Clone,Show)]
|
|
struct Target {
|
|
target_module: Rc<Module>,
|
|
bindings: Rc<NameBindings>,
|
|
shadowable: Shadowable,
|
|
}
|
|
|
|
impl Target {
|
|
fn new(target_module: Rc<Module>,
|
|
bindings: Rc<NameBindings>,
|
|
shadowable: Shadowable)
|
|
-> Target {
|
|
Target {
|
|
target_module: target_module,
|
|
bindings: bindings,
|
|
shadowable: shadowable,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An ImportResolution represents a particular `use` directive.
|
|
#[derive(Show)]
|
|
struct ImportResolution {
|
|
/// Whether this resolution came from a `use` or a `pub use`. Note that this
|
|
/// should *not* be used whenever resolution is being performed, this is
|
|
/// only looked at for glob imports statements currently. Privacy testing
|
|
/// occurs during a later phase of compilation.
|
|
is_public: bool,
|
|
|
|
// The number of outstanding references to this name. When this reaches
|
|
// zero, outside modules can count on the targets being correct. Before
|
|
// then, all bets are off; future imports could override this name.
|
|
outstanding_references: uint,
|
|
|
|
/// The value that this `use` directive names, if there is one.
|
|
value_target: Option<Target>,
|
|
/// The source node of the `use` directive leading to the value target
|
|
/// being non-none
|
|
value_id: NodeId,
|
|
|
|
/// The type that this `use` directive names, if there is one.
|
|
type_target: Option<Target>,
|
|
/// The source node of the `use` directive leading to the type target
|
|
/// being non-none
|
|
type_id: NodeId,
|
|
}
|
|
|
|
impl ImportResolution {
|
|
fn new(id: NodeId, is_public: bool) -> ImportResolution {
|
|
ImportResolution {
|
|
type_id: id,
|
|
value_id: id,
|
|
outstanding_references: 0,
|
|
value_target: None,
|
|
type_target: None,
|
|
is_public: is_public,
|
|
}
|
|
}
|
|
|
|
fn target_for_namespace(&self, namespace: Namespace)
|
|
-> Option<Target> {
|
|
match namespace {
|
|
TypeNS => self.type_target.clone(),
|
|
ValueNS => self.value_target.clone(),
|
|
}
|
|
}
|
|
|
|
fn id(&self, namespace: Namespace) -> NodeId {
|
|
match namespace {
|
|
TypeNS => self.type_id,
|
|
ValueNS => self.value_id,
|
|
}
|
|
}
|
|
|
|
fn shadowable(&self, namespace: Namespace) -> Shadowable {
|
|
let target = self.target_for_namespace(namespace);
|
|
if target.is_none() {
|
|
return Shadowable::Always;
|
|
}
|
|
|
|
target.unwrap().shadowable
|
|
}
|
|
|
|
fn set_target_and_id(&mut self,
|
|
namespace: Namespace,
|
|
target: Option<Target>,
|
|
id: NodeId) {
|
|
match namespace {
|
|
TypeNS => {
|
|
self.type_target = target;
|
|
self.type_id = id;
|
|
}
|
|
ValueNS => {
|
|
self.value_target = target;
|
|
self.value_id = id;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The link from a module up to its nearest parent node.
|
|
#[derive(Clone,Show)]
|
|
enum ParentLink {
|
|
NoParentLink,
|
|
ModuleParentLink(Weak<Module>, Name),
|
|
BlockParentLink(Weak<Module>, NodeId)
|
|
}
|
|
|
|
/// The type of module this is.
|
|
#[derive(Copy, PartialEq, Show)]
|
|
enum ModuleKind {
|
|
NormalModuleKind,
|
|
TraitModuleKind,
|
|
ImplModuleKind,
|
|
EnumModuleKind,
|
|
AnonymousModuleKind,
|
|
}
|
|
|
|
/// One node in the tree of modules.
|
|
struct Module {
|
|
parent_link: ParentLink,
|
|
def_id: Cell<Option<DefId>>,
|
|
kind: Cell<ModuleKind>,
|
|
is_public: bool,
|
|
|
|
children: RefCell<HashMap<Name, Rc<NameBindings>>>,
|
|
imports: RefCell<Vec<ImportDirective>>,
|
|
|
|
// The external module children of this node that were declared with
|
|
// `extern crate`.
|
|
external_module_children: RefCell<HashMap<Name, Rc<Module>>>,
|
|
|
|
// The anonymous children of this node. Anonymous children are pseudo-
|
|
// modules that are implicitly created around items contained within
|
|
// blocks.
|
|
//
|
|
// For example, if we have this:
|
|
//
|
|
// fn f() {
|
|
// fn g() {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// There will be an anonymous module created around `g` with the ID of the
|
|
// entry block for `f`.
|
|
anonymous_children: RefCell<NodeMap<Rc<Module>>>,
|
|
|
|
// The status of resolving each import in this module.
|
|
import_resolutions: RefCell<HashMap<Name, ImportResolution>>,
|
|
|
|
// The number of unresolved globs that this module exports.
|
|
glob_count: Cell<uint>,
|
|
|
|
// The index of the import we're resolving.
|
|
resolved_import_count: Cell<uint>,
|
|
|
|
// Whether this module is populated. If not populated, any attempt to
|
|
// access the children must be preceded with a
|
|
// `populate_module_if_necessary` call.
|
|
populated: Cell<bool>,
|
|
}
|
|
|
|
impl Module {
|
|
fn new(parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool)
|
|
-> Module {
|
|
Module {
|
|
parent_link: parent_link,
|
|
def_id: Cell::new(def_id),
|
|
kind: Cell::new(kind),
|
|
is_public: is_public,
|
|
children: RefCell::new(HashMap::new()),
|
|
imports: RefCell::new(Vec::new()),
|
|
external_module_children: RefCell::new(HashMap::new()),
|
|
anonymous_children: RefCell::new(NodeMap::new()),
|
|
import_resolutions: RefCell::new(HashMap::new()),
|
|
glob_count: Cell::new(0),
|
|
resolved_import_count: Cell::new(0),
|
|
populated: Cell::new(!external),
|
|
}
|
|
}
|
|
|
|
fn all_imports_resolved(&self) -> bool {
|
|
self.imports.borrow().len() == self.resolved_import_count.get()
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for Module {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{}, kind: {}, {}",
|
|
self.def_id,
|
|
self.kind,
|
|
if self.is_public { "public" } else { "private" } )
|
|
}
|
|
}
|
|
|
|
bitflags! {
|
|
#[derive(Show)]
|
|
flags DefModifiers: u8 {
|
|
const PUBLIC = 0b0000_0001,
|
|
const IMPORTABLE = 0b0000_0010,
|
|
}
|
|
}
|
|
|
|
// Records a possibly-private type definition.
|
|
#[derive(Clone,Show)]
|
|
struct TypeNsDef {
|
|
modifiers: DefModifiers, // see note in ImportResolution about how to use this
|
|
module_def: Option<Rc<Module>>,
|
|
type_def: Option<Def>,
|
|
type_span: Option<Span>
|
|
}
|
|
|
|
// Records a possibly-private value definition.
|
|
#[derive(Clone, Copy, Show)]
|
|
struct ValueNsDef {
|
|
modifiers: DefModifiers, // see note in ImportResolution about how to use this
|
|
def: Def,
|
|
value_span: Option<Span>,
|
|
}
|
|
|
|
// Records the definitions (at most one for each namespace) that a name is
|
|
// bound to.
|
|
#[derive(Show)]
|
|
struct NameBindings {
|
|
type_def: RefCell<Option<TypeNsDef>>, //< Meaning in type namespace.
|
|
value_def: RefCell<Option<ValueNsDef>>, //< Meaning in value namespace.
|
|
}
|
|
|
|
/// Ways in which a trait can be referenced
|
|
#[derive(Copy)]
|
|
enum TraitReferenceType {
|
|
TraitImplementation, // impl SomeTrait for T { ... }
|
|
TraitDerivation, // trait T : SomeTrait { ... }
|
|
TraitBoundingTypeParameter, // fn f<T:SomeTrait>() { ... }
|
|
TraitObject, // Box<for<'a> SomeTrait>
|
|
TraitQPath, // <T as SomeTrait>::
|
|
}
|
|
|
|
impl NameBindings {
|
|
fn new() -> NameBindings {
|
|
NameBindings {
|
|
type_def: RefCell::new(None),
|
|
value_def: RefCell::new(None),
|
|
}
|
|
}
|
|
|
|
/// Creates a new module in this set of name bindings.
|
|
fn define_module(&self,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool,
|
|
sp: Span) {
|
|
// Merges the module with the existing type def or creates a new one.
|
|
let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE;
|
|
let module_ = Rc::new(Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public));
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(module_),
|
|
type_def: None,
|
|
type_span: Some(sp)
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(module_),
|
|
type_span: Some(sp),
|
|
type_def: type_def.type_def
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sets the kind of the module, creating a new one if necessary.
|
|
fn set_module_kind(&self,
|
|
parent_link: ParentLink,
|
|
def_id: Option<DefId>,
|
|
kind: ModuleKind,
|
|
external: bool,
|
|
is_public: bool,
|
|
_sp: Span) {
|
|
let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE;
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
let module = Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public);
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(Rc::new(module)),
|
|
type_def: None,
|
|
type_span: None,
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
let module = Module::new(parent_link,
|
|
def_id,
|
|
kind,
|
|
external,
|
|
is_public);
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
modifiers: modifiers,
|
|
module_def: Some(Rc::new(module)),
|
|
type_def: type_def.type_def,
|
|
type_span: None,
|
|
});
|
|
}
|
|
Some(module_def) => module_def.kind.set(kind),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a type definition.
|
|
fn define_type(&self, def: Def, sp: Span, modifiers: DefModifiers) {
|
|
debug!("defining type for def {} with modifiers {}", def, modifiers);
|
|
// Merges the type with the existing type def or creates a new one.
|
|
let type_def = self.type_def.borrow().clone();
|
|
match type_def {
|
|
None => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
module_def: None,
|
|
type_def: Some(def),
|
|
type_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
Some(type_def) => {
|
|
*self.type_def.borrow_mut() = Some(TypeNsDef {
|
|
module_def: type_def.module_def,
|
|
type_def: Some(def),
|
|
type_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Records a value definition.
|
|
fn define_value(&self, def: Def, sp: Span, modifiers: DefModifiers) {
|
|
debug!("defining value for def {} with modifiers {}", def, modifiers);
|
|
*self.value_def.borrow_mut() = Some(ValueNsDef {
|
|
def: def,
|
|
value_span: Some(sp),
|
|
modifiers: modifiers,
|
|
});
|
|
}
|
|
|
|
/// Returns the module node if applicable.
|
|
fn get_module_if_available(&self) -> Option<Rc<Module>> {
|
|
match *self.type_def.borrow() {
|
|
Some(ref type_def) => type_def.module_def.clone(),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Returns the module node. Panics if this node does not have a module
|
|
/// definition.
|
|
fn get_module(&self) -> Rc<Module> {
|
|
match self.get_module_if_available() {
|
|
None => {
|
|
panic!("get_module called on a node with no module \
|
|
definition!")
|
|
}
|
|
Some(module_def) => module_def
|
|
}
|
|
}
|
|
|
|
fn defined_in_namespace(&self, namespace: Namespace) -> bool {
|
|
match namespace {
|
|
TypeNS => return self.type_def.borrow().is_some(),
|
|
ValueNS => return self.value_def.borrow().is_some()
|
|
}
|
|
}
|
|
|
|
fn defined_in_public_namespace(&self, namespace: Namespace) -> bool {
|
|
self.defined_in_namespace_with(namespace, PUBLIC)
|
|
}
|
|
|
|
fn defined_in_namespace_with(&self, namespace: Namespace, modifiers: DefModifiers) -> bool {
|
|
match namespace {
|
|
TypeNS => match *self.type_def.borrow() {
|
|
Some(ref def) => def.modifiers.contains(modifiers), None => false
|
|
},
|
|
ValueNS => match *self.value_def.borrow() {
|
|
Some(ref def) => def.modifiers.contains(modifiers), None => false
|
|
}
|
|
}
|
|
}
|
|
|
|
fn def_for_namespace(&self, namespace: Namespace) -> Option<Def> {
|
|
match namespace {
|
|
TypeNS => {
|
|
match *self.type_def.borrow() {
|
|
None => None,
|
|
Some(ref type_def) => {
|
|
match type_def.type_def {
|
|
Some(type_def) => Some(type_def),
|
|
None => {
|
|
match type_def.module_def {
|
|
Some(ref module) => {
|
|
match module.def_id.get() {
|
|
Some(did) => Some(DefMod(did)),
|
|
None => None,
|
|
}
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match *self.value_def.borrow() {
|
|
None => None,
|
|
Some(value_def) => Some(value_def.def)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn span_for_namespace(&self, namespace: Namespace) -> Option<Span> {
|
|
if self.defined_in_namespace(namespace) {
|
|
match namespace {
|
|
TypeNS => {
|
|
match *self.type_def.borrow() {
|
|
None => None,
|
|
Some(ref type_def) => type_def.type_span
|
|
}
|
|
}
|
|
ValueNS => {
|
|
match *self.value_def.borrow() {
|
|
None => None,
|
|
Some(ref value_def) => value_def.value_span
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Interns the names of the primitive types.
|
|
struct PrimitiveTypeTable {
|
|
primitive_types: HashMap<Name, PrimTy>,
|
|
}
|
|
|
|
impl PrimitiveTypeTable {
|
|
fn new() -> PrimitiveTypeTable {
|
|
let mut table = PrimitiveTypeTable {
|
|
primitive_types: HashMap::new()
|
|
};
|
|
|
|
table.intern("bool", TyBool);
|
|
table.intern("char", TyChar);
|
|
table.intern("f32", TyFloat(TyF32));
|
|
table.intern("f64", TyFloat(TyF64));
|
|
table.intern("int", TyInt(TyI));
|
|
table.intern("i8", TyInt(TyI8));
|
|
table.intern("i16", TyInt(TyI16));
|
|
table.intern("i32", TyInt(TyI32));
|
|
table.intern("i64", TyInt(TyI64));
|
|
table.intern("str", TyStr);
|
|
table.intern("uint", TyUint(TyU));
|
|
table.intern("u8", TyUint(TyU8));
|
|
table.intern("u16", TyUint(TyU16));
|
|
table.intern("u32", TyUint(TyU32));
|
|
table.intern("u64", TyUint(TyU64));
|
|
|
|
table
|
|
}
|
|
|
|
fn intern(&mut self, string: &str, primitive_type: PrimTy) {
|
|
self.primitive_types.insert(token::intern(string), primitive_type);
|
|
}
|
|
}
|
|
|
|
/// The main resolver class.
|
|
struct Resolver<'a, 'tcx:'a> {
|
|
session: &'a Session,
|
|
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
|
|
graph_root: NameBindings,
|
|
|
|
trait_item_map: FnvHashMap<(Name, DefId), TraitItemKind>,
|
|
|
|
structs: FnvHashMap<DefId, Vec<Name>>,
|
|
|
|
// The number of imports that are currently unresolved.
|
|
unresolved_imports: uint,
|
|
|
|
// The module that represents the current item scope.
|
|
current_module: Rc<Module>,
|
|
|
|
// The current set of local scopes, for values.
|
|
// FIXME #4948: Reuse ribs to avoid allocation.
|
|
value_ribs: Vec<Rib>,
|
|
|
|
// The current set of local scopes, for types.
|
|
type_ribs: Vec<Rib>,
|
|
|
|
// The current set of local scopes, for labels.
|
|
label_ribs: Vec<Rib>,
|
|
|
|
// The trait that the current context can refer to.
|
|
current_trait_ref: Option<(DefId, TraitRef)>,
|
|
|
|
// The current self type if inside an impl (used for better errors).
|
|
current_self_type: Option<Ty>,
|
|
|
|
// The ident for the keyword "self".
|
|
self_name: Name,
|
|
// The ident for the non-keyword "Self".
|
|
type_self_name: Name,
|
|
|
|
// The idents for the primitive types.
|
|
primitive_type_table: PrimitiveTypeTable,
|
|
|
|
def_map: DefMap,
|
|
freevars: RefCell<FreevarMap>,
|
|
freevars_seen: RefCell<NodeMap<NodeSet>>,
|
|
capture_mode_map: CaptureModeMap,
|
|
export_map: ExportMap,
|
|
trait_map: TraitMap,
|
|
external_exports: ExternalExports,
|
|
last_private: LastPrivateMap,
|
|
|
|
// Whether or not to print error messages. Can be set to true
|
|
// when getting additional info for error message suggestions,
|
|
// so as to avoid printing duplicate errors
|
|
emit_errors: bool,
|
|
|
|
make_glob_map: bool,
|
|
// Maps imports to the names of items actually imported (this actually maps
|
|
// all imports, but only glob imports are actually interesting).
|
|
glob_map: GlobMap,
|
|
|
|
used_imports: HashSet<(NodeId, Namespace)>,
|
|
used_crates: HashSet<CrateNum>,
|
|
}
|
|
|
|
#[derive(PartialEq)]
|
|
enum FallbackChecks {
|
|
Everything,
|
|
OnlyTraitAndStatics
|
|
}
|
|
|
|
|
|
impl<'a, 'tcx> Resolver<'a, 'tcx> {
|
|
fn new(session: &'a Session,
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
crate_span: Span,
|
|
make_glob_map: MakeGlobMap) -> Resolver<'a, 'tcx> {
|
|
let graph_root = NameBindings::new();
|
|
|
|
graph_root.define_module(NoParentLink,
|
|
Some(DefId { krate: 0, node: 0 }),
|
|
NormalModuleKind,
|
|
false,
|
|
true,
|
|
crate_span);
|
|
|
|
let current_module = graph_root.get_module();
|
|
|
|
Resolver {
|
|
session: session,
|
|
|
|
ast_map: ast_map,
|
|
|
|
// The outermost module has def ID 0; this is not reflected in the
|
|
// AST.
