rust/src/comp/middle/trans.rs
Marijn Haverbeke 6bead0e4cc Use operator names for operator methods
The methods used to implement operators now simply use
the name of the operator itself, except for unary -, which is called
min to not clash with binary -. Index is called [].

Closes #1520
2012-01-26 15:52:28 +01:00

5635 lines
197 KiB
Rust

// trans.rs: Translate the completed AST to the LLVM IR.
//
// Some functions here, such as trans_block and trans_expr, return a value --
// the result of the translation to LLVM -- while others, such as trans_fn,
// trans_impl, and trans_item, are called only for the side effect of adding a
// particular definition to the LLVM IR output we're producing.
//
// Hopefully useful general knowledge about trans:
//
// * There's no way to find out the ty::t type of a ValueRef. Doing so
// would be "trying to get the eggs out of an omelette" (credit:
// pcwalton). You can, instead, find out its TypeRef by calling val_ty,
// but many TypeRefs correspond to one ty::t; for instance, tup(int, int,
// int) and rec(x=int, y=int, z=int) will have the same TypeRef.
import core::ctypes::c_uint;
import std::{map, time};
import std::map::hashmap;
import std::map::{new_int_hash, new_str_hash};
import option::{some, none};
import driver::session;
import session::session;
import front::attr;
import middle::{ty, gc, resolve, debuginfo};
import middle::freevars::*;
import back::{link, abi, upcall};
import syntax::{ast, ast_util, codemap};
import syntax::visit;
import syntax::codemap::span;
import syntax::print::pprust::{expr_to_str, stmt_to_str, path_to_str};
import pat_util::*;
import visit::vt;
import util::common::*;
import lib::llvm::{llvm, mk_target_data, mk_type_names};
import lib::llvm::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef};
import lib::llvm::{True, False};
import link::{mangle_internal_name_by_type_only,
mangle_internal_name_by_seq,
mangle_internal_name_by_path,
mangle_internal_name_by_path_and_seq,
mangle_exported_name};
import metadata::{csearch, cstore};
import util::ppaux::{ty_to_str, ty_to_short_str};
import trans_common::*;
import trans_build::*;
import tvec = trans_vec;
fn type_of_1(bcx: @block_ctxt, t: ty::t) -> TypeRef {
let cx = bcx_ccx(bcx);
check type_has_static_size(cx, t);
type_of(cx, bcx.sp, t)
}
fn type_of(cx: @crate_ctxt, sp: span, t: ty::t) : type_has_static_size(cx, t)
-> TypeRef {
// Should follow from type_has_static_size -- argh.
// FIXME (requires Issue #586)
check non_ty_var(cx, t);
type_of_inner(cx, sp, t)
}
fn type_of_explicit_args(cx: @crate_ctxt, sp: span, inputs: [ty::arg]) ->
[TypeRef] {
let atys = [];
for arg in inputs {
let arg_ty = arg.ty;
// FIXME: would be nice to have a constraint on arg
// that would obviate the need for this check
check non_ty_var(cx, arg_ty);
let llty = type_of_inner(cx, sp, arg_ty);
atys += [arg.mode == ast::by_val ? llty : T_ptr(llty)];
}
ret atys;
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn type_of_fn(cx: @crate_ctxt, sp: span, inputs: [ty::arg],
output: ty::t, params: [ty::param_bounds]) -> TypeRef {
let atys: [TypeRef] = [];
// Arg 0: Output pointer.
check non_ty_var(cx, output);
let out_ty = T_ptr(type_of_inner(cx, sp, output));
atys += [out_ty];
// Arg 1: Environment
atys += [T_opaque_cbox_ptr(cx)];
// Args >2: ty params, if not acquired via capture...
for bounds in params {
atys += [T_ptr(cx.tydesc_type)];
for bound in *bounds {
alt bound {
ty::bound_iface(_) { atys += [T_ptr(T_dict())]; }
_ {}
}
}
}
// ... then explicit args.
