rust/src/bootstrap/build/compile.rs
Alex Crichton 16fefc5ead rustbuild: Fix stage1 rustdoc
Just always build stage1 rustdoc, it's really not that much more to build as
it's essentially just one library.
2016-03-08 13:44:14 -08:00

323 lines
13 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::collections::HashMap;
use std::fs;
use std::path::{Path, PathBuf};
use std::process::Command;
use build_helper::output;
use build::util::{exe, staticlib, libdir, mtime, is_dylib};
use build::{Build, Compiler, Mode};
/// Build the standard library.
///
/// This will build the standard library for a particular stage of the build
/// using the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
pub fn std<'a>(build: &'a Build, stage: u32, target: &str,
compiler: &Compiler<'a>) {
let host = compiler.host;
println!("Building stage{} std artifacts ({} -> {})", stage,
host, target);
// Move compiler-rt into place as it'll be required by the compiler when
// building the standard library to link the dylib of libstd
let libdir = build.sysroot_libdir(stage, &host, target);
let _ = fs::remove_dir_all(&libdir);
t!(fs::create_dir_all(&libdir));
t!(fs::hard_link(&build.compiler_rt_built.borrow()[target],
libdir.join(staticlib("compiler-rt", target))));
build_startup_objects(build, target, &libdir);
let out_dir = build.cargo_out(stage, &host, Mode::Libstd, target);
build.clear_if_dirty(&out_dir, &build.compiler_path(compiler));
let mut cargo = build.cargo(stage, compiler, Mode::Libstd, Some(target),
"build");
cargo.arg("--features").arg(build.std_features())
.arg("--manifest-path")
.arg(build.src.join("src/rustc/std_shim/Cargo.toml"));
if let Some(target) = build.config.target_config.get(target) {
if let Some(ref jemalloc) = target.jemalloc {
cargo.env("JEMALLOC_OVERRIDE", jemalloc);
}
}
if let Some(ref p) = build.config.musl_root {
if target.contains("musl") {
cargo.env("MUSL_ROOT", p);
}
}
build.run(&mut cargo);
std_link(build, stage, target, compiler, host);
}
/// Link all libstd rlibs/dylibs into the sysroot location.
///
/// Links those artifacts generated in the given `stage` for `target` produced
/// by `compiler` into `host`'s sysroot.
pub fn std_link(build: &Build,
stage: u32,
target: &str,
compiler: &Compiler,
host: &str) {
let libdir = build.sysroot_libdir(stage, host, target);
let out_dir = build.cargo_out(stage, compiler.host, Mode::Libstd, target);
// If we're linking one compiler host's output into another, then we weren't
// called from the `std` method above. In that case we clean out what's
// already there and then also link compiler-rt into place.
if host != compiler.host {
let _ = fs::remove_dir_all(&libdir);
t!(fs::create_dir_all(&libdir));
t!(fs::hard_link(&build.compiler_rt_built.borrow()[target],
libdir.join(staticlib("compiler-rt", target))));
}
add_to_sysroot(&out_dir, &libdir);
if target.contains("musl") && (target.contains("x86_64") || target.contains("i686")) {
copy_third_party_objects(build, target, &libdir);
}
}
/// Copies the crt(1,i,n).o startup objects
///
/// Only required for musl targets that statically link to libc
fn copy_third_party_objects(build: &Build, target: &str, into: &Path) {
for &obj in &["crt1.o", "crti.o", "crtn.o"] {
t!(fs::copy(compiler_file(build.cc(target), obj), into.join(obj)));
}
}
/// Build and prepare startup objects like rsbegin.o and rsend.o
///
/// These are primarily used on Windows right now for linking executables/dlls.
/// They don't require any library support as they're just plain old object
/// files, so we just use the nightly snapshot compiler to always build them (as
/// no other compilers are guaranteed to be available).
fn build_startup_objects(build: &Build, target: &str, into: &Path) {
if !target.contains("pc-windows-gnu") {
return
}
let compiler = Compiler::new(0, &build.config.build);
let compiler = build.compiler_path(&compiler);
for file in t!(fs::read_dir(build.src.join("src/rtstartup"))) {
let file = t!(file);
build.run(Command::new(&compiler)
.arg("--emit=obj")
.arg("--out-dir").arg(into)
.arg(file.path()));
}
for obj in ["crt2.o", "dllcrt2.o"].iter() {
t!(fs::copy(compiler_file(build.cc(target), obj), into.join(obj)));
}
}
/// Build the compiler.