|
|
|
|
graph_root: graph_root,
|
|
|
|
trait_item_map: FnvHashMap::new(),
|
|
structs: FnvHashMap::new(),
|
|
|
|
unresolved_imports: 0,
|
|
|
|
current_module: current_module,
|
|
value_ribs: Vec::new(),
|
|
type_ribs: Vec::new(),
|
|
label_ribs: Vec::new(),
|
|
|
|
current_trait_ref: None,
|
|
current_self_type: None,
|
|
|
|
self_name: special_names::self_,
|
|
type_self_name: special_names::type_self,
|
|
|
|
primitive_type_table: PrimitiveTypeTable::new(),
|
|
|
|
def_map: RefCell::new(NodeMap::new()),
|
|
freevars: RefCell::new(NodeMap::new()),
|
|
freevars_seen: RefCell::new(NodeMap::new()),
|
|
capture_mode_map: NodeMap::new(),
|
|
export_map: NodeMap::new(),
|
|
trait_map: NodeMap::new(),
|
|
used_imports: HashSet::new(),
|
|
used_crates: HashSet::new(),
|
|
external_exports: DefIdSet::new(),
|
|
last_private: NodeMap::new(),
|
|
|
|
emit_errors: true,
|
|
make_glob_map: make_glob_map == MakeGlobMap::Yes,
|
|
glob_map: HashMap::new(),
|
|
}
|
|
}
|
|
|
|
// Import resolution
|
|
//
|
|
// This is a fixed-point algorithm. We resolve imports until our efforts
|
|
// are stymied by an unresolved import; then we bail out of the current
|
|
// module and continue. We terminate successfully once no more imports
|
|
// remain or unsuccessfully when no forward progress in resolving imports
|
|
// is made.
|
|
|
|
/// Resolves all imports for the crate. This method performs the fixed-
|
|
/// point iteration.
|
|
fn resolve_imports(&mut self) {
|
|
let mut i = 0u;
|
|
let mut prev_unresolved_imports = 0;
|
|
loop {
|
|
debug!("(resolving imports) iteration {}, {} imports left",
|
|
i, self.unresolved_imports);
|
|
|
|
let module_root = self.graph_root.get_module();
|
|
self.resolve_imports_for_module_subtree(module_root.clone());
|
|
|
|
if self.unresolved_imports == 0 {
|
|
debug!("(resolving imports) success");
|
|
break;
|
|
}
|
|
|
|
if self.unresolved_imports == prev_unresolved_imports {
|
|
self.report_unresolved_imports(module_root);
|
|
break;
|
|
}
|
|
|
|
i += 1;
|
|
prev_unresolved_imports = self.unresolved_imports;
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module and all of its
|
|
/// submodules.
|
|
fn resolve_imports_for_module_subtree(&mut self, module_: Rc<Module>) {
|
|
debug!("(resolving imports for module subtree) resolving {}",
|
|
self.module_to_string(&*module_));
|
|
let orig_module = replace(&mut self.current_module, module_.clone());
|
|
self.resolve_imports_for_module(module_.clone());
|
|
self.current_module = orig_module;
|
|
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
for (_, child_node) in module_.children.borrow().iter() {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(child_module) => {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, child_module) in module_.anonymous_children.borrow().iter() {
|
|
self.resolve_imports_for_module_subtree(child_module.clone());
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module only.
|
|
fn resolve_imports_for_module(&mut self, module: Rc<Module>) {
|
|
if module.all_imports_resolved() {
|
|
debug!("(resolving imports for module) all imports resolved for \
|
|
{}",
|
|
self.module_to_string(&*module));
|
|
return;
|
|
}
|
|
|
|
let imports = module.imports.borrow();
|
|
let import_count = imports.len();
|
|
while module.resolved_import_count.get() < import_count {
|
|
let import_index = module.resolved_import_count.get();
|
|
let import_directive = &(*imports)[import_index];
|
|
match self.resolve_import_for_module(module.clone(),
|
|
import_directive) {
|
|
Failed(err) => {
|
|
let (span, help) = match err {
|
|
Some((span, msg)) => (span, format!(". {}", msg)),
|
|
None => (import_directive.span, String::new())
|
|
};
|
|
let msg = format!("unresolved import `{}`{}",
|
|
self.import_path_to_string(
|
|
import_directive.module_path
|
|
[],
|
|
import_directive.subclass),
|
|
help);
|
|
self.resolve_error(span, msg[]);
|
|
}
|
|
Indeterminate => break, // Bail out. We'll come around next time.
|
|
Success(()) => () // Good. Continue.
|
|
}
|
|
|
|
module.resolved_import_count
|
|
.set(module.resolved_import_count.get() + 1);
|
|
}
|
|
}
|
|
|
|
fn names_to_string(&self, names: &[Name]) -> String {
|
|
let mut first = true;
|
|
let mut result = String::new();
|
|
for name in names.iter() {
|
|
if first {
|
|
first = false
|
|
} else {
|
|
result.push_str("::")
|
|
}
|
|
result.push_str(token::get_name(*name).get());
|
|
};
|
|
result
|
|
}
|
|
|
|
fn path_names_to_string(&self, path: &Path) -> String {
|
|
let names: Vec<ast::Name> = path.segments
|
|
.iter()
|
|
.map(|seg| seg.identifier.name)
|
|
.collect();
|
|
self.names_to_string(names[])
|
|
}
|
|
|
|
fn import_directive_subclass_to_string(&mut self,
|
|
subclass: ImportDirectiveSubclass)
|
|
-> String {
|
|
match subclass {
|
|
SingleImport(_, source) => {
|
|
token::get_name(source).get().to_string()
|
|
}
|
|
GlobImport => "*".to_string()
|
|
}
|
|
}
|
|
|
|
fn import_path_to_string(&mut self,
|
|
names: &[Name],
|
|
subclass: ImportDirectiveSubclass)
|
|
-> String {
|
|
if names.is_empty() {
|
|
self.import_directive_subclass_to_string(subclass)
|
|
} else {
|
|
(format!("{}::{}",
|
|
self.names_to_string(names),
|
|
self.import_directive_subclass_to_string(
|
|
subclass))).to_string()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn record_import_use(&mut self, import_id: NodeId, name: Name) {
|
|
if !self.make_glob_map {
|
|
return;
|
|
}
|
|
if self.glob_map.contains_key(&import_id) {
|
|
self.glob_map[import_id].insert(name);
|
|
return;
|
|
}
|
|
|
|
let mut new_set = HashSet::new();
|
|
new_set.insert(name);
|
|
self.glob_map.insert(import_id, new_set);
|
|
}
|
|
|
|
fn get_trait_name(&self, did: DefId) -> Name {
|
|
if did.krate == LOCAL_CRATE {
|
|
self.ast_map.expect_item(did.node).ident.name
|
|
} else {
|
|
csearch::get_trait_name(&self.session.cstore, did)
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve the given import. The return value indicates
|
|
/// failure if we're certain the name does not exist, indeterminate if we
|
|
/// don't know whether the name exists at the moment due to other
|
|
/// currently-unresolved imports, or success if we know the name exists.
|
|
/// If successful, the resolved bindings are written into the module.
|
|
fn resolve_import_for_module(&mut self,
|
|
module_: Rc<Module>,
|
|
import_directive: &ImportDirective)
|
|
-> ResolveResult<()> {
|
|
let mut resolution_result = Failed(None);
|
|
let module_path = &import_directive.module_path;
|
|
|
|
debug!("(resolving import for module) resolving import `{}::...` in `{}`",
|
|
self.names_to_string(module_path[]),
|
|
self.module_to_string(&*module_));
|
|
|
|
// First, resolve the module path for the directive, if necessary.
|
|
let container = if module_path.len() == 0 {
|
|
// Use the crate root.
|
|
Some((self.graph_root.get_module(), LastMod(AllPublic)))
|
|
} else {
|
|
match self.resolve_module_path(module_.clone(),
|
|
module_path[],
|
|
DontUseLexicalScope,
|
|
import_directive.span,
|
|
ImportSearch) {
|
|
Failed(err) => {
|
|
resolution_result = Failed(err);
|
|
None
|
|
},
|
|
Indeterminate => {
|
|
resolution_result = Indeterminate;
|
|
None
|
|
}
|
|
Success(container) => Some(container),
|
|
}
|
|
};
|
|
|
|
match container {
|
|
None => {}
|
|
Some((containing_module, lp)) => {
|
|
// We found the module that the target is contained
|
|
// within. Attempt to resolve the import within it.
|
|
|
|
match import_directive.subclass {
|
|
SingleImport(target, source) => {
|
|
resolution_result =
|
|
self.resolve_single_import(&*module_,
|
|
containing_module,
|
|
target,
|
|
source,
|
|
import_directive,
|
|
lp);
|
|
}
|
|
GlobImport => {
|
|
resolution_result =
|
|
self.resolve_glob_import(&*module_,
|
|
containing_module,
|
|
import_directive,
|
|
lp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved imports.
|
|
match resolution_result {
|
|
Success(()) => {
|
|
assert!(self.unresolved_imports >= 1);
|
|
self.unresolved_imports -= 1;
|
|
}
|
|
_ => {
|
|
// Nothing to do here; just return the error.
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved globs if necessary. But only if
|
|
// the resolution result is indeterminate -- otherwise we'll stop
|
|
// processing imports here. (See the loop in
|
|
// resolve_imports_for_module.)
|
|
|
|
if !resolution_result.indeterminate() {
|
|
match import_directive.subclass {
|
|
GlobImport => {
|
|
assert!(module_.glob_count.get() >= 1);
|
|
module_.glob_count.set(module_.glob_count.get() - 1);
|
|
}
|
|
SingleImport(..) => {
|
|
// Ignore.
|
|
}
|
|
}
|
|
}
|
|
|
|
return resolution_result;
|
|
}
|
|
|
|
fn create_name_bindings_from_module(module: Rc<Module>) -> NameBindings {
|
|
NameBindings {
|
|
type_def: RefCell::new(Some(TypeNsDef {
|
|
modifiers: IMPORTABLE,
|
|
module_def: Some(module),
|
|
type_def: None,
|
|
type_span: None
|
|
})),
|
|
value_def: RefCell::new(None),
|
|
}
|
|
}
|
|
|
|
fn resolve_single_import(&mut self,
|
|
module_: &Module,
|
|
containing_module: Rc<Module>,
|
|
target: Name,
|
|
source: Name,
|
|
directive: &ImportDirective,
|
|
lp: LastPrivate)
|
|
-> ResolveResult<()> {
|
|
debug!("(resolving single import) resolving `{}` = `{}::{}` from \
|
|
`{}` id {}, last private {}",
|
|
token::get_name(target),
|
|
self.module_to_string(&*containing_module),
|
|
token::get_name(source),
|
|
self.module_to_string(module_),
|
|
directive.id,
|
|
lp);
|
|
|
|
let lp = match lp {
|
|
LastMod(lp) => lp,
|
|
LastImport {..} => {
|
|
self.session
|
|
.span_bug(directive.span,
|
|
"not expecting Import here, must be LastMod")
|
|
}
|
|
};
|
|
|
|
// We need to resolve both namespaces for this to succeed.
|
|
//
|
|
|
|
let mut value_result = UnknownResult;
|
|
let mut type_result = UnknownResult;
|
|
|
|
// Search for direct children of the containing module.
|
|
build_reduced_graph::populate_module_if_necessary(self, &containing_module);
|
|
|
|
match containing_module.children.borrow().get(&source) {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(ref child_name_bindings) => {
|
|
if child_name_bindings.defined_in_namespace(ValueNS) {
|
|
debug!("(resolving single import) found value binding");
|
|
value_result = BoundResult(containing_module.clone(),
|
|
(*child_name_bindings).clone());
|
|
}
|
|
if child_name_bindings.defined_in_namespace(TypeNS) {
|
|
debug!("(resolving single import) found type binding");
|
|
type_result = BoundResult(containing_module.clone(),
|
|
(*child_name_bindings).clone());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless we managed to find a result in both namespaces (unlikely),
|
|
// search imports as well.
|
|
let mut value_used_reexport = false;
|
|
let mut type_used_reexport = false;
|
|
match (value_result.clone(), type_result.clone()) {
|
|
(BoundResult(..), BoundResult(..)) => {} // Continue.
|
|
_ => {
|
|
// If there is an unresolved glob at this point in the
|
|
// containing module, bail out. We don't know enough to be
|
|
// able to resolve this import.
|
|
|
|
if containing_module.glob_count.get() > 0 {
|
|
debug!("(resolving single import) unresolved glob; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
// Now search the exported imports within the containing module.
|
|
match containing_module.import_resolutions.borrow().get(&source) {
|
|
None => {
|
|
debug!("(resolving single import) no import");
|
|
// The containing module definitely doesn't have an
|
|
// exported import with the name in question. We can
|
|
// therefore accurately report that the names are
|
|
// unbound.
|
|
|
|
if value_result.is_unknown() {
|
|
value_result = UnboundResult;
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = UnboundResult;
|
|
}
|
|
}
|
|
Some(import_resolution)
|
|
if import_resolution.outstanding_references == 0 => {
|
|
|
|
fn get_binding(this: &mut Resolver,
|
|
import_resolution: &ImportResolution,
|
|
namespace: Namespace,
|
|
source: &Name)
|
|
-> NamespaceResult {
|
|
|
|
// Import resolutions must be declared with "pub"
|
|
// in order to be exported.
|
|
if !import_resolution.is_public {
|
|
return UnboundResult;
|
|
}
|
|
|
|
match import_resolution.
|
|
target_for_namespace(namespace) {
|
|
None => {
|
|
return UnboundResult;
|
|
}
|
|
Some(Target {
|
|
target_module,
|
|
bindings,
|
|
shadowable: _
|
|
}) => {
|
|
debug!("(resolving single import) found \
|
|
import in ns {}", namespace);
|
|
let id = import_resolution.id(namespace);
|
|
// track used imports and extern crates as well
|
|
this.used_imports.insert((id, namespace));
|
|
this.record_import_use(id, *source);
|
|
match target_module.def_id.get() {
|
|
Some(DefId{krate: kid, ..}) => {
|
|
this.used_crates.insert(kid);
|
|
},
|
|
_ => {}
|
|
}
|
|
return BoundResult(target_module, bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The name is an import which has been fully
|
|
// resolved. We can, therefore, just follow it.
|
|
if value_result.is_unknown() {
|
|
value_result = get_binding(self,
|
|
import_resolution,
|
|
ValueNS,
|
|
&source);
|
|
value_used_reexport = import_resolution.is_public;
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = get_binding(self,
|
|
import_resolution,
|
|
TypeNS,
|
|
&source);
|
|
type_used_reexport = import_resolution.is_public;
|
|
}
|
|
|
|
}
|
|
Some(_) => {
|
|
// If containing_module is the same module whose import we are resolving
|
|
// and there it has an unresolved import with the same name as `source`,
|
|
// then the user is actually trying to import an item that is declared
|
|
// in the same scope
|
|
//
|
|
// e.g
|
|
// use self::submodule;
|
|
// pub mod submodule;
|
|
//
|
|
// In this case we continue as if we resolved the import and let the
|
|
// check_for_conflicts_between_imports_and_items call below handle
|
|
// the conflict
|
|
match (module_.def_id.get(), containing_module.def_id.get()) {
|
|
(Some(id1), Some(id2)) if id1 == id2 => {
|
|
if value_result.is_unknown() {
|
|
value_result = UnboundResult;
|
|
}
|
|
if type_result.is_unknown() {
|
|
type_result = UnboundResult;
|
|
}
|
|
}
|
|
_ => {
|
|
// The import is unresolved. Bail out.
|
|
debug!("(resolving single import) unresolved import; \
|
|
bailing out");
|
|
return Indeterminate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't find a result in the type namespace, search the
|
|
// external modules.
|
|
let mut value_used_public = false;
|
|
let mut type_used_public = false;
|
|
match type_result {
|
|
BoundResult(..) => {}
|
|
_ => {
|
|
match containing_module.external_module_children.borrow_mut()
|
|
.get(&source).cloned() {
|
|
None => {} // Continue.
|
|
Some(module) => {
|
|
debug!("(resolving single import) found external \
|
|
module");
|
|
// track the module as used.
|
|
match module.def_id.get() {
|
|
Some(DefId{krate: kid, ..}) => { self.used_crates.insert(kid); },
|
|
_ => {}
|
|
}
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(
|
|
module));
|
|
type_result = BoundResult(containing_module.clone(),
|
|
name_bindings);
|
|
type_used_public = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've successfully resolved the import. Write the results in.
|
|
let mut import_resolutions = module_.import_resolutions.borrow_mut();
|
|
let import_resolution = &mut (*import_resolutions)[target];
|
|
{
|
|
let mut check_and_write_import = |&mut: namespace, result: &_, used_public: &mut bool| {
|
|
let namespace_name = match namespace {
|
|
TypeNS => "type",
|
|
ValueNS => "value",
|
|
};
|
|
|
|
match *result {
|
|
BoundResult(ref target_module, ref name_bindings) => {
|
|
debug!("(resolving single import) found {} target: {}",
|
|
namespace_name,
|
|
name_bindings.def_for_namespace(namespace));
|
|
self.check_for_conflicting_import(
|
|
&import_resolution.target_for_namespace(namespace),
|
|
directive.span,
|
|
target,
|
|
namespace);
|
|
|
|
self.check_that_import_is_importable(
|
|
&**name_bindings,
|
|
directive.span,
|
|
target,
|
|
namespace);
|
|
|
|
let target = Some(Target::new(target_module.clone(),
|
|
name_bindings.clone(),
|
|
directive.shadowable));
|
|
import_resolution.set_target_and_id(namespace, target, directive.id);
|
|
import_resolution.is_public = directive.is_public;
|
|
*used_public = name_bindings.defined_in_public_namespace(namespace);
|
|
}
|
|
UnboundResult => { /* Continue. */ }
|
|
UnknownResult => {
|
|
panic!("{} result should be known at this point", namespace_name);
|
|
}
|
|
}
|
|
};
|
|
check_and_write_import(ValueNS, &value_result, &mut value_used_public);
|
|
check_and_write_import(TypeNS, &type_result, &mut type_used_public);
|
|
}
|
|
|
|
self.check_for_conflicts_between_imports_and_items(
|
|
module_,
|
|
import_resolution,
|
|
directive.span,
|
|
target);
|
|
|
|
if value_result.is_unbound() && type_result.is_unbound() {
|
|
let msg = format!("There is no `{}` in `{}`",
|
|
token::get_name(source),
|
|
self.module_to_string(&*containing_module));
|
|
return Failed(Some((directive.span, msg)));
|
|
}
|
|
let value_used_public = value_used_reexport || value_used_public;
|
|
let type_used_public = type_used_reexport || type_used_public;
|
|
|
|
assert!(import_resolution.outstanding_references >= 1);
|
|
import_resolution.outstanding_references -= 1;
|
|
|
|
// record what this import resolves to for later uses in documentation,
|
|
// this may resolve to either a value or a type, but for documentation
|
|
// purposes it's good enough to just favor one over the other.