atys += type_of_explicit_args(cx, sp, inputs);
ret T_fn(atys, llvm::LLVMVoidType());
}
// Given a function type and a count of ty params, construct an llvm type
fn type_of_fn_from_ty(cx: @crate_ctxt, sp: span, fty: ty::t,
param_bounds: [ty::param_bounds]) -> TypeRef {
// FIXME: Check should be unnecessary, b/c it's implied
// by returns_non_ty_var(t). Make that a postcondition
// (see Issue #586)
let ret_ty = ty::ty_fn_ret(cx.tcx, fty);
ret type_of_fn(cx, sp, ty::ty_fn_args(cx.tcx, fty),
ret_ty, param_bounds);
}
fn type_of_inner(cx: @crate_ctxt, sp: span, t: ty::t)
: non_ty_var(cx, t) -> TypeRef {
// Check the cache.
if cx.lltypes.contains_key(t) { ret cx.lltypes.get(t); }
let llty = alt ty::struct(cx.tcx, t) {
ty::ty_native(_) { T_ptr(T_i8()) }
ty::ty_nil { T_nil() }
ty::ty_bot {
T_nil() /* ...I guess? */
}
ty::ty_bool { T_bool() }
ty::ty_int(t) { T_int_ty(cx, t) }
ty::ty_uint(t) { T_uint_ty(cx, t) }
ty::ty_float(t) { T_float_ty(cx, t) }
ty::ty_str { T_ptr(T_vec(cx, T_i8())) }
ty::ty_enum(did, _) { type_of_enum(cx, sp, did, t) }
ty::ty_box(mt) {
let mt_ty = mt.ty;
check non_ty_var(cx, mt_ty);
T_ptr(T_box(cx, type_of_inner(cx, sp, mt_ty))) }
ty::ty_uniq(mt) {
let mt_ty = mt.ty;
check non_ty_var(cx, mt_ty);
T_ptr(type_of_inner(cx, sp, mt_ty)) }
ty::ty_vec(mt) {
let mt_ty = mt.ty;
if ty::type_has_dynamic_size(cx.tcx, mt_ty) {
T_ptr(cx.opaque_vec_type)
} else {
// should be unnecessary
check non_ty_var(cx, mt_ty);
T_ptr(T_vec(cx, type_of_inner(cx, sp, mt_ty))) }
}
ty::ty_ptr(mt) {
let mt_ty = mt.ty;
check non_ty_var(cx, mt_ty);
T_ptr(type_of_inner(cx, sp, mt_ty)) }
ty::ty_rec(fields) {
let tys: [TypeRef] = [];
for f: ty::field in fields {
let mt_ty = f.mt.ty;
check non_ty_var(cx, mt_ty);
tys += [type_of_inner(cx, sp, mt_ty)];
}
T_struct(tys)
}
ty::ty_fn(_) {
T_fn_pair(cx, type_of_fn_from_ty(cx, sp, t, []))
}
ty::ty_iface(_, _) { T_opaque_iface_ptr(cx) }
ty::ty_res(_, sub, tps) {
let sub1 = ty::substitute_type_params(cx.tcx, tps, sub);
check non_ty_var(cx, sub1);
// FIXME #1184: Resource flag is larger than necessary
ret T_struct([cx.int_type, type_of_inner(cx, sp, sub1)]);
}
ty::ty_var(_) {
// Should be unreachable b/c of precondition.
