854 lines
26 KiB
Rust
854 lines
26 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A priority queue implemented with a binary heap.
|
|
//!
|
|
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
|
|
//! element is `O(1)`. Converting a vector to a binary heap can be done in-place, and has `O(n)`
|
|
//! complexity. A binary heap can also be converted to a sorted vector in-place, allowing it to
|
|
//! be used for an `O(n log n)` in-place heapsort.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
|
|
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
|
|
//! It shows how to use `BinaryHeap` with custom types.
|
|
//!
|
|
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
|
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
|
|
//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
|
|
//!
|
|
//! ```
|
|
//! use std::collections::BinaryHeap;
|
|
//! use std::uint;
|
|
//!
|
|
//! #[deriving(Copy, Eq, PartialEq)]
|
|
//! struct State {
|
|
//! cost: uint,
|
|
//! position: uint,
|
|
//! }
|
|
//!
|
|
//! // The priority queue depends on `Ord`.
|
|
//! // Explicitly implement the trait so the queue becomes a min-heap
|
|
//! // instead of a max-heap.
|
|
//! impl Ord for State {
|
|
//! fn cmp(&self, other: &State) -> Ordering {
|
|
//! // Notice that the we flip the ordering here
|
|
//! other.cost.cmp(&self.cost)
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // `PartialOrd` needs to be implemented as well.
|
|
//! impl PartialOrd for State {
|
|
//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
|
|
//! Some(self.cmp(other))
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // Each node is represented as an `uint`, for a shorter implementation.
|
|
//! struct Edge {
|
|
//! node: uint,
|
|
//! cost: uint,
|
|
//! }
|
|
//!
|
|
//! // Dijkstra's shortest path algorithm.
|
|
//!
|
|
//! // Start at `start` and use `dist` to track the current shortest distance
|
|
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
|
|
//! // nodes in the queue. It also uses `uint::MAX` as a sentinel value,
|
|
//! // for a simpler implementation.
|
|
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: uint, goal: uint) -> uint {
|
|
//! // dist[node] = current shortest distance from `start` to `node`
|
|
//! let mut dist = Vec::from_elem(adj_list.len(), uint::MAX);
|
|
//!
|
|
//! let mut heap = BinaryHeap::new();
|
|
//!
|
|
//! // We're at `start`, with a zero cost
|
|
//! dist[start] = 0;
|
|
//! heap.push(State { cost: 0, position: start });
|
|
//!
|
|
//! // Examine the frontier with lower cost nodes first (min-heap)
|
|
//! while let Some(State { cost, position }) = heap.pop() {
|
|
//! // Alternatively we could have continued to find all shortest paths
|
|
//! if position == goal { return cost; }
|
|
//!
|
|
//! // Important as we may have already found a better way
|
|
//! if cost > dist[position] { continue; }
|
|
//!
|
|
//! // For each node we can reach, see if we can find a way with
|
|
//! // a lower cost going through this node
|
|
//! for edge in adj_list[position].iter() {
|
|
//! let next = State { cost: cost + edge.cost, position: edge.node };
|
|
//!
|
|
//! // If so, add it to the frontier and continue
|
|
//! if next.cost < dist[next.position] {
|
|
//! heap.push(next);
|
|
//! // Relaxation, we have now found a better way
|
|
//! dist[next.position] = next.cost;
|
|
//! }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // Goal not reachable
|
|
//! uint::MAX
|
|
//! }
|
|
//!
|
|
//! fn main() {
|
|
//! // This is the directed graph we're going to use.
|
|
//! // The node numbers correspond to the different states,
|
|
//! // and the edge weights symbolize the cost of moving
|
|
//! // from one node to another.
|
|
//! // Note that the edges are one-way.
|
|
//! //
|
|
//! // 7
|
|
//! // +-----------------+
|
|
//! // | |
|
|
//! // v 1 2 |
|
|
//! // 0 -----> 1 -----> 3 ---> 4
|
|
//! // | ^ ^ ^
|
|
//! // | | 1 | |
|
|
//! // | | | 3 | 1
|
|
//! // +------> 2 -------+ |
|
|
//! // 10 | |
|
|
//! // +---------------+
|
|
//! //
|
|
//! // The graph is represented as an adjacency list where each index,
|
|
//! // corresponding to a node value, has a list of outgoing edges.