|
|
let value_private = match import_resolution.value_target {
|
|
Some(ref target) => {
|
|
let def = target.bindings.def_for_namespace(ValueNS).unwrap();
|
|
self.def_map.borrow_mut().insert(directive.id, def);
|
|
let did = def.def_id();
|
|
if value_used_public {Some(lp)} else {Some(DependsOn(did))}
|
|
},
|
|
// AllPublic here and below is a dummy value, it should never be used because
|
|
// _exists is false.
|
|
None => None,
|
|
};
|
|
let type_private = match import_resolution.type_target {
|
|
Some(ref target) => {
|
|
let def = target.bindings.def_for_namespace(TypeNS).unwrap();
|
|
self.def_map.borrow_mut().insert(directive.id, def);
|
|
let did = def.def_id();
|
|
if type_used_public {Some(lp)} else {Some(DependsOn(did))}
|
|
},
|
|
None => None,
|
|
};
|
|
|
|
self.last_private.insert(directive.id, LastImport{value_priv: value_private,
|
|
value_used: Used,
|
|
type_priv: type_private,
|
|
type_used: Used});
|
|
|
|
debug!("(resolving single import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
// Resolves a glob import. Note that this function cannot fail; it either
|
|
// succeeds or bails out (as importing * from an empty module or a module
|
|
// that exports nothing is valid). containing_module is the module we are
|
|
// actually importing, i.e., `foo` in `use foo::*`.
|
|
fn resolve_glob_import(&mut self,
|
|
module_: &Module,
|
|
containing_module: Rc<Module>,
|
|
import_directive: &ImportDirective,
|
|
lp: LastPrivate)
|
|
-> ResolveResult<()> {
|
|
let id = import_directive.id;
|
|
let is_public = import_directive.is_public;
|
|
|
|
// This function works in a highly imperative manner; it eagerly adds
|
|
// everything it can to the list of import resolutions of the module
|
|
// node.
|
|
debug!("(resolving glob import) resolving glob import {}", id);
|
|
|
|
// We must bail out if the node has unresolved imports of any kind
|
|
// (including globs).
|
|
if !(*containing_module).all_imports_resolved() {
|
|
debug!("(resolving glob import) target module has unresolved \
|
|
imports; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
|
|
assert_eq!(containing_module.glob_count.get(), 0);
|
|
|
|
// Add all resolved imports from the containing module.
|
|
let import_resolutions = containing_module.import_resolutions.borrow();
|
|
for (ident, target_import_resolution) in import_resolutions.iter() {
|
|
debug!("(resolving glob import) writing module resolution \
|
|
{} into `{}`",
|
|
token::get_name(*ident),
|
|
self.module_to_string(module_));
|
|
|
|
if !target_import_resolution.is_public {
|
|
debug!("(resolving glob import) nevermind, just kidding");
|
|
continue
|
|
}
|
|
|
|
// Here we merge two import resolutions.
|
|
let mut import_resolutions = module_.import_resolutions.borrow_mut();
|
|
match import_resolutions.get_mut(ident) {
|
|
Some(dest_import_resolution) => {
|
|
// Merge the two import resolutions at a finer-grained
|
|
// level.
|
|
|
|
match target_import_resolution.value_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(ref value_target) => {
|
|
self.check_for_conflicting_import(&dest_import_resolution.value_target,
|
|
import_directive.span,
|
|
*ident,
|
|
ValueNS);
|
|
dest_import_resolution.value_target = Some(value_target.clone());
|
|
}
|
|
}
|
|
match target_import_resolution.type_target {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(ref type_target) => {
|
|
self.check_for_conflicting_import(&dest_import_resolution.type_target,
|
|
import_directive.span,
|
|
*ident,
|
|
TypeNS);
|
|
dest_import_resolution.type_target = Some(type_target.clone());
|
|
}
|
|
}
|
|
dest_import_resolution.is_public = is_public;
|
|
continue;
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
// Simple: just copy the old import resolution.
|
|
let mut new_import_resolution = ImportResolution::new(id, is_public);
|
|
new_import_resolution.value_target =
|
|
target_import_resolution.value_target.clone();
|
|
new_import_resolution.type_target =
|
|
target_import_resolution.type_target.clone();
|
|
|
|
import_resolutions.insert(*ident, new_import_resolution);
|
|
}
|
|
|
|
// Add all children from the containing module.
|
|
build_reduced_graph::populate_module_if_necessary(self, &containing_module);
|
|
|
|
for (&name, name_bindings) in containing_module.children.borrow().iter() {
|
|
self.merge_import_resolution(module_,
|
|
containing_module.clone(),
|
|
import_directive,
|
|
name,
|
|
name_bindings.clone());
|
|
|
|
}
|
|
|
|
// Add external module children from the containing module.
|
|
for (&name, module) in containing_module.external_module_children.borrow().iter() {
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(module.clone()));
|
|
self.merge_import_resolution(module_,
|
|
containing_module.clone(),
|
|
import_directive,
|
|
name,
|
|
name_bindings);
|
|
}
|
|
|
|
// Record the destination of this import
|
|
match containing_module.def_id.get() {
|
|
Some(did) => {
|
|
self.def_map.borrow_mut().insert(id, DefMod(did));
|
|
self.last_private.insert(id, lp);
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
debug!("(resolving glob import) successfully resolved import");
|
|
return Success(());
|
|
}
|
|
|
|
fn merge_import_resolution(&mut self,
|
|
module_: &Module,
|
|
containing_module: Rc<Module>,
|
|
import_directive: &ImportDirective,
|
|
name: Name,
|
|
name_bindings: Rc<NameBindings>) {
|
|
let id = import_directive.id;
|
|
let is_public = import_directive.is_public;
|
|
|
|
let mut import_resolutions = module_.import_resolutions.borrow_mut();
|
|
let dest_import_resolution = import_resolutions.entry(&name).get().unwrap_or_else(
|
|
|vacant_entry| {
|
|
// Create a new import resolution from this child.
|
|
vacant_entry.insert(ImportResolution::new(id, is_public))
|
|
});
|
|
|
|
debug!("(resolving glob import) writing resolution `{}` in `{}` \
|
|
to `{}`",
|
|
token::get_name(name).get(),
|
|
self.module_to_string(&*containing_module),
|
|
self.module_to_string(module_));
|
|
|
|
// Merge the child item into the import resolution.
|
|
{
|
|
let mut merge_child_item = |&mut : namespace| {
|
|
if name_bindings.defined_in_namespace_with(namespace, IMPORTABLE | PUBLIC) {
|
|
let namespace_name = match namespace {
|
|
TypeNS => "type",
|
|
ValueNS => "value",
|
|
};
|
|
debug!("(resolving glob import) ... for {} target", namespace_name);
|
|
if dest_import_resolution.shadowable(namespace) == Shadowable::Never {
|
|
let msg = format!("a {} named `{}` has already been imported \
|
|
in this module",
|
|
namespace_name,
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_directive.span, msg.as_slice());
|
|
} else {
|
|
let target = Target::new(containing_module.clone(),
|
|
name_bindings.clone(),
|
|
import_directive.shadowable);
|
|
dest_import_resolution.set_target_and_id(namespace,
|
|
Some(target),
|
|
id);
|
|
}
|
|
}
|
|
};
|
|
merge_child_item(ValueNS);
|
|
merge_child_item(TypeNS);
|
|
}
|
|
|
|
dest_import_resolution.is_public = is_public;
|
|
|
|
self.check_for_conflicts_between_imports_and_items(
|
|
module_,
|
|
dest_import_resolution,
|
|
import_directive.span,
|
|
name);
|
|
}
|
|
|
|
/// Checks that imported names and items don't have the same name.
|
|
fn check_for_conflicting_import(&mut self,
|
|
target: &Option<Target>,
|
|
import_span: Span,
|
|
name: Name,
|
|
namespace: Namespace) {
|
|
if self.session.features.borrow().import_shadowing {
|
|
return
|
|
}
|
|
|
|
debug!("check_for_conflicting_import: {}; target exists: {}",
|
|
token::get_name(name).get(),
|
|
target.is_some());
|
|
|
|
match *target {
|
|
Some(ref target) if target.shadowable != Shadowable::Always => {
|
|
let msg = format!("a {} named `{}` has already been imported \
|
|
in this module",
|
|
match namespace {
|
|
TypeNS => "type",
|
|
ValueNS => "value",
|
|
},
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_span, msg[]);
|
|
}
|
|
Some(_) | None => {}
|
|
}
|
|
}
|
|
|
|
/// Checks that an import is actually importable
|
|
fn check_that_import_is_importable(&mut self,
|
|
name_bindings: &NameBindings,
|
|
import_span: Span,
|
|
name: Name,
|
|
namespace: Namespace) {
|
|
if !name_bindings.defined_in_namespace_with(namespace, IMPORTABLE) {
|
|
let msg = format!("`{}` is not directly importable",
|
|
token::get_name(name));
|
|
self.session.span_err(import_span, msg[]);
|
|
}
|
|
}
|
|
|
|
/// Checks that imported names and items don't have the same name.
|
|
fn check_for_conflicts_between_imports_and_items(&mut self,
|
|
module: &Module,
|
|
import_resolution:
|
|
&ImportResolution,
|
|
import_span: Span,
|
|
name: Name) {
|
|
if self.session.features.borrow().import_shadowing {
|
|
return
|
|
}
|
|
|
|
// First, check for conflicts between imports and `extern crate`s.
|
|
if module.external_module_children
|
|
.borrow()
|
|
.contains_key(&name) {
|
|
match import_resolution.type_target {
|
|
Some(ref target) if target.shadowable != Shadowable::Always => {
|
|
let msg = format!("import `{0}` conflicts with imported \
|
|
crate in this module \
|
|
(maybe you meant `use {0}::*`?)",
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_span, msg[]);
|
|
}
|
|
Some(_) | None => {}
|
|
}
|
|
}
|
|
|
|
// Check for item conflicts.
|
|
let children = module.children.borrow();
|
|
let name_bindings = match children.get(&name) {
|
|
None => {
|
|
// There can't be any conflicts.
|
|
return
|
|
}
|
|
Some(ref name_bindings) => (*name_bindings).clone(),
|
|
};
|
|
|
|
match import_resolution.value_target {
|
|
Some(ref target) if target.shadowable != Shadowable::Always => {
|
|
if let Some(ref value) = *name_bindings.value_def.borrow() {
|
|
let msg = format!("import `{}` conflicts with value \
|
|
in this module",
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_span, msg[]);
|
|
if let Some(span) = value.value_span {
|
|
self.session.span_note(span,
|
|
"conflicting value here");
|
|
}
|
|
}
|
|
}
|
|
Some(_) | None => {}
|
|
}
|
|
|
|
match import_resolution.type_target {
|
|
Some(ref target) if target.shadowable != Shadowable::Always => {
|
|
if let Some(ref ty) = *name_bindings.type_def.borrow() {
|
|
match ty.module_def {
|
|
None => {
|
|
let msg = format!("import `{}` conflicts with type in \
|
|
this module",
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_span, msg[]);
|
|
if let Some(span) = ty.type_span {
|
|
self.session.span_note(span,
|
|
"note conflicting type here")
|
|
}
|
|
}
|
|
Some(ref module_def) => {
|
|
match module_def.kind.get() {
|
|
ImplModuleKind => {
|
|
if let Some(span) = ty.type_span {
|
|
let msg = format!("inherent implementations \
|
|
are only allowed on types \
|
|
defined in the current module");
|
|
self.session.span_err(span, msg[]);
|
|
self.session.span_note(import_span,
|
|
"import from other module here")
|
|
}
|
|
}
|
|
_ => {
|
|
let msg = format!("import `{}` conflicts with existing \
|
|
submodule",
|
|
token::get_name(name).get());
|
|
self.session.span_err(import_span, msg[]);
|
|
if let Some(span) = ty.type_span {
|
|
self.session.span_note(span,
|
|
"note conflicting module here")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(_) | None => {}
|
|
}
|
|
}
|
|
|
|
/// Checks that the names of external crates don't collide with other
|
|
/// external crates.
|
|
fn check_for_conflicts_between_external_crates(&self,
|
|
module: &Module,
|
|
name: Name,
|
|
span: Span) {
|
|
if self.session.features.borrow().import_shadowing {
|
|
return
|
|
}
|
|
|
|
if module.external_module_children.borrow().contains_key(&name) {
|
|
self.session
|
|
.span_err(span,
|
|
format!("an external crate named `{}` has already \
|
|
been imported into this module",
|
|
token::get_name(name).get())[]);
|
|
}
|
|
}
|
|
|
|
/// Checks that the names of items don't collide with external crates.
|
|
fn check_for_conflicts_between_external_crates_and_items(&self,
|
|
module: &Module,
|
|
name: Name,
|
|
span: Span) {
|
|
if self.session.features.borrow().import_shadowing {
|
|
return
|
|
}
|
|
|
|
if module.external_module_children.borrow().contains_key(&name) {
|
|
self.session
|
|
.span_err(span,
|
|
format!("the name `{}` conflicts with an external \
|
|
crate that has been imported into this \
|
|
module",
|
|
token::get_name(name).get())[]);
|
|
}
|
|
}
|
|
|
|
/// Resolves the given module path from the given root `module_`.
|
|
fn resolve_module_path_from_root(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name],
|
|
index: uint,
|
|
span: Span,
|
|
name_search_type: NameSearchType,
|
|
lp: LastPrivate)
|
|
-> ResolveResult<(Rc<Module>, LastPrivate)> {
|
|
fn search_parent_externals(needle: Name, module: &Rc<Module>)
|
|
-> Option<Rc<Module>> {
|
|
module.external_module_children.borrow()
|
|
.get(&needle).cloned()
|
|
.map(|_| module.clone())
|
|
.or_else(|| {
|
|
match module.parent_link.clone() {
|
|
ModuleParentLink(parent, _) => {
|
|
search_parent_externals(needle,
|
|
&parent.upgrade().unwrap())
|
|
}
|
|
_ => None
|
|
}
|
|
})
|
|
}
|
|
|
|
let mut search_module = module_;
|
|
let mut index = index;
|
|
let module_path_len = module_path.len();
|
|
let mut closest_private = lp;
|
|
|
|
// Resolve the module part of the path. This does not involve looking
|
|
// upward though scope chains; we simply resolve names directly in
|
|
// modules as we go.
|
|
while index < module_path_len {
|
|
let name = module_path[index];
|
|
match self.resolve_name_in_module(search_module.clone(),
|
|
name,
|
|
TypeNS,
|
|
name_search_type,
|
|
false) {
|
|
Failed(None) => {
|
|
let segment_name = token::get_name(name);
|
|
let module_name = self.module_to_string(&*search_module);
|
|
let mut span = span;
|
|
let msg = if "???" == module_name[] {
|
|
span.hi = span.lo + Pos::from_uint(segment_name.get().len());
|
|
|
|
match search_parent_externals(name,
|
|
&self.current_module) {
|
|
Some(module) => {
|
|
let path_str = self.names_to_string(module_path);
|
|
let target_mod_str = self.module_to_string(&*module);
|
|
let current_mod_str =
|
|
self.module_to_string(&*self.current_module);
|
|
|
|
let prefix = if target_mod_str == current_mod_str {
|
|
"self::".to_string()
|
|
} else {
|
|
format!("{}::", target_mod_str)
|
|
};
|
|
|
|
format!("Did you mean `{}{}`?", prefix, path_str)
|
|
},
|
|
None => format!("Maybe a missing `extern crate {}`?",
|
|
segment_name),
|
|
}
|
|
} else {
|
|
format!("Could not find `{}` in `{}`",
|
|
segment_name,
|
|
module_name)
|
|
};
|
|
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) module \
|
|
resolution is indeterminate: {}",
|
|
token::get_name(name));
|
|
return Indeterminate;
|
|
}
|
|
Success((target, used_proxy)) => {
|
|
// Check to see whether there are type bindings, and, if
|
|
// so, whether there is a module within.
|
|
match *target.bindings.type_def.borrow() {
|
|
Some(ref type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
let msg = format!("Not a module `{}`",
|
|
token::get_name(name));
|
|
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
Some(ref module_def) => {
|
|
search_module = module_def.clone();
|
|
|
|
// track extern crates for unused_extern_crate lint
|
|
if let Some(did) = module_def.def_id.get() {
|
|
self.used_crates.insert(did.krate);
|
|
}
|
|
|
|
// Keep track of the closest
|
|
// private module used when
|
|
// resolving this import chain.
|
|
if !used_proxy && !search_module.is_public {
|
|
if let Some(did) = search_module.def_id.get() {
|
|
closest_private = LastMod(DependsOn(did));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// There are no type bindings at all.