// FIXME: would be nice to have a way of expressing this
// through postconditions, and then making it sound to omit
// cases in the alt
std::util::unreachable()
}
ty::ty_param(_, _) { T_typaram(cx.tn) }
ty::ty_send_type | ty::ty_type { T_ptr(cx.tydesc_type) }
ty::ty_tup(elts) {
let tys = [];
for elt in elts {
check non_ty_var(cx, elt);
tys += [type_of_inner(cx, sp, elt)];
}
T_struct(tys)
}
ty::ty_opaque_closure_ptr(_) {
T_opaque_cbox_ptr(cx)
}
ty::ty_constr(subt,_) {
// FIXME: could be a constraint on ty_fn
check non_ty_var(cx, subt);
type_of_inner(cx, sp, subt)
}
_ {
fail "type_of_inner not implemented for this kind of type";
}
};
cx.lltypes.insert(t, llty);
ret llty;
}
fn type_of_enum(cx: @crate_ctxt, sp: span, did: ast::def_id, t: ty::t)
-> TypeRef {
let degen = vec::len(*ty::enum_variants(cx.tcx, did)) == 1u;
if check type_has_static_size(cx, t) {
let size = static_size_of_enum(cx, sp, t);
if !degen { T_enum(cx, size) }
else if size == 0u { T_struct([T_enum_variant(cx)]) }
else { T_array(T_i8(), size) }
}
else {
if degen { T_struct([T_enum_variant(cx)]) }
else { T_opaque_enum(cx) }
}
}
fn type_of_ty_param_bounds_and_ty(lcx: @local_ctxt, sp: span,
tpt: ty::ty_param_bounds_and_ty) -> TypeRef {
let cx = lcx.ccx;
let t = tpt.ty;
alt ty::struct(cx.tcx, t) {
ty::ty_fn(_) {
ret type_of_fn_from_ty(cx, sp, t, *tpt.bounds);
}
_ {
// fall through
}
}
// FIXME: could have a precondition on tpt, but that
// doesn't work right now because one predicate can't imply
// another
check (type_has_static_size(cx, t));
type_of(cx, sp, t)
}
fn type_of_or_i8(bcx: @block_ctxt, typ: ty::t) -> TypeRef {
let ccx = bcx_ccx(bcx);
if check type_has_static_size(ccx, typ) {
let sp = bcx.sp;
type_of(ccx, sp, typ)
} else { T_i8() }
}
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
fn sanitize(s: str) -> str {
let result = "";
for c: u8 in s {
if c == '@' as u8 {
result += "boxed_";
} else {
if c == ',' as u8 {
result += "_";
} else {
if c == '{' as u8 || c == '(' as u8 {
result += "_of_";
} else {
if c != 10u8 && c != '}' as u8 && c != ')' as u8 &&
c != ' ' as u8 && c != '\t' as u8 && c != ';' as u8
{
let v = [c];
result += str::unsafe_from_bytes(v);
}
}
}
}
}
ret result;
}
fn log_fn_time(ccx: @crate_ctxt, name: str, start: time::timeval,
end: time::timeval) {
let elapsed =
1000 * (end.sec - start.sec as int) +
((end.usec as int) - (start.usec as int)) / 1000;
*ccx.stats.fn_times += [{ident: name, time: elapsed}];
}
fn decl_fn(llmod: ModuleRef, name: str, cc: uint, llty: TypeRef) ->
ValueRef {
let llfn: ValueRef =
str::as_buf(name, {|buf|
llvm::LLVMGetOrInsertFunction(llmod, buf, llty) });
llvm::LLVMSetFunctionCallConv(llfn, cc as c_uint);
ret llfn;
}
fn decl_cdecl_fn(llmod: ModuleRef, name: str, llty: TypeRef) -> ValueRef {
ret decl_fn(llmod, name, lib::llvm::LLVMCCallConv, llty);
}
// Only use this if you are going to actually define the function. It's
// not valid to simply declare a function as internal.