|
|
//! // Chosen for its efficiency.
|
|
//! let graph = vec![
|
|
//! // Node 0
|
|
//! vec![Edge { node: 2, cost: 10 },
|
|
//! Edge { node: 1, cost: 1 }],
|
|
//! // Node 1
|
|
//! vec![Edge { node: 3, cost: 2 }],
|
|
//! // Node 2
|
|
//! vec![Edge { node: 1, cost: 1 },
|
|
//! Edge { node: 3, cost: 3 },
|
|
//! Edge { node: 4, cost: 1 }],
|
|
//! // Node 3
|
|
//! vec![Edge { node: 0, cost: 7 },
|
|
//! Edge { node: 4, cost: 2 }],
|
|
//! // Node 4
|
|
//! vec![]];
|
|
//!
|
|
//! assert_eq!(shortest_path(&graph, 0, 1), 1);
|
|
//! assert_eq!(shortest_path(&graph, 0, 3), 3);
|
|
//! assert_eq!(shortest_path(&graph, 3, 0), 7);
|
|
//! assert_eq!(shortest_path(&graph, 0, 4), 5);
|
|
//! assert_eq!(shortest_path(&graph, 4, 0), uint::MAX);
|
|
//! }
|
|
//! ```
|
|
|
|
#![allow(missing_docs)]
|
|
|
|
use core::prelude::*;
|
|
|
|
use core::default::Default;
|
|
use core::mem::{zeroed, replace, swap};
|
|
use core::ptr;
|
|
|
|
use slice;
|
|
use vec::{mod, Vec};
|
|
|
|
/// A priority queue implemented with a binary heap.
|
|
///
|
|
/// This will be a max-heap.
|
|
#[deriving(Clone)]
|
|
pub struct BinaryHeap<T> {
|
|
data: Vec<T>,
|
|
}
|
|
|
|
#[stable]
|
|
impl<T: Ord> Default for BinaryHeap<T> {
|
|
#[inline]
|
|
#[stable]
|
|
fn default() -> BinaryHeap<T> { BinaryHeap::new() }
|
|
}
|
|
|
|
impl<T: Ord> BinaryHeap<T> {
|
|
/// Creates an empty `BinaryHeap` as a max-heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(4u);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } }
|
|
|
|
/// Creates an empty `BinaryHeap` with a specific capacity.
|
|
/// This preallocates enough memory for `capacity` elements,
|
|
/// so that the `BinaryHeap` does not have to be reallocated
|
|
/// until it contains at least that many values.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::with_capacity(10);
|
|
/// heap.push(4u);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn with_capacity(capacity: uint) -> BinaryHeap<T> {
|
|
BinaryHeap { data: Vec::with_capacity(capacity) }
|
|
}
|
|
|
|
/// Creates a `BinaryHeap` from a vector. This is sometimes called
|
|
/// `heapifying` the vector.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from_vec(vec![9i, 1, 2, 7, 3, 2]);
|
|
/// ```
|
|
pub fn from_vec(vec: Vec<T>) -> BinaryHeap<T> {
|
|
let mut heap = BinaryHeap { data: vec };
|
|
let mut n = heap.len() / 2;
|
|
while n > 0 {
|
|
n -= 1;
|
|
heap.sift_down(n);
|
|
}
|
|
heap
|
|
}
|
|
|
|
/// Returns an iterator visiting all values in the underlying vector, in
|
|
/// arbitrary order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
|
|
///
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
|
/// for x in heap.iter() {
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn iter(&self) -> Iter<T> {
|
|
Iter { iter: self.data.iter() }
|
|
}
|
|
|
|
/// Creates a consuming iterator, that is, one that moves each value out of
|
|
/// the binary heap in arbitrary order. The binary heap cannot be used
|
|
/// after calling this.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
|
|
///
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
|
/// for x in heap.into_iter() {
|
|
/// // x has type int, not &int
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn into_iter(self) -> IntoIter<T> {
|
|
IntoIter { iter: self.data.into_iter() }
|
|
}
|
|
|
|
/// Returns the greatest item in the binary heap, or `None` if it is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// assert_eq!(heap.peek(), None);
|
|
///
|
|
/// heap.push(1i);
|
|
/// heap.push(5);
|