|
|
let msg = format!("Not a module `{}`",
|
|
token::get_name(name));
|
|
return Failed(Some((span, msg)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
index += 1;
|
|
}
|
|
|
|
return Success((search_module, closest_private));
|
|
}
|
|
|
|
/// Attempts to resolve the module part of an import directive or path
|
|
/// rooted at the given module.
|
|
///
|
|
/// On success, returns the resolved module, and the closest *private*
|
|
/// module found to the destination when resolving this path.
|
|
fn resolve_module_path(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name],
|
|
use_lexical_scope: UseLexicalScopeFlag,
|
|
span: Span,
|
|
name_search_type: NameSearchType)
|
|
-> ResolveResult<(Rc<Module>, LastPrivate)> {
|
|
let module_path_len = module_path.len();
|
|
assert!(module_path_len > 0);
|
|
|
|
debug!("(resolving module path for import) processing `{}` rooted at `{}`",
|
|
self.names_to_string(module_path),
|
|
self.module_to_string(&*module_));
|
|
|
|
// Resolve the module prefix, if any.
|
|
let module_prefix_result = self.resolve_module_prefix(module_.clone(),
|
|
module_path);
|
|
|
|
let search_module;
|
|
let start_index;
|
|
let last_private;
|
|
match module_prefix_result {
|
|
Failed(None) => {
|
|
let mpath = self.names_to_string(module_path);
|
|
let mpath = mpath[];
|
|
match mpath.rfind(':') {
|
|
Some(idx) => {
|
|
let msg = format!("Could not find `{}` in `{}`",
|
|
// idx +- 1 to account for the
|
|
// colons on either side
|
|
mpath[idx + 1..],
|
|
mpath[0..idx - 1]);
|
|
return Failed(Some((span, msg)));
|
|
},
|
|
None => {
|
|
return Failed(None)
|
|
}
|
|
}
|
|
}
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(NoPrefixFound) => {
|
|
// There was no prefix, so we're considering the first element
|
|
// of the path. How we handle this depends on whether we were
|
|
// instructed to use lexical scope or not.
|
|
match use_lexical_scope {
|
|
DontUseLexicalScope => {
|
|
// This is a crate-relative path. We will start the
|
|
// resolution process at index zero.
|
|
search_module = self.graph_root.get_module();
|
|
start_index = 0;
|
|
last_private = LastMod(AllPublic);
|
|
}
|
|
UseLexicalScope => {
|
|
// This is not a crate-relative path. We resolve the
|
|
// first component of the path in the current lexical
|
|
// scope and then proceed to resolve below that.
|
|
match self.resolve_module_in_lexical_scope(module_,
|
|
module_path[0]) {
|
|
Failed(err) => return Failed(err),
|
|
Indeterminate => {
|
|
debug!("(resolving module path for import) \
|
|
indeterminate; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success(containing_module) => {
|
|
search_module = containing_module;
|
|
start_index = 1;
|
|
last_private = LastMod(AllPublic);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Success(PrefixFound(ref containing_module, index)) => {
|
|
search_module = containing_module.clone();
|
|
start_index = index;
|
|
last_private = LastMod(DependsOn(containing_module.def_id
|
|
.get()
|
|
.unwrap()));
|
|
}
|
|
}
|
|
|
|
self.resolve_module_path_from_root(search_module,
|
|
module_path,
|
|
start_index,
|
|
span,
|
|
name_search_type,
|
|
last_private)
|
|
}
|
|
|
|
/// Invariant: This must only be called during main resolution, not during
|
|
/// import resolution.
|
|
fn resolve_item_in_lexical_scope(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> ResolveResult<(Target, bool)> {
|
|
debug!("(resolving item in lexical scope) resolving `{}` in \
|
|
namespace {} in `{}`",
|
|
token::get_name(name),
|
|
namespace,
|
|
self.module_to_string(&*module_));
|
|
|
|
// The current module node is handled specially. First, check for
|
|
// its immediate children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
match module_.children.borrow().get(&name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
debug!("top name bindings succeeded");
|
|
return Success((Target::new(module_.clone(),
|
|
name_bindings.clone(),
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
Some(_) | None => { /* Not found; continue. */ }
|
|
}
|
|
|
|
// Now check for its import directives. We don't have to have resolved
|
|
// all its imports in the usual way; this is because chains of
|
|
// adjacent import statements are processed as though they mutated the
|
|
// current scope.
|
|
if let Some(import_resolution) = module_.import_resolutions.borrow().get(&name) {
|
|
match (*import_resolution).target_for_namespace(namespace) {
|
|
None => {
|
|
// Not found; continue.
|
|
debug!("(resolving item in lexical scope) found \
|
|
import resolution, but not in namespace {}",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving item in lexical scope) using \
|
|
import resolution");
|
|
// track used imports and extern crates as well
|
|
let id = import_resolution.id(namespace);
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Success((target, false));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Search for external modules.
|
|
if namespace == TypeNS {
|
|
if let Some(module) = module_.external_module_children.borrow().get(&name).cloned() {
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(module));
|
|
debug!("lower name bindings succeeded");
|
|
return Success((Target::new(module_,
|
|
name_bindings,
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
}
|
|
|
|
// Finally, proceed up the scope chain looking for parent modules.
|
|
let mut search_module = module_;
|
|
loop {
|
|
// Go to the next parent.
|
|
match search_module.parent_link.clone() {
|
|
NoParentLink => {
|
|
// No more parents. This module was unresolved.
|
|
debug!("(resolving item in lexical scope) unresolved \
|
|
module");
|
|
return Failed(None);
|
|
}
|
|
ModuleParentLink(parent_module_node, _) => {
|
|
match search_module.kind.get() {
|
|
NormalModuleKind => {
|
|
// We stop the search here.
|
|
debug!("(resolving item in lexical \
|
|
scope) unresolved module: not \
|
|
searching through module \
|
|
parents");
|
|
return Failed(None);
|
|
}
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
EnumModuleKind |
|
|
AnonymousModuleKind => {
|
|
search_module = parent_module_node.upgrade().unwrap();
|
|
}
|
|
}
|
|
}
|
|
BlockParentLink(ref parent_module_node, _) => {
|
|
search_module = parent_module_node.upgrade().unwrap();
|
|
}
|
|
}
|
|
|
|
// Resolve the name in the parent module.
|
|
match self.resolve_name_in_module(search_module.clone(),
|
|
name,
|
|
namespace,
|
|
PathSearch,
|
|
true) {
|
|
Failed(Some((span, msg))) =>
|
|
self.resolve_error(span, format!("failed to resolve. {}",
|
|
msg)[]),
|
|
Failed(None) => (), // Continue up the search chain.
|
|
Indeterminate => {
|
|
// We couldn't see through the higher scope because of an
|
|
// unresolved import higher up. Bail.
|
|
|
|
debug!("(resolving item in lexical scope) indeterminate \
|
|
higher scope; bailing");
|
|
return Indeterminate;
|
|
}
|
|
Success((target, used_reexport)) => {
|
|
// We found the module.
|
|
debug!("(resolving item in lexical scope) found name \
|
|
in module, done");
|
|
return Success((target, used_reexport));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a module name in the current lexical scope.
|
|
fn resolve_module_in_lexical_scope(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name)
|
|
-> ResolveResult<Rc<Module>> {
|
|
// If this module is an anonymous module, resolve the item in the
|
|
// lexical scope. Otherwise, resolve the item from the crate root.
|
|
let resolve_result = self.resolve_item_in_lexical_scope(module_, name, TypeNS);
|
|
match resolve_result {
|
|
Success((target, _)) => {
|
|
let bindings = &*target.bindings;
|
|
match *bindings.type_def.borrow() {
|
|
Some(ref type_def) => {
|
|
match type_def.module_def {
|
|
None => {
|
|
debug!("!!! (resolving module in lexical \
|
|
scope) module wasn't actually a \
|
|
module!");
|
|
return Failed(None);
|
|
}
|
|
Some(ref module_def) => {
|
|
return Success(module_def.clone());
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
debug!("!!! (resolving module in lexical scope) module
|
|
wasn't actually a module!");
|
|
return Failed(None);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
debug!("(resolving module in lexical scope) indeterminate; \
|
|
bailing");
|
|
return Indeterminate;
|
|
}
|
|
Failed(err) => {
|
|
debug!("(resolving module in lexical scope) failed to resolve");
|
|
return Failed(err);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module.
|
|
fn get_nearest_normal_module_parent(&mut self, module_: Rc<Module>)
|
|
-> Option<Rc<Module>> {
|
|
let mut module_ = module_;
|
|
loop {
|
|
match module_.parent_link.clone() {
|
|
NoParentLink => return None,
|
|
ModuleParentLink(new_module, _) |
|
|
BlockParentLink(new_module, _) => {
|
|
let new_module = new_module.upgrade().unwrap();
|
|
match new_module.kind.get() {
|
|
NormalModuleKind => return Some(new_module),
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
EnumModuleKind |
|
|
AnonymousModuleKind => module_ = new_module,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the nearest normal module parent of the given module, or the
|
|
/// module itself if it is a normal module.
|
|
fn get_nearest_normal_module_parent_or_self(&mut self, module_: Rc<Module>)
|
|
-> Rc<Module> {
|
|
match module_.kind.get() {
|
|
NormalModuleKind => return module_,
|
|
TraitModuleKind |
|
|
ImplModuleKind |
|
|
EnumModuleKind |
|
|
AnonymousModuleKind => {
|
|
match self.get_nearest_normal_module_parent(module_.clone()) {
|
|
None => module_,
|
|
Some(new_module) => new_module
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves a "module prefix". A module prefix is one or both of (a) `self::`;
|
|
/// (b) some chain of `super::`.
|
|
/// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) *
|
|
fn resolve_module_prefix(&mut self,
|
|
module_: Rc<Module>,
|
|
module_path: &[Name])
|
|
-> ResolveResult<ModulePrefixResult> {
|
|
// Start at the current module if we see `self` or `super`, or at the
|
|
// top of the crate otherwise.
|
|
let mut containing_module;
|
|
let mut i;
|
|
let first_module_path_string = token::get_name(module_path[0]);
|
|
if "self" == first_module_path_string.get() {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 1;
|
|
} else if "super" == first_module_path_string.get() {
|
|
containing_module =
|
|
self.get_nearest_normal_module_parent_or_self(module_);
|
|
i = 0; // We'll handle `super` below.
|
|
} else {
|
|
return Success(NoPrefixFound);
|
|
}
|
|
|
|
// Now loop through all the `super`s we find.
|
|
while i < module_path.len() {
|
|
let string = token::get_name(module_path[i]);
|
|
if "super" != string.get() {
|
|
break
|
|
}
|
|
debug!("(resolving module prefix) resolving `super` at {}",
|
|
self.module_to_string(&*containing_module));
|
|
match self.get_nearest_normal_module_parent(containing_module) {
|
|
None => return Failed(None),
|
|
Some(new_module) => {
|
|
containing_module = new_module;
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("(resolving module prefix) finished resolving prefix at {}",
|
|
self.module_to_string(&*containing_module));
|
|
|
|
return Success(PrefixFound(containing_module, i));
|
|
}
|
|
|
|
/// Attempts to resolve the supplied name in the given module for the
|
|
/// given namespace. If successful, returns the target corresponding to
|
|
/// the name.
|
|
///
|
|
/// The boolean returned on success is an indicator of whether this lookup
|
|
/// passed through a public re-export proxy.
|
|
fn resolve_name_in_module(&mut self,
|
|
module_: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace,
|
|
name_search_type: NameSearchType,
|
|
allow_private_imports: bool)
|
|
-> ResolveResult<(Target, bool)> {
|
|
debug!("(resolving name in module) resolving `{}` in `{}`",
|
|
token::get_name(name).get(),
|
|
self.module_to_string(&*module_));
|
|
|
|
// First, check the direct children of the module.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
match module_.children.borrow().get(&name) {
|
|
Some(name_bindings)
|
|
if name_bindings.defined_in_namespace(namespace) => {
|
|
debug!("(resolving name in module) found node as child");
|
|
return Success((Target::new(module_.clone(),
|
|
name_bindings.clone(),
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
Some(_) | None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, check the module's imports if necessary.
|
|
|
|
// If this is a search of all imports, we should be done with glob
|
|
// resolution at this point.
|
|
if name_search_type == PathSearch {
|
|
assert_eq!(module_.glob_count.get(), 0);
|
|
}
|
|
|
|
// Check the list of resolved imports.
|
|
match module_.import_resolutions.borrow().get(&name) {
|
|
Some(import_resolution) if allow_private_imports ||
|
|
import_resolution.is_public => {
|
|
|
|
if import_resolution.is_public &&
|
|
import_resolution.outstanding_references != 0 {
|
|
debug!("(resolving name in module) import \
|
|
unresolved; bailing out");
|
|
return Indeterminate;
|
|
}
|
|
match import_resolution.target_for_namespace(namespace) {
|
|
None => {
|
|
debug!("(resolving name in module) name found, \
|
|
but not in namespace {}",
|
|
namespace);
|
|
}
|
|
Some(target) => {
|
|
debug!("(resolving name in module) resolved to \
|
|
import");
|
|
// track used imports and extern crates as well
|
|
let id = import_resolution.id(namespace);
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Success((target, true));
|
|
}
|
|
}
|
|
}
|
|
Some(..) | None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
if let Some(module) = module_.external_module_children.borrow().get(&name).cloned() {
|
|
let name_bindings =
|
|
Rc::new(Resolver::create_name_bindings_from_module(module));
|
|
return Success((Target::new(module_,
|
|
name_bindings,
|
|
Shadowable::Never),
|
|
false));
|
|
}
|
|
}
|
|
|
|
// We're out of luck.
|
|
debug!("(resolving name in module) failed to resolve `{}`",
|
|
token::get_name(name).get());
|
|
return Failed(None);
|
|
}
|
|
|
|
fn report_unresolved_imports(&mut self, module_: Rc<Module>) {
|
|
let index = module_.resolved_import_count.get();
|
|
let imports = module_.imports.borrow();
|
|
let import_count = imports.len();
|
|
if index != import_count {
|
|
let sn = self.session
|
|
.codemap()
|
|
.span_to_snippet((*imports)[index].span)
|
|
.unwrap();
|
|
if sn.contains("::") {
|
|
self.resolve_error((*imports)[index].span,
|
|
"unresolved import");
|
|
} else {
|
|
let err = format!("unresolved import (maybe you meant `{}::*`?)",
|
|
sn);
|
|
self.resolve_error((*imports)[index].span, err[]);
|
|
}
|
|
}
|
|
|
|
// Descend into children and anonymous children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
|
|
for (_, child_node) in module_.children.borrow().iter() {
|
|
match child_node.get_module_if_available() {
|
|
None => {
|
|
// Continue.
|
|
}
|
|
Some(child_module) => {
|
|
self.report_unresolved_imports(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, module_) in module_.anonymous_children.borrow().iter() {
|
|
self.report_unresolved_imports(module_.clone());
|
|
}
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `current_module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
fn with_scope<F>(&mut self, name: Option<Name>, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
let orig_module = self.current_module.clone();
|
|
|
|
// Move down in the graph.
|
|
match name {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(name) => {
|
|
build_reduced_graph::populate_module_if_necessary(self, &orig_module);
|
|
|
|
match orig_module.children.borrow().get(&name) {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find `{}` in `{}`",
|
|
token::get_name(name),
|
|
self.module_to_string(&*orig_module));
|
|
}
|
|
Some(name_bindings) => {
|
|
match (*name_bindings).get_module_if_available() {
|
|
None => {
|
|
debug!("!!! (with scope) didn't find module \
|
|
for `{}` in `{}`",
|
|
token::get_name(name),
|
|
self.module_to_string(&*orig_module));
|
|
}
|
|
Some(module_) => {
|
|
self.current_module = module_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f(self);
|
|
|
|
self.current_module = orig_module;
|
|
}
|
|
|
|
/// Wraps the given definition in the appropriate number of `DefUpvar`
|
|
/// wrappers.
|
|
fn upvarify(&self,
|
|
ribs: &[Rib],
|
|
def_like: DefLike,
|
|
span: Span)
|
|
-> Option<DefLike> {
|
|
match def_like {
|
|
DlDef(d @ DefUpvar(..)) => {
|
|
self.session.span_bug(span,
|
|
format!("unexpected {} in bindings", d)[])
|
|
}
|
|
DlDef(d @ DefLocal(_)) => {
|
|
let node_id = d.def_id().node;
|
|
let mut def = d;
|
|
let mut last_proc_body_id = ast::DUMMY_NODE_ID;
|
|
for rib in ribs.iter() {
|
|
match rib.kind {
|
|
NormalRibKind => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
ClosureRibKind(function_id, maybe_proc_body) => {
|
|
let prev_def = def;
|
|
if maybe_proc_body != ast::DUMMY_NODE_ID {
|
|
last_proc_body_id = maybe_proc_body;
|
|
}
|
|
def = DefUpvar(node_id, function_id, last_proc_body_id);
|
|
|
|
let mut seen = self.freevars_seen.borrow_mut();
|
|
let seen = match seen.entry(&function_id) {
|
|
Occupied(v) => v.into_mut(),
|
|
Vacant(v) => v.insert(NodeSet::new()),
|
|
};
|
|
if seen.contains(&node_id) {
|
|
continue;
|
|
}
|
|
match self.freevars.borrow_mut().entry(&function_id) {
|
|
Occupied(v) => v.into_mut(),
|
|
Vacant(v) => v.insert(vec![]),
|
|
}.push(Freevar { def: prev_def, span: span });
|
|
seen.insert(node_id);
|
|
}
|
|
MethodRibKind(item_id, _) => {
|
|
// If the def is a ty param, and came from the parent
|
|
// item, it's ok
|
|
match def {
|
|
DefTyParam(_, _, did, _) if {
|
|
self.def_map.borrow().get(&did.node).cloned()
|
|
== Some(DefTyParamBinder(item_id))
|
|
} => {} // ok
|
|
DefSelfTy(did) if did == item_id => {} // ok
|
|
_ => {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.resolve_error(
|
|
span,
|
|
"can't capture dynamic environment in a fn item; \
|
|
use the || { ... } closure form instead");
|
|
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
ItemRibKind => {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.resolve_error(
|
|
span,
|
|
"can't capture dynamic environment in a fn item; \
|
|
use the || { ... } closure form instead");
|
|
|
|
return None;
|
|
}
|
|
ConstantItemRibKind => {
|
|
// Still doesn't deal with upvars
|
|
self.resolve_error(span,
|
|
"attempt to use a non-constant \
|
|
value in a constant");
|
|
|
|
}
|
|
}
|
|
}
|
|
Some(DlDef(def))
|
|
}
|
|
DlDef(def @ DefTyParam(..)) |
|
|
DlDef(def @ DefSelfTy(..)) => {
|
|
for rib in ribs.iter() {
|
|
match rib.kind {
|
|
NormalRibKind | ClosureRibKind(..) => {
|
|
// Nothing to do. Continue.