fn decl_internal_cdecl_fn(llmod: ModuleRef, name: str, llty: TypeRef) ->
ValueRef {
let llfn = decl_cdecl_fn(llmod, name, llty);
llvm::LLVMSetLinkage(llfn,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
ret llfn;
}
fn get_extern_fn(externs: hashmap<str, ValueRef>, llmod: ModuleRef, name: str,
cc: uint, ty: TypeRef) -> ValueRef {
if externs.contains_key(name) { ret externs.get(name); }
let f = decl_fn(llmod, name, cc, ty);
externs.insert(name, f);
ret f;
}
fn get_extern_const(externs: hashmap<str, ValueRef>, llmod: ModuleRef,
name: str, ty: TypeRef) -> ValueRef {
if externs.contains_key(name) { ret externs.get(name); }
let c = str::as_buf(name, {|buf| llvm::LLVMAddGlobal(llmod, ty, buf) });
externs.insert(name, c);
ret c;
}
fn get_simple_extern_fn(cx: @block_ctxt,
externs: hashmap<str, ValueRef>,
llmod: ModuleRef,
name: str, n_args: int) -> ValueRef {
let ccx = cx.fcx.lcx.ccx;
let inputs = vec::init_elt::<TypeRef>(n_args as uint, ccx.int_type);
let output = ccx.int_type;
let t = T_fn(inputs, output);
ret get_extern_fn(externs, llmod, name,
lib::llvm::LLVMCCallConv, t);
}
fn trans_native_call(cx: @block_ctxt, externs: hashmap<str, ValueRef>,
llmod: ModuleRef, name: str, args: [ValueRef]) ->
ValueRef {
let n: int = vec::len::<ValueRef>(args) as int;
let llnative: ValueRef =
get_simple_extern_fn(cx, externs, llmod, name, n);
let call_args: [ValueRef] = [];
for a: ValueRef in args {
call_args += [ZExtOrBitCast(cx, a, bcx_ccx(cx).int_type)];
}
ret Call(cx, llnative, call_args);
}
fn trans_free_if_not_gc(cx: @block_ctxt, v: ValueRef) -> @block_ctxt {
let ccx = bcx_ccx(cx);
if !ccx.sess.opts.do_gc {
Call(cx, ccx.upcalls.free,
[PointerCast(cx, v, T_ptr(T_i8())),
C_int(bcx_ccx(cx), 0)]);
}
ret cx;
}
fn trans_shared_free(cx: @block_ctxt, v: ValueRef) -> @block_ctxt {
Call(cx, bcx_ccx(cx).upcalls.shared_free,
[PointerCast(cx, v, T_ptr(T_i8()))]);
ret cx;
}
fn umax(cx: @block_ctxt, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = ICmp(cx, lib::llvm::LLVMIntULT, a, b);
ret Select(cx, cond, b, a);
}
fn umin(cx: @block_ctxt, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = ICmp(cx, lib::llvm::LLVMIntULT, a, b);
ret Select(cx, cond, a, b);
}
fn align_to(cx: @block_ctxt, off: ValueRef, align: ValueRef) -> ValueRef {
let mask = Sub(cx, align, C_int(bcx_ccx(cx), 1));
let bumped = Add(cx, off, mask);
ret And(cx, bumped, Not(cx, mask));
}
// Returns the real size of the given type for the current target.
fn llsize_of_real(cx: @crate_ctxt, t: TypeRef) -> uint {
ret llvm::LLVMStoreSizeOfType(cx.td.lltd, t) as uint;
}
// Returns the real alignment of the given type for the current target.
fn llalign_of_real(cx: @crate_ctxt, t: TypeRef) -> uint {
ret llvm::LLVMPreferredAlignmentOfType(cx.td.lltd, t) as uint;
}
fn llsize_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMSizeOf(t), cx.int_type,
False);
}
fn llalign_of(cx: @crate_ctxt, t: TypeRef) -> ValueRef {
ret llvm::LLVMConstIntCast(lib::llvm::llvm::LLVMAlignOf(t), cx.int_type,
False);
}
fn size_of(cx: @block_ctxt, t: ty::t) -> result {
size_of_(cx, t)
}
fn size_of_(cx: @block_ctxt, t: ty::t) -> result {
let ccx = bcx_ccx(cx);
if check type_has_static_size(ccx, t) {
let sp = cx.sp;
rslt(cx, llsize_of(bcx_ccx(cx), type_of(ccx, sp, t)))
} else { dynamic_size_of(cx, t) }
}
fn align_of(cx: @block_ctxt, t: ty::t) -> result {
let ccx = bcx_ccx(cx);
if check type_has_static_size(ccx, t) {
let sp = cx.sp;