|
/// heap.push(2);
|
|
/// assert_eq!(heap.peek(), Some(&5));
|
|
///
|
|
/// ```
|
|
#[stable]
|
|
pub fn peek(&self) -> Option<&T> {
|
|
self.data.get(0)
|
|
}
|
|
|
|
/// Returns the number of elements the binary heap can hold without reallocating.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::with_capacity(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4u);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn capacity(&self) -> uint { self.data.capacity() }
|
|
|
|
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
|
|
/// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
|
|
///
|
|
/// Note that the allocator may give the collection more space than it requests. Therefore
|
|
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
|
|
/// insertions are expected.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `uint`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.reserve_exact(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4u);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn reserve_exact(&mut self, additional: uint) {
|
|
self.data.reserve_exact(additional);
|
|
}
|
|
|
|
/// Reserves capacity for at least `additional` more elements to be inserted in the
|
|
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the new capacity overflows `uint`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.reserve(100);
|
|
/// assert!(heap.capacity() >= 100);
|
|
/// heap.push(4u);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn reserve(&mut self, additional: uint) {
|
|
self.data.reserve(additional);
|
|
}
|
|
|
|
/// Discards as much additional capacity as possible.
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn shrink_to_fit(&mut self) {
|
|
self.data.shrink_to_fit();
|
|
}
|
|
|
|
/// Removes the greatest item from the binary heap and returns it, or `None` if it
|
|
/// is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::from_vec(vec![1i, 3]);
|
|
///
|
|
/// assert_eq!(heap.pop(), Some(3));
|
|
/// assert_eq!(heap.pop(), Some(1));
|
|
/// assert_eq!(heap.pop(), None);
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn pop(&mut self) -> Option<T> {
|
|
self.data.pop().map(|mut item| {
|
|
if !self.is_empty() {
|
|
swap(&mut item, &mut self.data[0]);
|
|
self.sift_down(0);
|
|
}
|
|
item
|
|
})
|
|
}
|
|
|
|
/// Pushes an item onto the binary heap.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(3i);
|
|
/// heap.push(5);
|
|
/// heap.push(1);
|
|
///
|
|
/// assert_eq!(heap.len(), 3);
|
|
/// assert_eq!(heap.peek(), Some(&5));
|
|
/// ```
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn push(&mut self, item: T) {
|
|
let old_len = self.len();
|
|
self.data.push(item);
|
|
self.sift_up(0, old_len);
|
|
}
|
|
|
|
/// Pushes an item onto the binary heap, then pops the greatest item off the queue in
|
|
/// an optimized fashion.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
/// heap.push(1i);
|
|
/// heap.push(5);
|
|
///
|
|
/// assert_eq!(heap.push_pop(3), 5);
|
|
/// assert_eq!(heap.push_pop(9), 9);
|
|
/// assert_eq!(heap.len(), 2);
|
|
/// assert_eq!(heap.peek(), Some(&3));
|
|
/// ```
|
|
pub fn push_pop(&mut self, mut item: T) -> T {
|
|
match self.data.get_mut(0) {
|
|
None => return item,
|
|
Some(top) => if *top > item {
|
|
swap(&mut item, top);
|
|
} else {
|
|
return item;
|
|
},
|
|
}
|
|
|
|
self.sift_down(0);
|
|
item
|
|
}
|
|
|
|
/// Pops the greatest item off the binary heap, then pushes an item onto the queue in
|
|
/// an optimized fashion. The push is done regardless of whether the binary heap