|
|
}
|
|
MethodRibKind(item_id, _) => {
|
|
// If the def is a ty param, and came from the parent
|
|
// item, it's ok
|
|
match def {
|
|
DefTyParam(_, _, did, _) if {
|
|
self.def_map.borrow().get(&did.node).cloned()
|
|
== Some(DefTyParamBinder(item_id))
|
|
} => {} // ok
|
|
DefSelfTy(did) if did == item_id => {} // ok
|
|
|
|
_ => {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.resolve_error(span,
|
|
"can't use type parameters from \
|
|
outer function; try using a local \
|
|
type parameter instead");
|
|
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
ItemRibKind => {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.resolve_error(span,
|
|
"can't use type parameters from \
|
|
outer function; try using a local \
|
|
type parameter instead");
|
|
|
|
return None;
|
|
}
|
|
ConstantItemRibKind => {
|
|
// see #9186
|
|
self.resolve_error(span,
|
|
"cannot use an outer type \
|
|
parameter in this context");
|
|
|
|
}
|
|
}
|
|
}
|
|
Some(DlDef(def))
|
|
}
|
|
_ => Some(def_like)
|
|
}
|
|
}
|
|
|
|
/// Searches the current set of local scopes and
|
|
/// applies translations for closures.
|
|
fn search_ribs(&self,
|
|
ribs: &[Rib],
|
|
name: Name,
|
|
span: Span)
|
|
-> Option<DefLike> {
|
|
// FIXME #4950: Try caching?
|
|
|
|
for (i, rib) in ribs.iter().enumerate().rev() {
|
|
match rib.bindings.get(&name).cloned() {
|
|
Some(def_like) => {
|
|
return self.upvarify(ribs[i + 1..], def_like, span);
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Searches the current set of local scopes for labels.
|
|
/// Stops after meeting a closure.
|
|
fn search_label(&self, name: Name) -> Option<DefLike> {
|
|
for rib in self.label_ribs.iter().rev() {
|
|
match rib.kind {
|
|
NormalRibKind => {
|
|
// Continue
|
|
}
|
|
_ => {
|
|
// Do not resolve labels across function boundary
|
|
return None
|
|
}
|
|
}
|
|
let result = rib.bindings.get(&name).cloned();
|
|
if result.is_some() {
|
|
return result
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn resolve_crate(&mut self, krate: &ast::Crate) {
|
|
debug!("(resolving crate) starting");
|
|
|
|
visit::walk_crate(self, krate);
|
|
}
|
|
|
|
fn resolve_item(&mut self, item: &Item) {
|
|
let name = item.ident.name;
|
|
|
|
debug!("(resolving item) resolving {}",
|
|
token::get_name(name));
|
|
|
|
match item.node {
|
|
|
|
// enum item: resolve all the variants' discrs,
|
|
// then resolve the ty params
|
|
ItemEnum(ref enum_def, ref generics) => {
|
|
for variant in (*enum_def).variants.iter() {
|
|
for dis_expr in variant.node.disr_expr.iter() {
|
|
// resolve the discriminator expr
|
|
// as a constant
|
|
self.with_constant_rib(|this| {
|
|
this.resolve_expr(&**dis_expr);
|
|
});
|
|
}
|
|
}
|
|
|
|
// n.b. the discr expr gets visited twice.
|
|
// but maybe it's okay since the first time will signal an
|
|
// error if there is one? -- tjc
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
item.id,
|
|
ItemRibKind),
|
|
|this| {
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
this.resolve_where_clause(&generics.where_clause);
|
|
visit::walk_item(this, item);
|
|
});
|
|
}
|
|
|
|
ItemTy(_, ref generics) => {
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
item.id,
|
|
ItemRibKind),
|
|
|this| {
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
visit::walk_item(this, item);
|
|
});
|
|
}
|
|
|
|
ItemImpl(_, _,
|
|
ref generics,
|
|
ref implemented_traits,
|
|
ref self_type,
|
|
ref impl_items) => {
|
|
self.resolve_implementation(item.id,
|
|
generics,
|
|
implemented_traits,
|
|
&**self_type,
|
|
impl_items[]);
|
|
}
|
|
|
|
ItemTrait(_, ref generics, ref bounds, ref trait_items) => {
|
|
// Create a new rib for the self type.
|
|
let mut self_type_rib = Rib::new(ItemRibKind);
|
|
|
|
// plain insert (no renaming, types are not currently hygienic....)
|
|
let name = self.type_self_name;
|
|
self_type_rib.bindings.insert(name, DlDef(DefSelfTy(item.id)));
|
|
self.type_ribs.push(self_type_rib);
|
|
|
|
// Create a new rib for the trait-wide type parameters.
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
item.id,
|
|
NormalRibKind),
|
|
|this| {
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
this.resolve_where_clause(&generics.where_clause);
|
|
|
|
this.resolve_type_parameter_bounds(item.id, bounds,
|
|
TraitDerivation);
|
|
|
|
for trait_item in (*trait_items).iter() {
|
|
// Create a new rib for the trait_item-specific type
|
|
// parameters.
|
|
//
|
|
// FIXME #4951: Do we need a node ID here?
|
|
|
|
match *trait_item {
|
|
ast::RequiredMethod(ref ty_m) => {
|
|
this.with_type_parameter_rib
|
|
(HasTypeParameters(&ty_m.generics,
|
|
FnSpace,
|
|
item.id,
|
|
MethodRibKind(item.id, RequiredMethod)),
|
|
|this| {
|
|
|
|
// Resolve the method-specific type
|
|
// parameters.
|
|
this.resolve_type_parameters(
|
|
&ty_m.generics.ty_params);
|
|
this.resolve_where_clause(&ty_m.generics
|
|
.where_clause);
|
|
|
|
for argument in ty_m.decl.inputs.iter() {
|
|
this.resolve_type(&*argument.ty);
|
|
}
|
|
|
|
if let SelfExplicit(ref typ, _) = ty_m.explicit_self.node {
|
|
this.resolve_type(&**typ)
|
|
}
|
|
|
|
if let ast::Return(ref ret_ty) = ty_m.decl.output {
|
|
this.resolve_type(&**ret_ty);
|
|
}
|
|
});
|
|
}
|
|
ast::ProvidedMethod(ref m) => {
|
|
this.resolve_method(MethodRibKind(item.id,
|
|
ProvidedMethod(m.id)),
|
|
&**m)
|
|
}
|
|
ast::TypeTraitItem(ref data) => {
|
|
this.resolve_type_parameter(&data.ty_param);
|
|
visit::walk_trait_item(this, trait_item);
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
self.type_ribs.pop();
|
|
}
|
|
|
|
ItemStruct(ref struct_def, ref generics) => {
|
|
self.resolve_struct(item.id,
|
|
generics,
|
|
struct_def.fields[]);
|
|
}
|
|
|
|
ItemMod(ref module_) => {
|
|
self.with_scope(Some(name), |this| {
|
|
this.resolve_module(module_, item.span, name,
|
|
item.id);
|
|
});
|
|
}
|
|
|
|
ItemForeignMod(ref foreign_module) => {
|
|
self.with_scope(Some(name), |this| {
|
|
for foreign_item in foreign_module.items.iter() {
|
|
match foreign_item.node {
|
|
ForeignItemFn(_, ref generics) => {
|
|
this.with_type_parameter_rib(
|
|
HasTypeParameters(
|
|
generics, FnSpace, foreign_item.id,
|
|
ItemRibKind),
|
|
|this| visit::walk_foreign_item(this,
|
|
&**foreign_item));
|
|
}
|
|
ForeignItemStatic(..) => {
|
|
visit::walk_foreign_item(this,
|
|
&**foreign_item);
|
|
}
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
ItemFn(ref fn_decl, _, _, ref generics, ref block) => {
|
|
self.resolve_function(ItemRibKind,
|
|
Some(&**fn_decl),
|
|
HasTypeParameters
|
|
(generics,
|
|
FnSpace,
|
|
item.id,
|
|
ItemRibKind),
|
|
&**block);
|
|
}
|
|
|
|
ItemConst(..) | ItemStatic(..) => {
|
|
self.with_constant_rib(|this| {
|
|
visit::walk_item(this, item);
|
|
});
|
|
}
|
|
|
|
ItemMac(..) => {
|
|
// do nothing, these are just around to be encoded
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_type_parameter_rib<F>(&mut self, type_parameters: TypeParameters, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
match type_parameters {
|
|
HasTypeParameters(generics, space, node_id, rib_kind) => {
|
|
let mut function_type_rib = Rib::new(rib_kind);
|
|
let mut seen_bindings = HashSet::new();
|
|
for (index, type_parameter) in generics.ty_params.iter().enumerate() {
|
|
let name = type_parameter.ident.name;
|
|
debug!("with_type_parameter_rib: {} {}", node_id,
|
|
type_parameter.id);
|
|
|
|
if seen_bindings.contains(&name) {
|
|
self.resolve_error(type_parameter.span,
|
|
format!("the name `{}` is already \
|
|
used for a type \
|
|
parameter in this type \
|
|
parameter list",
|
|
token::get_name(
|
|
name))[])
|
|
}
|
|
seen_bindings.insert(name);
|
|
|
|
let def_like = DlDef(DefTyParam(space,
|
|
index as u32,
|
|
local_def(type_parameter.id),
|
|
name));
|
|
// Associate this type parameter with
|
|
// the item that bound it
|
|
self.record_def(type_parameter.id,
|
|
(DefTyParamBinder(node_id), LastMod(AllPublic)));
|
|
// plain insert (no renaming)
|
|
function_type_rib.bindings.insert(name, def_like);
|
|
}
|
|
self.type_ribs.push(function_type_rib);
|
|
}
|
|
|
|
NoTypeParameters => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
f(self);
|
|
|
|
match type_parameters {
|
|
HasTypeParameters(..) => { self.type_ribs.pop(); }
|
|
NoTypeParameters => { }
|
|
}
|
|
}
|
|
|
|
fn with_label_rib<F>(&mut self, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
self.label_ribs.push(Rib::new(NormalRibKind));
|
|
f(self);
|
|
self.label_ribs.pop();
|
|
}
|
|
|
|
fn with_constant_rib<F>(&mut self, f: F) where
|
|
F: FnOnce(&mut Resolver),
|
|
{
|
|
self.value_ribs.push(Rib::new(ConstantItemRibKind));
|
|
self.type_ribs.push(Rib::new(ConstantItemRibKind));
|
|
f(self);
|
|
self.type_ribs.pop();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_function(&mut self,
|
|
rib_kind: RibKind,
|
|
optional_declaration: Option<&FnDecl>,
|
|
type_parameters: TypeParameters,
|
|
block: &Block) {
|
|
// Create a value rib for the function.
|
|
let function_value_rib = Rib::new(rib_kind);
|
|
self.value_ribs.push(function_value_rib);
|
|
|
|
// Create a label rib for the function.
|
|
let function_label_rib = Rib::new(rib_kind);
|
|
self.label_ribs.push(function_label_rib);
|
|
|
|
// If this function has type parameters, add them now.
|
|
self.with_type_parameter_rib(type_parameters, |this| {
|
|
// Resolve the type parameters.
|
|
match type_parameters {
|
|
NoTypeParameters => {
|
|
// Continue.
|
|
}
|
|
HasTypeParameters(ref generics, _, _, _) => {
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
this.resolve_where_clause(&generics.where_clause);
|
|
}
|
|
}
|
|
|
|
// Add each argument to the rib.
|
|
match optional_declaration {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(declaration) => {
|
|
let mut bindings_list = HashMap::new();
|
|
for argument in declaration.inputs.iter() {
|
|
this.resolve_pattern(&*argument.pat,
|
|
ArgumentIrrefutableMode,
|
|
&mut bindings_list);
|
|
|
|
this.resolve_type(&*argument.ty);
|
|
|
|
debug!("(resolving function) recorded argument");
|
|
}
|
|
|
|
if let ast::Return(ref ret_ty) = declaration.output {
|
|
this.resolve_type(&**ret_ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve the function body.
|
|
this.resolve_block(&*block);
|
|
|
|
debug!("(resolving function) leaving function");
|
|
});
|
|
|
|
self.label_ribs.pop();
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_type_parameters(&mut self,
|
|
type_parameters: &OwnedSlice<TyParam>) {
|
|
for type_parameter in type_parameters.iter() {
|
|
self.resolve_type_parameter(type_parameter);
|
|
}
|
|
}
|
|
|
|
fn resolve_type_parameter(&mut self,
|
|
type_parameter: &TyParam) {
|
|
for bound in type_parameter.bounds.iter() {
|
|
self.resolve_type_parameter_bound(type_parameter.id, bound,
|
|
TraitBoundingTypeParameter);
|
|
}
|
|
match type_parameter.default {
|
|
Some(ref ty) => self.resolve_type(&**ty),
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
fn resolve_type_parameter_bounds(&mut self,
|
|
id: NodeId,
|
|
type_parameter_bounds: &OwnedSlice<TyParamBound>,
|
|
reference_type: TraitReferenceType) {
|
|
for type_parameter_bound in type_parameter_bounds.iter() {
|
|
self.resolve_type_parameter_bound(id, type_parameter_bound,
|
|
reference_type);
|
|
}
|
|
}
|
|
|
|
fn resolve_type_parameter_bound(&mut self,
|
|
id: NodeId,
|
|
type_parameter_bound: &TyParamBound,
|
|
reference_type: TraitReferenceType) {
|
|
match *type_parameter_bound {
|
|
TraitTyParamBound(ref tref, _) => {
|
|
self.resolve_poly_trait_reference(id, tref, reference_type)
|
|
}
|
|
RegionTyParamBound(..) => {}
|
|
}
|
|
}
|
|
|
|
fn resolve_poly_trait_reference(&mut self,
|
|
id: NodeId,
|
|
poly_trait_reference: &PolyTraitRef,
|
|
reference_type: TraitReferenceType) {
|
|
self.resolve_trait_reference(id, &poly_trait_reference.trait_ref, reference_type)
|
|
}
|
|
|
|
fn resolve_trait_reference(&mut self,
|
|
id: NodeId,
|
|
trait_reference: &TraitRef,
|
|
reference_type: TraitReferenceType) {
|
|
match self.resolve_path(id, &trait_reference.path, TypeNS, true) {
|
|
None => {
|
|
let path_str = self.path_names_to_string(&trait_reference.path);
|
|
let usage_str = match reference_type {
|
|
TraitBoundingTypeParameter => "bound type parameter with",
|
|
TraitImplementation => "implement",
|
|
TraitDerivation => "derive",
|
|
TraitObject => "reference",
|
|
TraitQPath => "extract an associated type from",
|
|
};
|
|
|
|
let msg = format!("attempt to {} a nonexistent trait `{}`", usage_str, path_str);
|
|
self.resolve_error(trait_reference.path.span, msg[]);
|
|
}
|
|
Some(def) => {
|
|
match def {
|
|
(DefTrait(_), _) => {
|
|
debug!("(resolving trait) found trait def: {}", def);
|
|
self.record_def(trait_reference.ref_id, def);
|
|
}
|
|
(def, _) => {
|
|
self.resolve_error(trait_reference.path.span,
|
|
format!("`{}` is not a trait",
|
|
self.path_names_to_string(
|
|
&trait_reference.path))[]);
|
|
|
|
// If it's a typedef, give a note
|
|
if let DefTy(..) = def {
|
|
self.session.span_note(
|
|
trait_reference.path.span,
|
|
format!("`type` aliases cannot be used for traits")
|
|
[]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_where_clause(&mut self, where_clause: &ast::WhereClause) {
|
|
for predicate in where_clause.predicates.iter() {
|
|
match predicate {
|
|
&ast::WherePredicate::BoundPredicate(ref bound_pred) => {
|
|
self.resolve_type(&*bound_pred.bounded_ty);
|
|
|
|
for bound in bound_pred.bounds.iter() {
|
|
self.resolve_type_parameter_bound(bound_pred.bounded_ty.id, bound,
|
|
TraitBoundingTypeParameter);
|
|
}
|
|
}
|
|
&ast::WherePredicate::RegionPredicate(_) => {}
|
|
&ast::WherePredicate::EqPredicate(ref eq_pred) => {
|
|
match self.resolve_path(eq_pred.id, &eq_pred.path, TypeNS, true) {
|
|
Some((def @ DefTyParam(..), last_private)) => {
|
|
self.record_def(eq_pred.id, (def, last_private));
|
|
}
|
|
_ => {
|
|
self.resolve_error(eq_pred.path.span,
|
|
"undeclared associated type");
|
|
}
|
|
}
|
|
|
|
self.resolve_type(&*eq_pred.ty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_struct(&mut self,
|
|
id: NodeId,
|
|
generics: &Generics,
|
|
fields: &[StructField]) {
|
|
// If applicable, create a rib for the type parameters.