rslt(cx, llalign_of(bcx_ccx(cx), type_of(ccx, sp, t)))
} else { dynamic_align_of(cx, t) }
}
fn alloca(cx: @block_ctxt, t: TypeRef) -> ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(t); }
ret Alloca(new_raw_block_ctxt(cx.fcx, cx.fcx.llstaticallocas), t);
}
fn dynastack_alloca(cx: @block_ctxt, t: TypeRef, n: ValueRef, ty: ty::t) ->
ValueRef {
if cx.unreachable { ret llvm::LLVMGetUndef(t); }
let bcx = cx;
let dy_cx = new_raw_block_ctxt(cx.fcx, cx.fcx.lldynamicallocas);
alt bcx_fcx(cx).llobstacktoken {
none {
bcx_fcx(cx).llobstacktoken =
some(mk_obstack_token(bcx_ccx(cx), cx.fcx));
}
some(_) {/* no-op */ }
}
let dynastack_alloc = bcx_ccx(bcx).upcalls.dynastack_alloc;
let llsz = Mul(dy_cx,
C_uint(bcx_ccx(bcx), llsize_of_real(bcx_ccx(bcx), t)),
n);
let ti = none;
let lltydesc = get_tydesc(cx, ty, false, ti).result.val;
let llresult = Call(dy_cx, dynastack_alloc, [llsz, lltydesc]);
ret PointerCast(dy_cx, llresult, T_ptr(t));
}
fn mk_obstack_token(ccx: @crate_ctxt, fcx: @fn_ctxt) ->
ValueRef {
let cx = new_raw_block_ctxt(fcx, fcx.lldynamicallocas);
ret Call(cx, ccx.upcalls.dynastack_mark, []);
}
// Creates a simpler, size-equivalent type. The resulting type is guaranteed
// to have (a) the same size as the type that was passed in; (b) to be non-
// recursive. This is done by replacing all boxes in a type with boxed unit
// types.
fn simplify_type(ccx: @crate_ctxt, typ: ty::t) -> ty::t {
fn simplifier(ccx: @crate_ctxt, typ: ty::t) -> ty::t {
alt ty::struct(ccx.tcx, typ) {
ty::ty_box(_) | ty::ty_iface(_, _) {
ret ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx));
}
ty::ty_uniq(_) {
ret ty::mk_imm_uniq(ccx.tcx, ty::mk_nil(ccx.tcx));
}
ty::ty_fn(_) {
ret ty::mk_tup(ccx.tcx,
[ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx)),
ty::mk_imm_box(ccx.tcx, ty::mk_nil(ccx.tcx))]);
}
ty::ty_res(_, sub, tps) {
let sub1 = ty::substitute_type_params(ccx.tcx, tps, sub);
ret ty::mk_tup(ccx.tcx,
[ty::mk_int(ccx.tcx), simplify_type(ccx, sub1)]);
}
_ { ret typ; }
}
}
ret ty::fold_ty(ccx.tcx, ty::fm_general(bind simplifier(ccx, _)), typ);
}
// Computes the size of the data part of a non-dynamically-sized enum.
fn static_size_of_enum(cx: @crate_ctxt, sp: span, t: ty::t)
: type_has_static_size(cx, t) -> uint {
if cx.enum_sizes.contains_key(t) { ret cx.enum_sizes.get(t); }
alt ty::struct(cx.tcx, t) {
ty::ty_enum(tid, subtys) {
// Compute max(variant sizes).
let max_size = 0u;
let variants = ty::enum_variants(cx.tcx, tid);
for variant: ty::variant_info in *variants {
let tup_ty = simplify_type(cx, ty::mk_tup(cx.tcx, variant.args));
// Perform any type parameter substitutions.
tup_ty = ty::substitute_type_params(cx.tcx, subtys, tup_ty);
// Here we possibly do a recursive call.
// FIXME: Avoid this check. Since the parent has static
// size, any field must as well. There should be a way to
// express that with constrained types.
check (type_has_static_size(cx, tup_ty));
let this_size = llsize_of_real(cx, type_of(cx, sp, tup_ty));
if max_size < this_size { max_size = this_size; }
}
cx.enum_sizes.insert(t, max_size);
ret max_size;
}
}
}
fn dynamic_size_of(cx: @block_ctxt, t: ty::t) -> result {
fn align_elements(cx: @block_ctxt, elts: [ty::t]) -> result {
//
// C padding rules:
//
//
// - Pad after each element so that next element is aligned.
// - Pad after final structure member so that whole structure
// is aligned to max alignment of interior.