///
/// This will build the compiler for a particular stage of the build using
/// the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
pub fn rustc<'a>(build: &'a Build, stage: u32, target: &str,
compiler: &Compiler<'a>) {
let host = compiler.host;
println!("Building stage{} compiler artifacts ({} -> {})", stage,
host, target);
let out_dir = build.cargo_out(stage, &host, Mode::Librustc, target);
build.clear_if_dirty(&out_dir, &libstd_shim(build, stage, &host, target));
let mut cargo = build.cargo(stage, compiler, Mode::Librustc, Some(target),
"build");
cargo.arg("--features").arg(build.rustc_features())
.arg("--manifest-path")
.arg(build.src.join("src/rustc/Cargo.toml"));
// Set some configuration variables picked up by build scripts and
// the compiler alike
cargo.env("CFG_RELEASE", &build.release)
.env("CFG_RELEASE_CHANNEL", &build.config.channel)
.env("CFG_VERSION", &build.version)
.env("CFG_BOOTSTRAP_KEY", &build.bootstrap_key)
.env("CFG_PREFIX", build.config.prefix.clone().unwrap_or(String::new()))
.env("RUSTC_BOOTSTRAP_KEY", &build.bootstrap_key)
.env("CFG_LIBDIR_RELATIVE", "lib");
if let Some(ref ver_date) = build.ver_date {
cargo.env("CFG_VER_DATE", ver_date);
}
if let Some(ref ver_hash) = build.ver_hash {
cargo.env("CFG_VER_HASH", ver_hash);
}
if !build.unstable_features {
cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
}
let target_config = build.config.target_config.get(target);
if let Some(ref s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
cargo.env("LLVM_CONFIG", s);
} else {
let llvm_config = build.llvm_out(&build.config.build).join("bin")
.join(exe("llvm-config", target));
cargo.env("LLVM_CONFIG", llvm_config);
}
if build.config.llvm_static_stdcpp {
cargo.env("LLVM_STATIC_STDCPP",
compiler_file(build.cxx(target), "libstdc++.a"));
}
if let Some(ref s) = build.config.rustc_default_linker {
cargo.env("CFG_DEFAULT_LINKER", s);
}
if let Some(ref s) = build.config.rustc_default_ar {
cargo.env("CFG_DEFAULT_AR", s);
}
build.run(&mut cargo);
rustc_link(build, stage, target, compiler, compiler.host);
}
/// Link all librustc rlibs/dylibs into the sysroot location.
///
/// Links those artifacts generated in the given `stage` for `target` produced
/// by `compiler` into `host`'s sysroot.
pub fn rustc_link(build: &Build,
stage: u32,
target: &str,
compiler: &Compiler,
host: &str) {
let libdir = build.sysroot_libdir(stage, host, target);
let out_dir = build.cargo_out(stage, compiler.host, Mode::Librustc, target);
add_to_sysroot(&out_dir, &libdir);
}
/// Cargo's output path for the standard library in a given stage, compiled
/// by a particular compiler for the specified target.
fn libstd_shim(build: &Build, stage: u32, host: &str, target: &str) -> PathBuf {
build.cargo_out(stage, host, Mode::Libstd, target).join("libstd_shim.rlib")
}
fn compiler_file(compiler: &Path, file: &str) -> String {
output(Command::new(compiler)
.arg(format!("-print-file-name={}", file))).trim().to_string()
}
/// Prepare a new compiler from the artifacts in `stage`
///
/// This will assemble a compiler in `build/$host/stage$stage`. The compiler
/// must have been previously produced by the `stage - 1` build.config.build
/// compiler.