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
id,
|
|
ItemRibKind),
|
|
|this| {
|
|
// Resolve the type parameters.
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
this.resolve_where_clause(&generics.where_clause);
|
|
|
|
// Resolve fields.
|
|
for field in fields.iter() {
|
|
this.resolve_type(&*field.node.ty);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Does this really need to take a RibKind or is it always going
|
|
// to be NormalRibKind?
|
|
fn resolve_method(&mut self,
|
|
rib_kind: RibKind,
|
|
method: &ast::Method) {
|
|
let method_generics = method.pe_generics();
|
|
let type_parameters = HasTypeParameters(method_generics,
|
|
FnSpace,
|
|
method.id,
|
|
rib_kind);
|
|
|
|
if let SelfExplicit(ref typ, _) = method.pe_explicit_self().node {
|
|
self.resolve_type(&**typ);
|
|
}
|
|
|
|
self.resolve_function(rib_kind,
|
|
Some(method.pe_fn_decl()),
|
|
type_parameters,
|
|
method.pe_body());
|
|
}
|
|
|
|
fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
// Handle nested impls (inside fn bodies)
|
|
let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
|
|
let result = f(self);
|
|
self.current_self_type = previous_value;
|
|
result
|
|
}
|
|
|
|
fn with_optional_trait_ref<T, F>(&mut self, id: NodeId,
|
|
opt_trait_ref: &Option<TraitRef>,
|
|
f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
let new_val = match *opt_trait_ref {
|
|
Some(ref trait_ref) => {
|
|
self.resolve_trait_reference(id, trait_ref, TraitImplementation);
|
|
|
|
match self.def_map.borrow().get(&trait_ref.ref_id) {
|
|
Some(def) => {
|
|
let did = def.def_id();
|
|
Some((did, trait_ref.clone()))
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
None => None
|
|
};
|
|
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
|
|
let result = f(self);
|
|
self.current_trait_ref = original_trait_ref;
|
|
result
|
|
}
|
|
|
|
fn resolve_implementation(&mut self,
|
|
id: NodeId,
|
|
generics: &Generics,
|
|
opt_trait_reference: &Option<TraitRef>,
|
|
self_type: &Ty,
|
|
impl_items: &[ImplItem]) {
|
|
// If applicable, create a rib for the type parameters.
|
|
self.with_type_parameter_rib(HasTypeParameters(generics,
|
|
TypeSpace,
|
|
id,
|
|
NormalRibKind),
|
|
|this| {
|
|
// Resolve the type parameters.
|
|
this.resolve_type_parameters(&generics.ty_params);
|
|
this.resolve_where_clause(&generics.where_clause);
|
|
|
|
// Resolve the trait reference, if necessary.
|
|
this.with_optional_trait_ref(id, opt_trait_reference, |this| {
|
|
// Resolve the self type.
|
|
this.resolve_type(self_type);
|
|
|
|
this.with_current_self_type(self_type, |this| {
|
|
for impl_item in impl_items.iter() {
|
|
match *impl_item {
|
|
MethodImplItem(ref method) => {
|
|
// If this is a trait impl, ensure the method
|
|
// exists in trait
|
|
this.check_trait_item(method.pe_ident().name,
|
|
method.span);
|
|
|
|
// We also need a new scope for the method-
|
|
// specific type parameters.
|
|
this.resolve_method(
|
|
MethodRibKind(id, ProvidedMethod(method.id)),
|
|
&**method);
|
|
}
|
|
TypeImplItem(ref typedef) => {
|
|
// If this is a trait impl, ensure the method
|
|
// exists in trait
|
|
this.check_trait_item(typedef.ident.name,
|
|
typedef.span);
|
|
|
|
this.resolve_type(&*typedef.typ);
|
|
}
|
|
}
|
|
}
|
|
});
|
|
});
|
|
});
|
|
|
|
// Check that the current type is indeed a type, if we have an anonymous impl
|
|
if opt_trait_reference.is_none() {
|
|
match self_type.node {
|
|
// TyPath is the only thing that we handled in `build_reduced_graph_for_item`,
|
|
// where we created a module with the name of the type in order to implement
|
|
// an anonymous trait. In the case that the path does not resolve to an actual
|
|
// type, the result will be that the type name resolves to a module but not
|
|
// a type (shadowing any imported modules or types with this name), leading
|
|
// to weird user-visible bugs. So we ward this off here. See #15060.
|
|
TyPath(ref path, path_id) => {
|
|
match self.def_map.borrow().get(&path_id) {
|
|
// FIXME: should we catch other options and give more precise errors?
|
|
Some(&DefMod(_)) => {
|
|
self.resolve_error(path.span, "inherent implementations are not \
|
|
allowed for types not defined in \
|
|
the current module");
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
_ => { }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_trait_item(&self, name: Name, span: Span) {
|
|
// If there is a TraitRef in scope for an impl, then the method must be in the trait.
|
|
for &(did, ref trait_ref) in self.current_trait_ref.iter() {
|
|
if self.trait_item_map.get(&(name, did)).is_none() {
|
|
let path_str = self.path_names_to_string(&trait_ref.path);
|
|
self.resolve_error(span,
|
|
format!("method `{}` is not a member of trait `{}`",
|
|
token::get_name(name),
|
|
path_str)[]);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_module(&mut self, module: &Mod, _span: Span,
|
|
_name: Name, id: NodeId) {
|
|
// Write the implementations in scope into the module metadata.
|
|
debug!("(resolving module) resolving module ID {}", id);
|
|
visit::walk_mod(self, module);
|
|
}
|
|
|
|
fn resolve_local(&mut self, local: &Local) {
|
|
// Resolve the type.
|
|
if let Some(ref ty) = local.ty {
|
|
self.resolve_type(&**ty);
|
|
}
|
|
|
|
// Resolve the initializer, if necessary.
|
|
match local.init {
|
|
None => {
|
|
// Nothing to do.
|
|
}
|
|
Some(ref initializer) => {
|
|
self.resolve_expr(&**initializer);
|
|
}
|
|
}
|
|
|
|
// Resolve the pattern.
|
|
let mut bindings_list = HashMap::new();
|
|
self.resolve_pattern(&*local.pat,
|
|
LocalIrrefutableMode,
|
|
&mut bindings_list);
|
|
}
|
|
|
|
// build a map from pattern identifiers to binding-info's.
|
|
// this is done hygienically. This could arise for a macro
|
|
// that expands into an or-pattern where one 'x' was from the
|
|
// user and one 'x' came from the macro.
|
|
fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
|
|
let mut result = HashMap::new();
|
|
pat_bindings(&self.def_map, pat, |binding_mode, _id, sp, path1| {
|
|
let name = mtwt::resolve(path1.node);
|
|
result.insert(name, BindingInfo {
|
|
span: sp,
|
|
binding_mode: binding_mode
|
|
});
|
|
});
|
|
return result;
|
|
}
|
|
|
|
// check that all of the arms in an or-pattern have exactly the
|
|
// same set of bindings, with the same binding modes for each.
|
|
fn check_consistent_bindings(&mut self, arm: &Arm) {
|
|
if arm.pats.len() == 0 {
|
|
return
|
|
}
|
|
let map_0 = self.binding_mode_map(&*arm.pats[0]);
|
|
for (i, p) in arm.pats.iter().enumerate() {
|
|
let map_i = self.binding_mode_map(&**p);
|
|
|
|
for (&key, &binding_0) in map_0.iter() {
|
|
match map_i.get(&key) {
|
|
None => {
|
|
self.resolve_error(
|
|
p.span,
|
|
format!("variable `{}` from pattern #1 is \
|
|
not bound in pattern #{}",
|
|
token::get_name(key),
|
|
i + 1)[]);
|
|
}
|
|
Some(binding_i) => {
|
|
if binding_0.binding_mode != binding_i.binding_mode {
|
|
self.resolve_error(
|
|
binding_i.span,
|
|
format!("variable `{}` is bound with different \
|
|
mode in pattern #{} than in pattern #1",
|
|
token::get_name(key),
|
|
i + 1)[]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (&key, &binding) in map_i.iter() {
|
|
if !map_0.contains_key(&key) {
|
|
self.resolve_error(
|
|
binding.span,
|
|
format!("variable `{}` from pattern {}{} is \
|
|
not bound in pattern {}1",
|
|
token::get_name(key),
|
|
"#", i + 1, "#")[]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_arm(&mut self, arm: &Arm) {
|
|
self.value_ribs.push(Rib::new(NormalRibKind));
|
|
|
|
let mut bindings_list = HashMap::new();
|
|
for pattern in arm.pats.iter() {
|
|
self.resolve_pattern(&**pattern, RefutableMode, &mut bindings_list);
|
|
}
|
|
|
|
// This has to happen *after* we determine which
|
|
// pat_idents are variants
|
|
self.check_consistent_bindings(arm);
|
|
|
|
visit::walk_expr_opt(self, &arm.guard);
|
|
self.resolve_expr(&*arm.body);
|
|
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
fn resolve_block(&mut self, block: &Block) {
|
|
debug!("(resolving block) entering block");
|
|
self.value_ribs.push(Rib::new(NormalRibKind));
|
|
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.current_module.clone();
|
|
match orig_module.anonymous_children.borrow().get(&block.id) {
|
|
None => { /* Nothing to do. */ }
|
|
Some(anonymous_module) => {
|
|
debug!("(resolving block) found anonymous module, moving \
|
|
down");
|
|
self.current_module = anonymous_module.clone();
|
|
}
|
|
}
|
|
|
|
// Descend into the block.
|
|
visit::walk_block(self, block);
|
|
|
|
// Move back up.
|
|
self.current_module = orig_module;
|
|
|
|
self.value_ribs.pop();
|
|
debug!("(resolving block) leaving block");
|
|
}
|
|
|
|
fn resolve_type(&mut self, ty: &Ty) {
|
|
match ty.node {
|
|
// Like path expressions, the interpretation of path types depends
|
|
// on whether the path has multiple elements in it or not.
|
|
|
|
TyPath(ref path, path_id) => {
|
|
// This is a path in the type namespace. Walk through scopes
|
|
// looking for it.
|
|
let mut result_def = None;
|
|
|
|
// First, check to see whether the name is a primitive type.
|
|
if path.segments.len() == 1 {
|
|
let id = path.segments.last().unwrap().identifier;
|
|
|
|
match self.primitive_type_table
|
|
.primitive_types
|
|
.get(&id.name) {
|
|
|
|
Some(&primitive_type) => {
|
|
result_def =
|
|
Some((DefPrimTy(primitive_type), LastMod(AllPublic)));
|
|
|
|
if path.segments[0].parameters.has_lifetimes() {
|
|
span_err!(self.session, path.span, E0157,
|
|
"lifetime parameters are not allowed on this type");
|
|
} else if !path.segments[0].parameters.is_empty() {
|
|
span_err!(self.session, path.span, E0153,
|
|
"type parameters are not allowed on this type");
|
|
}
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
match result_def {
|
|
None => {
|
|
match self.resolve_path(ty.id, path, TypeNS, true) {
|
|
Some(def) => {
|
|
debug!("(resolving type) resolved `{}` to \
|
|
type {}",
|
|
token::get_ident(path.segments.last().unwrap() .identifier),
|
|
def);
|
|
result_def = Some(def);
|
|
}
|
|
None => {
|
|
result_def = None;
|
|
}
|
|
}
|
|
}
|
|
Some(_) => {} // Continue.
|
|
}
|
|
|
|
match result_def {
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving type) writing resolution for `{}` \
|
|
(id {})",
|
|
self.path_names_to_string(path),
|
|
path_id);
|
|
self.record_def(path_id, def);
|
|
}
|
|
None => {
|
|
let msg = format!("use of undeclared type name `{}`",
|
|
self.path_names_to_string(path));
|
|
self.resolve_error(ty.span, msg[]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TyObjectSum(ref ty, ref bound_vec) => {
|
|
self.resolve_type(&**ty);
|
|
self.resolve_type_parameter_bounds(ty.id, bound_vec,
|
|
TraitBoundingTypeParameter);
|
|
}
|
|
|
|
TyQPath(ref qpath) => {
|
|
self.resolve_type(&*qpath.self_type);
|
|
self.resolve_trait_reference(ty.id, &*qpath.trait_ref, TraitQPath);
|
|
}
|
|
|
|
TyClosure(ref c) => {
|
|
self.resolve_type_parameter_bounds(
|
|
ty.id,
|
|
&c.bounds,
|
|
TraitBoundingTypeParameter);
|
|
visit::walk_ty(self, ty);
|
|
}
|
|
|
|
TyPolyTraitRef(ref bounds) => {
|
|
self.resolve_type_parameter_bounds(
|
|
ty.id,
|
|
bounds,
|
|
TraitObject);
|
|
visit::walk_ty(self, ty);
|
|
}
|
|
_ => {
|
|
// Just resolve embedded types.
|
|
visit::walk_ty(self, ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_pattern(&mut self,
|
|
pattern: &Pat,
|
|
mode: PatternBindingMode,
|
|
// Maps idents to the node ID for the (outermost)
|
|
// pattern that binds them
|
|
bindings_list: &mut HashMap<Name, NodeId>) {
|
|
let pat_id = pattern.id;
|
|
walk_pat(pattern, |pattern| {
|
|
match pattern.node {
|
|
PatIdent(binding_mode, ref path1, _) => {
|
|
|
|
// The meaning of pat_ident with no type parameters
|
|
// depends on whether an enum variant or unit-like struct
|
|
// with that name is in scope. The probing lookup has to
|
|
// be careful not to emit spurious errors. Only matching
|
|
// patterns (match) can match nullary variants or
|
|
// unit-like structs. For binding patterns (let), matching
|
|
// such a value is simply disallowed (since it's rarely
|
|
// what you want).
|
|
|
|
let ident = path1.node;
|
|
let renamed = mtwt::resolve(ident);
|
|
|
|
match self.resolve_bare_identifier_pattern(ident.name, pattern.span) {
|
|
FoundStructOrEnumVariant(ref def, lp)
|
|
if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `{}` to \
|
|
struct or enum variant",
|
|
token::get_name(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"an enum variant");
|
|
self.record_def(pattern.id, (def.clone(), lp));
|
|
}
|
|
FoundStructOrEnumVariant(..) => {
|
|
self.resolve_error(
|
|
pattern.span,
|
|
format!("declaration of `{}` shadows an enum \
|
|
variant or unit-like struct in \
|
|
scope",
|
|
token::get_name(renamed))[]);
|
|
}
|
|
FoundConst(ref def, lp) if mode == RefutableMode => {
|
|
debug!("(resolving pattern) resolving `{}` to \
|
|
constant",
|
|
token::get_name(renamed));
|
|
|
|
self.enforce_default_binding_mode(
|
|
pattern,
|
|
binding_mode,
|
|
"a constant");
|
|
self.record_def(pattern.id, (def.clone(), lp));
|
|
}
|
|
FoundConst(..) => {
|
|
self.resolve_error(pattern.span,
|
|
"only irrefutable patterns \
|
|
allowed here");
|
|
}
|
|
BareIdentifierPatternUnresolved => {
|
|
debug!("(resolving pattern) binding `{}`",
|
|
token::get_name(renamed));
|
|
|
|
let def = DefLocal(pattern.id);
|
|
|
|
// Record the definition so that later passes
|
|
// will be able to distinguish variants from
|
|
// locals in patterns.
|
|
|
|
self.record_def(pattern.id, (def, LastMod(AllPublic)));
|
|
|
|
// Add the binding to the local ribs, if it
|
|
// doesn't already exist in the bindings list. (We
|
|
// must not add it if it's in the bindings list
|
|
// because that breaks the assumptions later
|
|
// passes make about or-patterns.)
|
|
if !bindings_list.contains_key(&renamed) {
|
|
let this = &mut *self;
|
|
let last_rib = this.value_ribs.last_mut().unwrap();
|
|
last_rib.bindings.insert(renamed, DlDef(def));
|
|
bindings_list.insert(renamed, pat_id);
|
|
} else if mode == ArgumentIrrefutableMode &&
|
|
bindings_list.contains_key(&renamed) {
|
|
// Forbid duplicate bindings in the same
|
|
// parameter list.
|
|
self.resolve_error(pattern.span,
|
|
format!("identifier `{}` \
|
|
is bound more \
|
|
than once in \
|
|
this parameter \
|
|
list",
|
|
token::get_ident(
|
|
ident))
|
|
[])
|
|
} else if bindings_list.get(&renamed) ==
|
|
Some(&pat_id) {
|
|
// Then this is a duplicate variable in the
|
|
// same disjunction, which is an error.
|
|
self.resolve_error(pattern.span,
|
|
format!("identifier `{}` is bound \
|
|
more than once in the same \
|
|
pattern",
|
|
token::get_ident(ident))[]);
|
|
}
|
|
// Else, not bound in the same pattern: do
|
|
// nothing.
|
|
}
|
|
}
|
|
}
|
|
|
|
PatEnum(ref path, _) => {
|
|
// This must be an enum variant, struct or const.