//
let off = C_int(bcx_ccx(cx), 0);
let max_align = C_int(bcx_ccx(cx), 1);
let bcx = cx;
for e: ty::t in elts {
let elt_align = align_of(bcx, e);
bcx = elt_align.bcx;
let elt_size = size_of(bcx, e);
bcx = elt_size.bcx;
let aligned_off = align_to(bcx, off, elt_align.val);
off = Add(bcx, aligned_off, elt_size.val);
max_align = umax(bcx, max_align, elt_align.val);
}
off = align_to(bcx, off, max_align);
//off = alt mode {
// align_total. {
// align_to(bcx, off, max_align)
// }
// align_next(t) {
// let {bcx, val: align} = align_of(bcx, t);
// align_to(bcx, off, align)
// }
//};
ret rslt(bcx, off);
}
alt ty::struct(bcx_tcx(cx), t) {
ty::ty_param(p, _) {
let szptr = field_of_tydesc(cx, t, false, abi::tydesc_field_size);
ret rslt(szptr.bcx, Load(szptr.bcx, szptr.val));
}
ty::ty_rec(flds) {
let tys: [ty::t] = [];
for f: ty::field in flds { tys += [f.mt.ty]; }
ret align_elements(cx, tys);
}
ty::ty_tup(elts) {
let tys = [];
for tp in elts { tys += [tp]; }
ret align_elements(cx, tys);
}
ty::ty_enum(tid, tps) {
let bcx = cx;
let ccx = bcx_ccx(bcx);
// Compute max(variant sizes).
let max_size: ValueRef = alloca(bcx, ccx.int_type);
Store(bcx, C_int(ccx, 0), max_size);
let variants = ty::enum_variants(bcx_tcx(bcx), tid);
for variant: ty::variant_info in *variants {
// Perform type substitution on the raw argument types.
let raw_tys: [ty::t] = variant.args;
let tys: [ty::t] = [];
for raw_ty: ty::t in raw_tys {
let t = ty::substitute_type_params(bcx_tcx(cx), tps, raw_ty);
tys += [t];
}
let rslt = align_elements(bcx, tys);
bcx = rslt.bcx;
let this_size = rslt.val;
let old_max_size = Load(bcx, max_size);
Store(bcx, umax(bcx, this_size, old_max_size), max_size);
}
let max_size_val = Load(bcx, max_size);
let total_size =
if vec::len(*variants) != 1u {
Add(bcx, max_size_val, llsize_of(ccx, ccx.int_type))
} else { max_size_val };
ret rslt(bcx, total_size);
}
}
}
fn dynamic_align_of(cx: @block_ctxt, t: ty::t) -> result {
// FIXME: Typestate constraint that shows this alt is
// exhaustive
alt ty::struct(bcx_tcx(cx), t) {
ty::ty_param(p, _) {
let aptr = field_of_tydesc(cx, t, false, abi::tydesc_field_align);
ret rslt(aptr.bcx, Load(aptr.bcx, aptr.val));
}
ty::ty_rec(flds) {
let a = C_int(bcx_ccx(cx), 1);
let bcx = cx;
for f: ty::field in flds {
let align = align_of(bcx, f.mt.ty);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret rslt(bcx, a);
}
ty::ty_enum(_, _) {
ret rslt(cx, C_int(bcx_ccx(cx), 1)); // FIXME: stub
}
ty::ty_tup(elts) {
let a = C_int(bcx_ccx(cx), 1);
let bcx = cx;
for e in elts {
let align = align_of(bcx, e);
bcx = align.bcx;
a = umax(bcx, a, align.val);
}
ret rslt(bcx, a);
}
}
}
// Given a pointer p, returns a pointer sz(p) (i.e., inc'd by sz bytes).