|
|
/// was empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let mut heap = BinaryHeap::new();
|
|
///
|
|
/// assert_eq!(heap.replace(1i), None);
|
|
/// assert_eq!(heap.replace(3), Some(1));
|
|
/// assert_eq!(heap.len(), 1);
|
|
/// assert_eq!(heap.peek(), Some(&3));
|
|
/// ```
|
|
pub fn replace(&mut self, mut item: T) -> Option<T> {
|
|
if !self.is_empty() {
|
|
swap(&mut item, &mut self.data[0]);
|
|
self.sift_down(0);
|
|
Some(item)
|
|
} else {
|
|
self.push(item);
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Consumes the `BinaryHeap` and returns the underlying vector
|
|
/// in arbitrary order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4, 5, 6, 7]);
|
|
/// let vec = heap.into_vec();
|
|
///
|
|
/// // Will print in some order
|
|
/// for x in vec.iter() {
|
|
/// println!("{}", x);
|
|
/// }
|
|
/// ```
|
|
pub fn into_vec(self) -> Vec<T> { self.data }
|
|
|
|
/// Consumes the `BinaryHeap` and returns a vector in sorted
|
|
/// (ascending) order.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::BinaryHeap;
|
|
///
|
|
/// let mut heap = BinaryHeap::from_vec(vec![1i, 2, 4, 5, 7]);
|
|
/// heap.push(6);
|
|
/// heap.push(3);
|
|
///
|
|
/// let vec = heap.into_sorted_vec();
|
|
/// assert_eq!(vec, vec![1i, 2, 3, 4, 5, 6, 7]);
|
|
/// ```
|
|
pub fn into_sorted_vec(mut self) -> Vec<T> {
|
|
let mut end = self.len();
|
|
while end > 1 {
|
|
end -= 1;
|
|
self.data.swap(0, end);
|
|
self.sift_down_range(0, end);
|
|
}
|
|
self.into_vec()
|
|
}
|
|
|
|
// The implementations of sift_up and sift_down use unsafe blocks in
|
|
// order to move an element out of the vector (leaving behind a
|
|
// zeroed element), shift along the others and move it back into the
|
|
// vector over the junk element. This reduces the constant factor
|
|
// compared to using swaps, which involves twice as many moves.
|
|
fn sift_up(&mut self, start: uint, mut pos: uint) {
|
|
unsafe {
|
|
let new = replace(&mut self.data[pos], zeroed());
|
|
|
|
while pos > start {
|
|
let parent = (pos - 1) >> 1;
|
|
|
|
if new <= self.data[parent] { break; }
|
|
|
|
let x = replace(&mut self.data[parent], zeroed());
|
|
ptr::write(&mut self.data[pos], x);
|
|
pos = parent;
|
|
}
|
|
ptr::write(&mut self.data[pos], new);
|
|
}
|
|
}
|
|
|
|
fn sift_down_range(&mut self, mut pos: uint, end: uint) {
|
|
unsafe {
|
|
let start = pos;
|
|
let new = replace(&mut self.data[pos], zeroed());
|
|
|
|
let mut child = 2 * pos + 1;
|
|
while child < end {
|
|
let right = child + 1;
|
|
if right < end && !(self.data[child] > self.data[right]) {
|
|
child = right;
|
|
}
|
|
let x = replace(&mut self.data[child], zeroed());
|
|
ptr::write(&mut self.data[pos], x);
|
|
pos = child;
|
|
child = 2 * pos + 1;
|
|
}
|
|
|
|
ptr::write(&mut self.data[pos], new);
|
|
self.sift_up(start, pos);
|
|
}
|
|
}
|
|
|
|
fn sift_down(&mut self, pos: uint) {
|
|
let len = self.len();
|
|
self.sift_down_range(pos, len);
|
|
}
|
|
|
|
/// Returns the length of the binary heap.
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn len(&self) -> uint { self.data.len() }
|
|
|
|
/// Checks if the binary heap is empty.
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn is_empty(&self) -> bool { self.len() == 0 }
|
|
|
|
/// Clears the binary heap, returning an iterator over the removed elements.
|
|
#[inline]
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn drain(&mut self) -> Drain<T> {
|
|
Drain { iter: self.data.drain() }
|
|
}
|
|
|
|
/// Drops all items from the binary heap.