|
|
match self.resolve_path(pat_id, path, ValueNS, false) {
|
|
Some(def @ (DefVariant(..), _)) |
|
|
Some(def @ (DefStruct(..), _)) |
|
|
Some(def @ (DefConst(..), _)) => {
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
Some((DefStatic(..), _)) => {
|
|
self.resolve_error(path.span,
|
|
"static variables cannot be \
|
|
referenced in a pattern, \
|
|
use a `const` instead");
|
|
}
|
|
Some(_) => {
|
|
self.resolve_error(path.span,
|
|
format!("`{}` is not an enum variant, struct or const",
|
|
token::get_ident(
|
|
path.segments.last().unwrap().identifier))[]);
|
|
}
|
|
None => {
|
|
self.resolve_error(path.span,
|
|
format!("unresolved enum variant, struct or const `{}`",
|
|
token::get_ident(
|
|
path.segments.last().unwrap().identifier))[]);
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for ty in path.segments
|
|
.iter()
|
|
.flat_map(|s| s.parameters.types().into_iter()) {
|
|
self.resolve_type(&**ty);
|
|
}
|
|
}
|
|
|
|
PatLit(ref expr) => {
|
|
self.resolve_expr(&**expr);
|
|
}
|
|
|
|
PatRange(ref first_expr, ref last_expr) => {
|
|
self.resolve_expr(&**first_expr);
|
|
self.resolve_expr(&**last_expr);
|
|
}
|
|
|
|
PatStruct(ref path, _, _) => {
|
|
match self.resolve_path(pat_id, path, TypeNS, false) {
|
|
Some(definition) => {
|
|
self.record_def(pattern.id, definition);
|
|
}
|
|
result => {
|
|
debug!("(resolving pattern) didn't find struct \
|
|
def: {}", result);
|
|
let msg = format!("`{}` does not name a structure",
|
|
self.path_names_to_string(path));
|
|
self.resolve_error(path.span, msg[]);
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
true
|
|
});
|
|
}
|
|
|
|
fn resolve_bare_identifier_pattern(&mut self, name: Name, span: Span)
|
|
-> BareIdentifierPatternResolution {
|
|
let module = self.current_module.clone();
|
|
match self.resolve_item_in_lexical_scope(module,
|
|
name,
|
|
ValueNS) {
|
|
Success((target, _)) => {
|
|
debug!("(resolve bare identifier pattern) succeeded in \
|
|
finding {} at {}",
|
|
token::get_name(name),
|
|
target.bindings.value_def.borrow());
|
|
match *target.bindings.value_def.borrow() {
|
|
None => {
|
|
panic!("resolved name in the value namespace to a \
|
|
set of name bindings with no def?!");
|
|
}
|
|
Some(def) => {
|
|
// For the two success cases, this lookup can be
|
|
// considered as not having a private component because
|
|
// the lookup happened only within the current module.
|
|
match def.def {
|
|
def @ DefVariant(..) | def @ DefStruct(..) => {
|
|
return FoundStructOrEnumVariant(def, LastMod(AllPublic));
|
|
}
|
|
def @ DefConst(..) => {
|
|
return FoundConst(def, LastMod(AllPublic));
|
|
}
|
|
DefStatic(..) => {
|
|
self.resolve_error(span,
|
|
"static variables cannot be \
|
|
referenced in a pattern, \
|
|
use a `const` instead");
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
_ => {
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Indeterminate => {
|
|
panic!("unexpected indeterminate result");
|
|
}
|
|
Failed(err) => {
|
|
match err {
|
|
Some((span, msg)) => {
|
|
self.resolve_error(span, format!("failed to resolve: {}",
|
|
msg)[]);
|
|
}
|
|
None => ()
|
|
}
|
|
|
|
debug!("(resolve bare identifier pattern) failed to find {}",
|
|
token::get_name(name));
|
|
return BareIdentifierPatternUnresolved;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If `check_ribs` is true, checks the local definitions first; i.e.
|
|
/// doesn't skip straight to the containing module.
|
|
fn resolve_path(&mut self,
|
|
id: NodeId,
|
|
path: &Path,
|
|
namespace: Namespace,
|
|
check_ribs: bool) -> Option<(Def, LastPrivate)> {
|
|
// First, resolve the types and associated type bindings.
|
|
for ty in path.segments.iter().flat_map(|s| s.parameters.types().into_iter()) {
|
|
self.resolve_type(&**ty);
|
|
}
|
|
for binding in path.segments.iter().flat_map(|s| s.parameters.bindings().into_iter()) {
|
|
self.resolve_type(&*binding.ty);
|
|
}
|
|
|
|
// A special case for sugared associated type paths `T::A` where `T` is
|
|
// a type parameter and `A` is an associated type on some bound of `T`.
|
|
if namespace == TypeNS && path.segments.len() == 2 {
|
|
match self.resolve_identifier(path.segments[0].identifier,
|
|
TypeNS,
|
|
true,
|
|
path.span) {
|
|
Some((def, last_private)) => {
|
|
match def {
|
|
DefTyParam(_, _, did, _) => {
|
|
let def = DefAssociatedPath(TyParamProvenance::FromParam(did),
|
|
path.segments.last()
|
|
.unwrap().identifier);
|
|
return Some((def, last_private));
|
|
}
|
|
DefSelfTy(nid) => {
|
|
let def = DefAssociatedPath(TyParamProvenance::FromSelf(local_def(nid)),
|
|
path.segments.last()
|
|
.unwrap().identifier);
|
|
return Some((def, last_private));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
if path.global {
|
|
return self.resolve_crate_relative_path(path, namespace);
|
|
}
|
|
|
|
// Try to find a path to an item in a module.
|
|
let unqualified_def =
|
|
self.resolve_identifier(path.segments.last().unwrap().identifier,
|
|
namespace,
|
|
check_ribs,
|
|
path.span);
|
|
|
|
if path.segments.len() > 1 {
|
|
let def = self.resolve_module_relative_path(path, namespace);
|
|
match (def, unqualified_def) {
|
|
(Some((ref d, _)), Some((ref ud, _))) if *d == *ud => {
|
|
self.session
|
|
.add_lint(lint::builtin::UNUSED_QUALIFICATIONS,
|
|
id,
|
|
path.span,
|
|
"unnecessary qualification".to_string());
|
|
}
|
|
_ => ()
|
|
}
|
|
|
|
return def;
|
|
}
|
|
|
|
return unqualified_def;
|
|
}
|
|
|
|
// resolve a single identifier (used as a varref)
|
|
fn resolve_identifier(&mut self,
|
|
identifier: Ident,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
span: Span)
|
|
-> Option<(Def, LastPrivate)> {
|
|
if check_ribs {
|
|
match self.resolve_identifier_in_local_ribs(identifier,
|
|
namespace,
|
|
span) {
|
|
Some(def) => {
|
|
return Some((def, LastMod(AllPublic)));
|
|
}
|
|
None => {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
return self.resolve_item_by_name_in_lexical_scope(identifier.name, namespace);
|
|
}
|
|
|
|
// FIXME #4952: Merge me with resolve_name_in_module?
|
|
fn resolve_definition_of_name_in_module(&mut self,
|
|
containing_module: Rc<Module>,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> NameDefinition {
|
|
// First, search children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &containing_module);
|
|
|
|
match containing_module.children.borrow().get(&name) {
|
|
Some(child_name_bindings) => {
|
|
match child_name_bindings.def_for_namespace(namespace) {
|
|
Some(def) => {
|
|
// Found it. Stop the search here.
|
|
let p = child_name_bindings.defined_in_public_namespace(
|
|
namespace);
|
|
let lp = if p {LastMod(AllPublic)} else {
|
|
LastMod(DependsOn(def.def_id()))
|
|
};
|
|
return ChildNameDefinition(def, lp);
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
// Next, search import resolutions.
|
|
match containing_module.import_resolutions.borrow().get(&name) {
|
|
Some(import_resolution) if import_resolution.is_public => {
|
|
if let Some(target) = (*import_resolution).target_for_namespace(namespace) {
|
|
match target.bindings.def_for_namespace(namespace) {
|
|
Some(def) => {
|
|
// Found it.
|
|
let id = import_resolution.id(namespace);
|
|
// track imports and extern crates as well
|
|
self.used_imports.insert((id, namespace));
|
|
self.record_import_use(id, name);
|
|
match target.target_module.def_id.get() {
|
|
Some(DefId{krate: kid, ..}) => {
|
|
self.used_crates.insert(kid);
|
|
},
|
|
_ => {}
|
|
}
|
|
return ImportNameDefinition(def, LastMod(AllPublic));
|
|
}
|
|
None => {
|
|
// This can happen with external impls, due to
|
|
// the imperfect way we read the metadata.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(..) | None => {} // Continue.
|
|
}
|
|
|
|
// Finally, search through external children.
|
|
if namespace == TypeNS {
|
|
if let Some(module) = containing_module.external_module_children.borrow()
|
|
.get(&name).cloned() {
|
|
if let Some(def_id) = module.def_id.get() {
|
|
// track used crates
|
|
self.used_crates.insert(def_id.krate);
|
|
let lp = if module.is_public {LastMod(AllPublic)} else {
|
|
LastMod(DependsOn(def_id))
|
|
};
|
|
return ChildNameDefinition(DefMod(def_id), lp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NoNameDefinition;
|
|
}
|
|
|
|
// resolve a "module-relative" path, e.g. a::b::c
|
|
fn resolve_module_relative_path(&mut self,
|
|
path: &Path,
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
let module_path = path.segments.init().iter()
|
|
.map(|ps| ps.identifier.name)
|
|
.collect::<Vec<_>>();
|
|
|
|
let containing_module;
|
|
let last_private;
|
|
let module = self.current_module.clone();
|
|
match self.resolve_module_path(module,
|
|
module_path[],
|
|
UseLexicalScope,
|
|
path.span,
|
|
PathSearch) {
|
|
Failed(err) => {
|
|
let (span, msg) = match err {
|
|
Some((span, msg)) => (span, msg),
|
|
None => {
|
|
let msg = format!("Use of undeclared type or module `{}`",
|
|
self.names_to_string(module_path.as_slice()));
|
|
(path.span, msg)
|
|
}
|
|
};
|
|
|
|
self.resolve_error(span, format!("failed to resolve. {}",
|
|
msg)[]);
|
|
return None;
|
|
}
|
|
Indeterminate => panic!("indeterminate unexpected"),
|
|
Success((resulting_module, resulting_last_private)) => {
|
|
containing_module = resulting_module;
|
|
last_private = resulting_last_private;
|
|
}
|
|
}
|
|
|
|
let name = path.segments.last().unwrap().identifier.name;
|
|
let def = match self.resolve_definition_of_name_in_module(containing_module.clone(),
|
|
name,
|
|
namespace) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => {
|
|
(def, last_private.or(lp))
|
|
}
|
|
};
|
|
if let Some(DefId{krate: kid, ..}) = containing_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
return Some(def);
|
|
}
|
|
|
|
/// Invariant: This must be called only during main resolution, not during
|
|
/// import resolution.
|
|
fn resolve_crate_relative_path(&mut self,
|
|
path: &Path,
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
let module_path = path.segments.init().iter()
|
|
.map(|ps| ps.identifier.name)
|
|
.collect::<Vec<_>>();
|
|
|
|
let root_module = self.graph_root.get_module();
|
|
|
|
let containing_module;
|
|
let last_private;
|
|
match self.resolve_module_path_from_root(root_module,
|
|
module_path[],
|
|
0,
|
|
path.span,
|
|
PathSearch,
|
|
LastMod(AllPublic)) {
|
|
Failed(err) => {
|
|
let (span, msg) = match err {
|
|
Some((span, msg)) => (span, msg),
|
|
None => {
|
|
let msg = format!("Use of undeclared module `::{}`",
|
|
self.names_to_string(module_path[]));
|
|
(path.span, msg)
|
|
}
|
|
};
|
|
|
|
self.resolve_error(span, format!("failed to resolve. {}",
|
|
msg)[]);
|
|
return None;
|
|
}
|
|
|
|
Indeterminate => {
|
|
panic!("indeterminate unexpected");
|
|
}
|
|
|
|
Success((resulting_module, resulting_last_private)) => {
|
|
containing_module = resulting_module;
|
|
last_private = resulting_last_private;
|
|
}
|
|
}
|
|
|
|
let name = path.segments.last().unwrap().identifier.name;
|
|
match self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace) {
|
|
NoNameDefinition => {
|
|
// We failed to resolve the name. Report an error.
|
|
return None;
|
|
}
|
|
ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => {
|
|
return Some((def, last_private.or(lp)));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_identifier_in_local_ribs(&mut self,
|
|
ident: Ident,
|
|
namespace: Namespace,
|
|
span: Span)
|
|
-> Option<Def> {
|
|
// Check the local set of ribs.
|
|
let search_result = match namespace {
|
|
ValueNS => {
|
|
let renamed = mtwt::resolve(ident);
|
|
self.search_ribs(self.value_ribs.as_slice(), renamed, span)
|
|
}
|
|
TypeNS => {
|
|
let name = ident.name;
|
|
self.search_ribs(self.type_ribs[], name, span)
|
|
}
|
|
};
|
|
|
|
match search_result {
|
|
Some(DlDef(def)) => {
|
|
debug!("(resolving path in local ribs) resolved `{}` to \
|
|
local: {}",
|
|
token::get_ident(ident),
|
|
def);
|
|
return Some(def);
|
|
}
|
|
Some(DlField) | Some(DlImpl(_)) | None => {
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_item_by_name_in_lexical_scope(&mut self,
|
|
name: Name,
|
|
namespace: Namespace)
|
|
-> Option<(Def, LastPrivate)> {
|
|
// Check the items.
|
|
let module = self.current_module.clone();
|
|
match self.resolve_item_in_lexical_scope(module,
|
|
name,
|
|
namespace) {
|
|
Success((target, _)) => {
|
|
match (*target.bindings).def_for_namespace(namespace) {
|
|
None => {
|
|
// This can happen if we were looking for a type and
|
|
// found a module instead. Modules don't have defs.
|
|
debug!("(resolving item path by identifier in lexical \
|
|
scope) failed to resolve {} after success...",
|
|
token::get_name(name));
|
|
return None;
|
|
}
|
|
Some(def) => {
|
|
debug!("(resolving item path in lexical scope) \
|
|
resolved `{}` to item",
|
|
token::get_name(name));
|
|
// This lookup is "all public" because it only searched
|
|
// for one identifier in the current module (couldn't
|
|
// have passed through reexports or anything like that.
|
|
return Some((def, LastMod(AllPublic)));
|
|
}
|
|
}
|
|
}
|
|
Indeterminate => {
|
|
panic!("unexpected indeterminate result");
|
|
}
|
|
Failed(err) => {
|
|
match err {
|
|
Some((span, msg)) =>
|
|
self.resolve_error(span, format!("failed to resolve. {}",
|
|
msg)[]),
|
|
None => ()
|
|
}
|
|
|
|
debug!("(resolving item path by identifier in lexical scope) \
|
|
failed to resolve {}", token::get_name(name));
|
|
return None;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn with_no_errors<T, F>(&mut self, f: F) -> T where
|
|
F: FnOnce(&mut Resolver) -> T,
|
|
{
|
|
self.emit_errors = false;
|
|
let rs = f(self);
|
|
self.emit_errors = true;
|
|
rs
|
|
}
|
|
|
|
fn resolve_error(&self, span: Span, s: &str) {
|
|
if self.emit_errors {
|
|
self.session.span_err(span, s);
|
|
}
|
|
}
|
|
|
|
fn find_fallback_in_self_type(&mut self, name: Name) -> FallbackSuggestion {
|
|
fn extract_path_and_node_id(t: &Ty, allow: FallbackChecks)
|
|
-> Option<(Path, NodeId, FallbackChecks)> {
|
|
match t.node {
|
|
TyPath(ref path, node_id) => Some((path.clone(), node_id, allow)),
|
|
TyPtr(ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, OnlyTraitAndStatics),
|
|
TyRptr(_, ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, allow),
|
|
// This doesn't handle the remaining `Ty` variants as they are not
|
|
// that commonly the self_type, it might be interesting to provide
|
|
// support for those in future.
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn get_module(this: &mut Resolver, span: Span, name_path: &[ast::Name])
|
|
-> Option<Rc<Module>> {
|
|
let root = this.current_module.clone();
|
|
let last_name = name_path.last().unwrap();
|
|
|
|
if name_path.len() == 1 {
|
|
match this.primitive_type_table.primitive_types.get(last_name) {
|
|
Some(_) => None,
|
|
None => {
|
|
match this.current_module.children.borrow().get(last_name) {
|
|
Some(child) => child.get_module_if_available(),
|
|
None => None
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
match this.resolve_module_path(root,
|
|
name_path[],
|
|
UseLexicalScope,
|
|
span,
|
|
PathSearch) {
|
|
Success((module, _)) => Some(module),
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
|
|
let (path, node_id, allowed) = match self.current_self_type {
|
|
Some(ref ty) => match extract_path_and_node_id(ty, Everything) {
|
|
Some(x) => x,
|
|
None => return NoSuggestion,
|
|
},
|
|
None => return NoSuggestion,
|
|
};
|
|
|
|
if allowed == Everything {
|
|
// Look for a field with the same name in the current self_type.
|
|
match self.def_map.borrow().get(&node_id) {
|
|
Some(&DefTy(did, _))
|
|
| Some(&DefStruct(did))
|
|
| Some(&DefVariant(_, did, _)) => match self.structs.get(&did) {
|
|
None => {}
|
|
Some(fields) => {
|
|
if fields.iter().any(|&field_name| name == field_name) {
|
|
return Field;
|
|
}
|
|
}
|
|
},
|
|
_ => {} // Self type didn't resolve properly
|
|
}
|
|
}
|
|
|
|
let name_path = path.segments.iter().map(|seg| seg.identifier.name).collect::<Vec<_>>();
|
|
|
|
// Look for a method in the current self type's impl module.
|
|
match get_module(self, path.span, name_path[]) {
|
|
Some(module) => match module.children.borrow().get(&name) {
|
|
Some(binding) => {
|
|
let p_str = self.path_names_to_string(&path);
|
|
match binding.def_for_namespace(ValueNS) {
|
|
Some(DefStaticMethod(_, provenance)) => {
|
|
match provenance {
|
|
FromImpl(_) => return StaticMethod(p_str),
|
|
FromTrait(_) => unreachable!()
|
|
}
|
|
}
|
|
Some(DefMethod(_, None, _)) if allowed == Everything => return Method,
|
|
Some(DefMethod(_, Some(_), _)) => return TraitItem,
|
|
_ => ()
|
|
}
|
|
}
|
|
None => {}
|
|
},
|
|
None => {}
|
|
}
|
|
|
|
// Look for a method in the current trait.