pub fn assemble_rustc(build: &Build, stage: u32, host: &str) {
assert!(stage > 0, "the stage0 compiler isn't assembled, it's downloaded");
// Clear out old files
let sysroot = build.sysroot(stage, host);
let _ = fs::remove_dir_all(&sysroot);
t!(fs::create_dir_all(&sysroot));
// Link in all dylibs to the libdir
let sysroot_libdir = sysroot.join(libdir(host));
t!(fs::create_dir_all(&sysroot_libdir));
let src_libdir = build.sysroot_libdir(stage - 1, &build.config.build, host);
for f in t!(fs::read_dir(&src_libdir)).map(|f| t!(f)) {
let filename = f.file_name().into_string().unwrap();
if is_dylib(&filename) {
t!(fs::hard_link(&f.path(), sysroot_libdir.join(&filename)));
}
}
let out_dir = build.cargo_out(stage - 1, &build.config.build,
Mode::Librustc, host);
// Link the compiler binary itself into place
let rustc = out_dir.join(exe("rustc", host));
let bindir = sysroot.join("bin");
t!(fs::create_dir_all(&bindir));
let compiler = build.compiler_path(&Compiler::new(stage, host));
let _ = fs::remove_file(&compiler);
t!(fs::hard_link(rustc, compiler));
// See if rustdoc exists to link it into place
let rustdoc = exe("rustdoc", host);
let rustdoc_src = out_dir.join(&rustdoc);
let rustdoc_dst = bindir.join(&rustdoc);
if fs::metadata(&rustdoc_src).is_ok() {
let _ = fs::remove_file(&rustdoc_dst);
t!(fs::hard_link(&rustdoc_src, &rustdoc_dst));
}
}
/// Link some files into a rustc sysroot.
///
/// For a particular stage this will link all of the contents of `out_dir`
/// into the sysroot of the `host` compiler, assuming the artifacts are
/// compiled for the specified `target`.
fn add_to_sysroot(out_dir: &Path, sysroot_dst: &Path) {
// Collect the set of all files in the dependencies directory, keyed
// off the name of the library. We assume everything is of the form
// `foo-<hash>.{rlib,so,...}`, and there could be multiple different
// `<hash>` values for the same name (of old builds).
let mut map = HashMap::new();
for file in t!(fs::read_dir(out_dir.join("deps"))).map(|f| t!(f)) {
let filename = file.file_name().into_string().unwrap();
// We're only interested in linking rlibs + dylibs, other things like
// unit tests don't get linked in
if !filename.ends_with(".rlib") &&
!filename.ends_with(".lib") &&
!is_dylib(&filename) {
continue
}
let file = file.path();
let dash = filename.find("-").unwrap();
let key = (filename[..dash].to_string(),
file.extension().unwrap().to_owned());
map.entry(key).or_insert(Vec::new())
.push(file.clone());
}
// For all hash values found, pick the most recent one to move into the
// sysroot, that should be the one we just built.
for (_, paths) in map {
let (_, path) = paths.iter().map(|path| {
(mtime(&path).seconds(), path)
}).max().unwrap();
t!(fs::hard_link(&path,
sysroot_dst.join(path.file_name().unwrap())));
}
}
/// Build a tool in `src/tools`
///
/// This will build the specified tool with the specified `host` compiler in
/// `stage` into the normal cargo output directory.
pub fn tool(build: &Build, stage: u32, host: &str, tool: &str) {
println!("Building stage{} tool {} ({})", stage, tool, host);
let compiler = Compiler::new(stage, host);
// FIXME: need to clear out previous tool and ideally deps, may require
// isolating output directories or require a pseudo shim step to
// clear out all the info.
//
// Maybe when libstd is compiled it should clear out the rustc of the
// corresponding stage?
// let out_dir = build.cargo_out(stage, &host, Mode::Librustc, target);
// build.clear_if_dirty(&out_dir, &libstd_shim(build, stage, &host, target));
let mut cargo = build.cargo(stage, &compiler, Mode::Tool, None, "build");
cargo.arg("--manifest-path")
.arg(build.src.join(format!("src/tools/{}/Cargo.toml", tool)));
build.run(&mut cargo);
}