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
pub fn clear(&mut self) { self.drain(); }
|
|
}
|
|
|
|
/// `BinaryHeap` iterator.
|
|
pub struct Iter <'a, T: 'a> {
|
|
iter: slice::Iter<'a, T>,
|
|
}
|
|
|
|
impl<'a, T> Iterator<&'a T> for Iter<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'a T> { self.iter.next() }
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
}
|
|
|
|
impl<'a, T> DoubleEndedIterator<&'a T> for Iter<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() }
|
|
}
|
|
|
|
impl<'a, T> ExactSizeIterator<&'a T> for Iter<'a, T> {}
|
|
|
|
/// An iterator that moves out of a `BinaryHeap`.
|
|
pub struct IntoIter<T> {
|
|
iter: vec::IntoIter<T>,
|
|
}
|
|
|
|
impl<T> Iterator<T> for IntoIter<T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<T> { self.iter.next() }
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
}
|
|
|
|
impl<T> DoubleEndedIterator<T> for IntoIter<T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
|
|
}
|
|
|
|
impl<T> ExactSizeIterator<T> for IntoIter<T> {}
|
|
|
|
/// An iterator that drains a `BinaryHeap`.
|
|
pub struct Drain<'a, T: 'a> {
|
|
iter: vec::Drain<'a, T>,
|
|
}
|
|
|
|
impl<'a, T: 'a> Iterator<T> for Drain<'a, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<T> { self.iter.next() }
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
}
|
|
|
|
impl<'a, T: 'a> DoubleEndedIterator<T> for Drain<'a, T> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
|
|
}
|
|
|
|
impl<'a, T: 'a> ExactSizeIterator<T> for Drain<'a, T> {}
|
|
|
|
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
|
|
fn from_iter<Iter: Iterator<T>>(iter: Iter) -> BinaryHeap<T> {
|
|
BinaryHeap::from_vec(iter.collect())
|
|
}
|
|
}
|
|
|
|
impl<T: Ord> Extend<T> for BinaryHeap<T> {
|
|
fn extend<Iter: Iterator<T>>(&mut self, mut iter: Iter) {
|
|
let (lower, _) = iter.size_hint();
|
|
|
|
self.reserve(lower);
|
|
|
|
for elem in iter {
|
|
self.push(elem);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use prelude::*;
|
|
|
|
use super::BinaryHeap;
|
|
|
|
#[test]
|
|
fn test_iterator() {
|
|
let data = vec!(5i, 9, 3);
|
|
let iterout = [9i, 5, 3];
|
|
let heap = BinaryHeap::from_vec(data);
|
|
let mut i = 0;
|
|
for el in heap.iter() {
|
|
assert_eq!(*el, iterout[i]);
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_reverse() {
|
|
let data = vec!(5i, 9, 3);
|
|
let iterout = vec!(3i, 5, 9);
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
let v: Vec<int> = pq.iter().rev().map(|&x| x).collect();
|
|
assert_eq!(v, iterout);
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iter() {
|
|
let data = vec!(5i, 9, 3);
|
|
let iterout = vec!(9i, 5, 3);
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
let v: Vec<int> = pq.into_iter().collect();
|
|
assert_eq!(v, iterout);
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iter_size_hint() {
|
|
let data = vec!(5i, 9);
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
let mut it = pq.into_iter();
|
|
|
|
assert_eq!(it.size_hint(), (2, Some(2)));
|
|
assert_eq!(it.next(), Some(9i));
|
|
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
assert_eq!(it.next(), Some(5i));
|
|
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
assert_eq!(it.next(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_move_iter_reverse() {
|
|
let data = vec!(5i, 9, 3);
|
|
let iterout = vec!(3i, 5, 9);
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
let v: Vec<int> = pq.into_iter().rev().collect();
|
|
assert_eq!(v, iterout);
|
|
}
|
|
|
|
#[test]
|
|
fn test_peek_and_pop() {
|
|
let data = vec!(2u, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1);
|
|
let mut sorted = data.clone();
|
|
sorted.sort();
|
|
let mut heap = BinaryHeap::from_vec(data);
|
|
while !heap.is_empty() {
|
|
assert_eq!(heap.peek().unwrap(), sorted.last().unwrap());
|
|
assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_push() {
|
|