|
|
match self.current_trait_ref {
|
|
Some((did, ref trait_ref)) => {
|
|
let path_str = self.path_names_to_string(&trait_ref.path);
|
|
|
|
match self.trait_item_map.get(&(name, did)) {
|
|
Some(&StaticMethodTraitItemKind) => {
|
|
return TraitMethod(path_str)
|
|
}
|
|
Some(_) => return TraitItem,
|
|
None => {}
|
|
}
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
NoSuggestion
|
|
}
|
|
|
|
fn find_best_match_for_name(&mut self, name: &str, max_distance: uint)
|
|
-> Option<String> {
|
|
let this = &mut *self;
|
|
|
|
let mut maybes: Vec<token::InternedString> = Vec::new();
|
|
let mut values: Vec<uint> = Vec::new();
|
|
|
|
for rib in this.value_ribs.iter().rev() {
|
|
for (&k, _) in rib.bindings.iter() {
|
|
maybes.push(token::get_name(k));
|
|
values.push(uint::MAX);
|
|
}
|
|
}
|
|
|
|
let mut smallest = 0;
|
|
for (i, other) in maybes.iter().enumerate() {
|
|
values[i] = lev_distance(name, other.get());
|
|
|
|
if values[i] <= values[smallest] {
|
|
smallest = i;
|
|
}
|
|
}
|
|
|
|
if values.len() > 0 &&
|
|
values[smallest] != uint::MAX &&
|
|
values[smallest] < name.len() + 2 &&
|
|
values[smallest] <= max_distance &&
|
|
name != maybes[smallest].get() {
|
|
|
|
Some(maybes[smallest].get().to_string())
|
|
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn resolve_expr(&mut self, expr: &Expr) {
|
|
// First, record candidate traits for this expression if it could
|
|
// result in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
match expr.node {
|
|
// The interpretation of paths depends on whether the path has
|
|
// multiple elements in it or not.
|
|
|
|
ExprPath(ref path) => {
|
|
// This is a local path in the value namespace. Walk through
|
|
// scopes looking for it.
|
|
|
|
let path_name = self.path_names_to_string(path);
|
|
|
|
match self.resolve_path(expr.id, path, ValueNS, true) {
|
|
// Check if struct variant
|
|
Some((DefVariant(_, _, true), _)) => {
|
|
self.resolve_error(expr.span,
|
|
format!("`{}` is a struct variant name, but \
|
|
this expression \
|
|
uses it like a function name",
|
|
path_name).as_slice());
|
|
|
|
self.session.span_help(expr.span,
|
|
format!("Did you mean to write: \
|
|
`{} {{ /* fields */ }}`?",
|
|
path_name).as_slice());
|
|
}
|
|
Some(def) => {
|
|
// Write the result into the def map.
|
|
debug!("(resolving expr) resolved `{}`",
|
|
path_name);
|
|
|
|
self.record_def(expr.id, def);
|
|
}
|
|
None => {
|
|
// Be helpful if the name refers to a struct
|
|
// (The pattern matching def_tys where the id is in self.structs
|
|
// matches on regular structs while excluding tuple- and enum-like
|
|
// structs, which wouldn't result in this error.)
|
|
match self.with_no_errors(|this|
|
|
this.resolve_path(expr.id, path, TypeNS, false)) {
|
|
Some((DefTy(struct_id, _), _))
|
|
if self.structs.contains_key(&struct_id) => {
|
|
self.resolve_error(expr.span,
|
|
format!("`{}` is a structure name, but \
|
|
this expression \
|
|
uses it like a function name",
|
|
path_name).as_slice());
|
|
|
|
self.session.span_help(expr.span,
|
|
format!("Did you mean to write: \
|
|
`{} {{ /* fields */ }}`?",
|
|
path_name).as_slice());
|
|
|
|
}
|
|
_ => {
|
|
let mut method_scope = false;
|
|
self.value_ribs.iter().rev().all(|rib| {
|
|
let res = match *rib {
|
|
Rib { bindings: _, kind: MethodRibKind(_, _) } => true,
|
|
Rib { bindings: _, kind: ItemRibKind } => false,
|
|
_ => return true, // Keep advancing
|
|
};
|
|
|
|
method_scope = res;
|
|
false // Stop advancing
|
|
});
|
|
|
|
if method_scope && token::get_name(self.self_name).get()
|
|
== path_name {
|
|
self.resolve_error(
|
|
expr.span,
|
|
"`self` is not available \
|
|
in a static method. Maybe a \
|
|
`self` argument is missing?");
|
|
} else {
|
|
let last_name = path.segments.last().unwrap().identifier.name;
|
|
let mut msg = match self.find_fallback_in_self_type(last_name) {
|
|
NoSuggestion => {
|
|
// limit search to 5 to reduce the number
|
|
// of stupid suggestions
|
|
self.find_best_match_for_name(path_name.as_slice(), 5)
|
|
.map_or("".to_string(),
|
|
|x| format!("`{}`", x))
|
|
}
|
|
Field =>
|
|
format!("`self.{}`", path_name),
|
|
Method
|
|
| TraitItem =>
|
|
format!("to call `self.{}`", path_name),
|
|
TraitMethod(path_str)
|
|
| StaticMethod(path_str) =>
|
|
format!("to call `{}::{}`", path_str, path_name)
|
|
};
|
|
|
|
if msg.len() > 0 {
|
|
msg = format!(". Did you mean {}?", msg)
|
|
}
|
|
|
|
self.resolve_error(
|
|
expr.span,
|
|
format!("unresolved name `{}`{}",
|
|
path_name,
|
|
msg).as_slice());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprClosure(capture_clause, _, ref fn_decl, ref block) => {
|
|
self.capture_mode_map.insert(expr.id, capture_clause);
|
|
self.resolve_function(ClosureRibKind(expr.id, ast::DUMMY_NODE_ID),
|
|
Some(&**fn_decl), NoTypeParameters,
|
|
&**block);
|
|
}
|
|
|
|
ExprStruct(ref path, _, _) => {
|
|
// Resolve the path to the structure it goes to. We don't
|
|
// check to ensure that the path is actually a structure; that
|
|
// is checked later during typeck.
|
|
match self.resolve_path(expr.id, path, TypeNS, false) {
|
|
Some(definition) => self.record_def(expr.id, definition),
|
|
result => {
|
|
debug!("(resolving expression) didn't find struct \
|
|
def: {}", result);
|
|
let msg = format!("`{}` does not name a structure",
|
|
self.path_names_to_string(path));
|
|
self.resolve_error(path.span, msg[]);
|
|
}
|
|
}
|
|
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
|
|
ExprLoop(_, Some(label)) | ExprWhile(_, _, Some(label)) => {
|
|
self.with_label_rib(|this| {
|
|
let def_like = DlDef(DefLabel(expr.id));
|
|
|
|
{
|
|
let rib = this.label_ribs.last_mut().unwrap();
|
|
let renamed = mtwt::resolve(label);
|
|
rib.bindings.insert(renamed, def_like);
|
|
}
|
|
|
|
visit::walk_expr(this, expr);
|
|
})
|
|
}
|
|
|
|
ExprForLoop(ref pattern, ref head, ref body, optional_label) => {
|
|
self.resolve_expr(&**head);
|
|
|
|
self.value_ribs.push(Rib::new(NormalRibKind));
|
|
|
|
self.resolve_pattern(&**pattern,
|
|
LocalIrrefutableMode,
|
|
&mut HashMap::new());
|
|
|
|
match optional_label {
|
|
None => {}
|
|
Some(label) => {
|
|
self.label_ribs
|
|
.push(Rib::new(NormalRibKind));
|
|
let def_like = DlDef(DefLabel(expr.id));
|
|
|
|
{
|
|
let rib = self.label_ribs.last_mut().unwrap();
|
|
let renamed = mtwt::resolve(label);
|
|
rib.bindings.insert(renamed, def_like);
|
|
}
|
|
}
|
|
}
|
|
|
|
self.resolve_block(&**body);
|
|
|
|
if optional_label.is_some() {
|
|
drop(self.label_ribs.pop())
|
|
}
|
|
|
|
self.value_ribs.pop();
|
|
}
|
|
|
|
ExprBreak(Some(label)) | ExprAgain(Some(label)) => {
|
|
let renamed = mtwt::resolve(label);
|
|
match self.search_label(renamed) {
|
|
None => {
|
|
self.resolve_error(
|
|
expr.span,
|
|
format!("use of undeclared label `{}`",
|
|
token::get_ident(label))[])
|
|
}
|
|
Some(DlDef(def @ DefLabel(_))) => {
|
|
// Since this def is a label, it is never read.
|
|
self.record_def(expr.id, (def, LastMod(AllPublic)))
|
|
}
|
|
Some(_) => {
|
|
self.session.span_bug(expr.span,
|
|
"label wasn't mapped to a \
|
|
label def!")
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
visit::walk_expr(self, expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
|
|
match expr.node {
|
|
ExprField(_, ident) => {
|
|
// FIXME(#6890): Even though you can't treat a method like a
|
|
// field, we need to add any trait methods we find that match
|
|
// the field name so that we can do some nice error reporting
|
|
// later on in typeck.
|
|
let traits = self.search_for_traits_containing_method(ident.node.name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
ExprMethodCall(ident, _, _) => {
|
|
debug!("(recording candidate traits for expr) recording \
|
|
traits for {}",
|
|
expr.id);
|
|
let traits = self.search_for_traits_containing_method(ident.node.name);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
_ => {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn search_for_traits_containing_method(&mut self, name: Name) -> Vec<DefId> {
|
|
debug!("(searching for traits containing method) looking for '{}'",
|
|
token::get_name(name));
|
|
|
|
fn add_trait_info(found_traits: &mut Vec<DefId>,
|
|
trait_def_id: DefId,
|
|
name: Name) {
|
|
debug!("(adding trait info) found trait {}:{} for method '{}'",
|
|
trait_def_id.krate,
|
|
trait_def_id.node,
|
|
token::get_name(name));
|
|
found_traits.push(trait_def_id);
|
|
}
|
|
|
|
let mut found_traits = Vec::new();
|
|
let mut search_module = self.current_module.clone();
|
|
loop {
|
|
// Look for the current trait.
|
|
match self.current_trait_ref {
|
|
Some((trait_def_id, _)) => {
|
|
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
|
|
add_trait_info(&mut found_traits, trait_def_id, name);
|
|
}
|
|
}
|
|
None => {} // Nothing to do.
|
|
}
|
|
|
|
// Look for trait children.
|
|
build_reduced_graph::populate_module_if_necessary(self, &search_module);
|
|
|
|
{
|
|
for (_, child_names) in search_module.children.borrow().iter() {
|
|
let def = match child_names.def_for_namespace(TypeNS) {
|
|
Some(def) => def,
|
|
None => continue
|
|
};
|
|
let trait_def_id = match def {
|
|
DefTrait(trait_def_id) => trait_def_id,
|
|
_ => continue,
|
|
};
|
|
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
|
|
add_trait_info(&mut found_traits, trait_def_id, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for imports.
|
|
for (_, import) in search_module.import_resolutions.borrow().iter() {
|
|
let target = match import.target_for_namespace(TypeNS) {
|
|
None => continue,
|
|
Some(target) => target,
|
|
};
|
|
let did = match target.bindings.def_for_namespace(TypeNS) {
|
|
Some(DefTrait(trait_def_id)) => trait_def_id,
|
|
Some(..) | None => continue,
|
|
};
|
|
if self.trait_item_map.contains_key(&(name, did)) {
|
|
add_trait_info(&mut found_traits, did, name);
|
|
let id = import.type_id;
|
|
self.used_imports.insert((id, TypeNS));
|
|
let trait_name = self.get_trait_name(did);
|
|
self.record_import_use(id, trait_name);
|
|
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() {
|
|
self.used_crates.insert(kid);
|
|
}
|
|
}
|
|
}
|
|
|
|
match search_module.parent_link.clone() {
|
|
NoParentLink | ModuleParentLink(..) => break,
|
|
BlockParentLink(parent_module, _) => {
|
|
search_module = parent_module.upgrade().unwrap();
|
|
}
|
|
}
|
|
}
|
|
|
|
found_traits
|
|
}
|
|
|
|
fn record_def(&mut self, node_id: NodeId, (def, lp): (Def, LastPrivate)) {
|
|
debug!("(recording def) recording {} for {}, last private {}",
|
|
def, node_id, lp);
|
|
assert!(match lp {LastImport{..} => false, _ => true},
|
|
"Import should only be used for `use` directives");
|
|
self.last_private.insert(node_id, lp);
|
|
|
|
match self.def_map.borrow_mut().entry(&node_id) {
|
|
// Resolve appears to "resolve" the same ID multiple
|
|
// times, so here is a sanity check it at least comes to
|
|
// the same conclusion! - nmatsakis
|
|
Occupied(entry) => if def != *entry.get() {
|
|
self.session
|
|
.bug(format!("node_id {} resolved first to {} and \
|
|
then {}",
|
|
node_id,
|
|
*entry.get(),
|
|
def)[]);
|
|
},
|
|
Vacant(entry) => { entry.insert(def); },
|
|
}
|
|
}
|
|
|
|
fn enforce_default_binding_mode(&mut self,
|
|
pat: &Pat,
|
|
pat_binding_mode: BindingMode,
|
|
descr: &str) {
|
|
match pat_binding_mode {
|
|
BindByValue(_) => {}
|
|
BindByRef(..) => {
|
|
self.resolve_error(pat.span,
|
|
format!("cannot use `ref` binding mode \
|
|
with {}",
|
|
descr)[]);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Diagnostics
|
|
//
|
|
// Diagnostics are not particularly efficient, because they're rarely
|
|
// hit.
|
|
//
|
|
|
|
/// A somewhat inefficient routine to obtain the name of a module.
|
|
fn module_to_string(&self, module: &Module) -> String {
|
|
let mut names = Vec::new();
|
|
|
|
fn collect_mod(names: &mut Vec<ast::Name>, module: &Module) {
|
|
match module.parent_link {
|
|
NoParentLink => {}
|
|
ModuleParentLink(ref module, name) => {
|
|
names.push(name);
|
|
collect_mod(names, &*module.upgrade().unwrap());
|
|
}
|
|
BlockParentLink(ref module, _) => {
|
|
// danger, shouldn't be ident?
|
|
names.push(special_idents::opaque.name);
|
|
collect_mod(names, &*module.upgrade().unwrap());
|
|
}
|
|
}
|
|
}
|
|
collect_mod(&mut names, module);
|
|
|
|
if names.len() == 0 {
|
|
return "???".to_string();
|
|
}
|
|
self.names_to_string(names.into_iter().rev()
|
|
.collect::<Vec<ast::Name>>()[])
|
|
}
|
|
|
|
#[allow(dead_code)] // useful for debugging
|
|
fn dump_module(&mut self, module_: Rc<Module>) {
|
|
debug!("Dump of module `{}`:", self.module_to_string(&*module_));
|
|
|
|
debug!("Children:");
|
|
build_reduced_graph::populate_module_if_necessary(self, &module_);
|
|
for (&name, _) in module_.children.borrow().iter() {
|
|
debug!("* {}", token::get_name(name));
|
|
}
|
|
|
|
debug!("Import resolutions:");
|
|
let import_resolutions = module_.import_resolutions.borrow();
|
|
for (&name, import_resolution) in import_resolutions.iter() {
|
|
let value_repr;
|
|
match import_resolution.target_for_namespace(ValueNS) {
|
|
None => { value_repr = "".to_string(); }
|
|
Some(_) => {
|
|
value_repr = " value:?".to_string();
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
let type_repr;
|
|
match import_resolution.target_for_namespace(TypeNS) {
|
|
None => { type_repr = "".to_string(); }
|
|
Some(_) => {
|
|
type_repr = " type:?".to_string();
|
|
// FIXME #4954
|
|
}
|
|
}
|
|
|
|
debug!("* {}:{}{}", token::get_name(name), value_repr, type_repr);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct CrateMap {
|
|
pub def_map: DefMap,
|
|
pub freevars: RefCell<FreevarMap>,
|
|
pub capture_mode_map: RefCell<CaptureModeMap>,
|
|
pub export_map: ExportMap,
|
|
pub trait_map: TraitMap,
|
|
pub external_exports: ExternalExports,
|
|
pub last_private_map: LastPrivateMap,
|
|
pub glob_map: Option<GlobMap>
|
|
}
|
|
|
|
#[derive(PartialEq,Copy)]
|
|
pub enum MakeGlobMap {
|
|
Yes,
|
|
No
|
|
}
|
|
|
|
/// Entry point to crate resolution.
|
|
pub fn resolve_crate<'a, 'tcx>(session: &'a Session,
|
|
ast_map: &'a ast_map::Map<'tcx>,
|
|
_: &LanguageItems,
|
|
krate: &Crate,
|
|
make_glob_map: MakeGlobMap)
|
|
-> CrateMap {
|
|
let mut resolver = Resolver::new(session, ast_map, krate.span, make_glob_map);
|
|
|
|
build_reduced_graph::build_reduced_graph(&mut resolver, krate);
|
|
session.abort_if_errors();
|
|
|
|
resolver.resolve_imports();
|
|
session.abort_if_errors();
|
|
|
|
record_exports::record(&mut resolver);
|
|
session.abort_if_errors();
|
|
|
|
resolver.resolve_crate(krate);
|
|
session.abort_if_errors();
|
|
|
|
check_unused::check_crate(&mut resolver, krate);
|
|
|
|
CrateMap {
|
|
def_map: resolver.def_map,
|
|
freevars: resolver.freevars,
|
|
capture_mode_map: RefCell::new(resolver.capture_mode_map),
|
|
export_map: resolver.export_map,
|
|
trait_map: resolver.trait_map,
|
|
external_exports: resolver.external_exports,
|
|
last_private_map: resolver.last_private,
|
|
glob_map: if resolver.make_glob_map {
|
|
Some(resolver.glob_map)
|
|
} else {
|
|
None
|
|
},
|
|
}
|
|
}
|