let mut heap = BinaryHeap::from_vec(vec!(2i, 4, 9));
|
|
assert_eq!(heap.len(), 3);
|
|
assert!(*heap.peek().unwrap() == 9);
|
|
heap.push(11);
|
|
assert_eq!(heap.len(), 4);
|
|
assert!(*heap.peek().unwrap() == 11);
|
|
heap.push(5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert!(*heap.peek().unwrap() == 11);
|
|
heap.push(27);
|
|
assert_eq!(heap.len(), 6);
|
|
assert!(*heap.peek().unwrap() == 27);
|
|
heap.push(3);
|
|
assert_eq!(heap.len(), 7);
|
|
assert!(*heap.peek().unwrap() == 27);
|
|
heap.push(103);
|
|
assert_eq!(heap.len(), 8);
|
|
assert!(*heap.peek().unwrap() == 103);
|
|
}
|
|
|
|
#[test]
|
|
fn test_push_unique() {
|
|
let mut heap = BinaryHeap::from_vec(vec!(box 2i, box 4, box 9));
|
|
assert_eq!(heap.len(), 3);
|
|
assert!(*heap.peek().unwrap() == box 9);
|
|
heap.push(box 11);
|
|
assert_eq!(heap.len(), 4);
|
|
assert!(*heap.peek().unwrap() == box 11);
|
|
heap.push(box 5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert!(*heap.peek().unwrap() == box 11);
|
|
heap.push(box 27);
|
|
assert_eq!(heap.len(), 6);
|
|
assert!(*heap.peek().unwrap() == box 27);
|
|
heap.push(box 3);
|
|
assert_eq!(heap.len(), 7);
|
|
assert!(*heap.peek().unwrap() == box 27);
|
|
heap.push(box 103);
|
|
assert_eq!(heap.len(), 8);
|
|
assert!(*heap.peek().unwrap() == box 103);
|
|
}
|
|
|
|
#[test]
|
|
fn test_push_pop() {
|
|
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.push_pop(6), 6);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.push_pop(0), 5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.push_pop(4), 5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.push_pop(1), 4);
|
|
assert_eq!(heap.len(), 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_replace() {
|
|
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.replace(6).unwrap(), 5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.replace(0).unwrap(), 6);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.replace(4).unwrap(), 5);
|
|
assert_eq!(heap.len(), 5);
|
|
assert_eq!(heap.replace(1).unwrap(), 4);
|
|
assert_eq!(heap.len(), 5);
|
|
}
|
|
|
|
fn check_to_vec(mut data: Vec<int>) {
|
|
let heap = BinaryHeap::from_vec(data.clone());
|
|
let mut v = heap.clone().into_vec();
|
|
v.sort();
|
|
data.sort();
|
|
|
|
assert_eq!(v, data);
|
|
assert_eq!(heap.into_sorted_vec(), data);
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_vec() {
|
|
check_to_vec(vec!());
|
|
check_to_vec(vec!(5i));
|
|
check_to_vec(vec!(3i, 2));
|
|
check_to_vec(vec!(2i, 3));
|
|
check_to_vec(vec!(5i, 1, 2));
|
|
check_to_vec(vec!(1i, 100, 2, 3));
|
|
check_to_vec(vec!(1i, 3, 5, 7, 9, 2, 4, 6, 8, 0));
|
|
check_to_vec(vec!(2i, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1));
|
|
check_to_vec(vec!(9i, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0));
|
|
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
|
|
check_to_vec(vec!(10i, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0));
|
|
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2));
|
|
check_to_vec(vec!(5i, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_pop() {
|
|
let mut heap = BinaryHeap::<int>::new();
|
|
assert!(heap.pop().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_peek() {
|
|
let empty = BinaryHeap::<int>::new();
|
|
assert!(empty.peek().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_empty_replace() {
|
|
let mut heap = BinaryHeap::<int>::new();
|
|
assert!(heap.replace(5).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_iter() {
|
|
let xs = vec!(9u, 8, 7, 6, 5, 4, 3, 2, 1);
|
|
|
|
let mut q: BinaryHeap<uint> = xs.iter().rev().map(|&x| x).collect();
|
|
|
|
for &x in xs.iter() {
|
|
assert_eq!(q.pop().unwrap(), x);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_drain() {
|
|
let mut q: BinaryHeap<_> =
|
|
[9u, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
|
|
|
|
assert_eq!(q.drain().take(5).count(), 5);
|
|
|
|
assert!(q.is_empty());
|
|
}
|
|
}
|