// The type of the returned pointer is always i8*. If you care about the
// return type, use bump_ptr().
fn ptr_offs(bcx: @block_ctxt, base: ValueRef, sz: ValueRef) -> ValueRef {
let raw = PointerCast(bcx, base, T_ptr(T_i8()));
GEP(bcx, raw, [sz])
}
// Increment a pointer by a given amount and then cast it to be a pointer
// to a given type.
fn bump_ptr(bcx: @block_ctxt, t: ty::t, base: ValueRef, sz: ValueRef) ->
ValueRef {
let ccx = bcx_ccx(bcx);
let bumped = ptr_offs(bcx, base, sz);
if check type_has_static_size(ccx, t) {
let sp = bcx.sp;
let typ = T_ptr(type_of(ccx, sp, t));
PointerCast(bcx, bumped, typ)
} else { bumped }
}
// GEP_tup_like is a pain to use if you always have to precede it with a
// check.
fn GEP_tup_like_1(cx: @block_ctxt, t: ty::t, base: ValueRef, ixs: [int])
-> result {
check type_is_tup_like(cx, t);
ret GEP_tup_like(cx, t, base, ixs);
}
// Replacement for the LLVM 'GEP' instruction when field-indexing into a
// tuple-like structure (tup, rec) with a static index. This one is driven off
// ty::struct and knows what to do when it runs into a ty_param stuck in the
// middle of the thing it's GEP'ing into. Much like size_of and align_of,
// above.
fn GEP_tup_like(bcx: @block_ctxt, t: ty::t, base: ValueRef, ixs: [int])
: type_is_tup_like(bcx, t) -> result {
fn compute_off(bcx: @block_ctxt,
off: ValueRef,
t: ty::t,
ixs: [int],
n: uint) -> (@block_ctxt, ValueRef, ty::t) {
if n == vec::len(ixs) {
ret (bcx, off, t);
}
let tcx = bcx_tcx(bcx);
let ix = ixs[n];
let bcx = bcx, off = off;
int::range(0, ix) {|i|
let comp_t = ty::get_element_type(tcx, t, i as uint);
let align = align_of(bcx, comp_t);
bcx = align.bcx;
off = align_to(bcx, off, align.val);
let sz = size_of(bcx, comp_t);
bcx = sz.bcx;
off = Add(bcx, off, sz.val);
}
let comp_t = ty::get_element_type(tcx, t, ix as uint);
let align = align_of(bcx, comp_t);
bcx = align.bcx;
off = align_to(bcx, off, align.val);
be compute_off(bcx, off, comp_t, ixs, n+1u);
}
if !ty::type_has_dynamic_size(bcx_tcx(bcx), t) {
ret rslt(bcx, GEPi(bcx, base, ixs));
}
#debug["GEP_tup_like(t=%s,base=%s,ixs=%?)",
ty_to_str(bcx_tcx(bcx), t),
val_str(bcx_ccx(bcx).tn, base),
ixs];
// We require that ixs start with 0 and we expect the input to be a
// pointer to an instance of type t, so we can safely ignore ixs[0],
// basically.
assert ixs[0] == 0;
let (bcx, off, tar_t) = {
compute_off(bcx, C_int(bcx_ccx(bcx), 0), t, ixs, 1u)
};
ret rslt(bcx, bump_ptr(bcx, tar_t, base, off));
}
// Replacement for the LLVM 'GEP' instruction when field indexing into a enum.
// This function uses GEP_tup_like() above and automatically performs casts as
// appropriate. @llblobptr is the data part of a enum value; its actual type
// is meaningless, as it will be cast away.
fn GEP_enum(cx: @block_ctxt, llblobptr: ValueRef, enum_id: ast::def_id,
variant_id: ast::def_id, ty_substs: [ty::t],
ix: uint) : valid_variant_index(ix, cx, enum_id, variant_id) ->
result {
let variant = ty::enum_variant_with_id(bcx_tcx(cx), enum_id, variant_id);
// Synthesize a tuple type so that GEP_tup_like() can work its magic.
// Separately, store the type of the element we're interested in.
let arg_tys = variant.args;
let true_arg_tys: [ty::t] = [];
for aty: ty::t in arg_tys {
// Would be nice to have a way of stating the invariant
// that ty_substs is valid for aty
let arg_ty = ty::substitute_type_params(bcx_tcx(cx), ty_substs, aty);
true_arg_tys += [arg_ty];
}
// We know that ix < len(variant.args) -- so
// it's safe to do this. (Would be nice to have
// typestate guarantee that a dynamic bounds check
// error can't happen here, but that's in the future.)
let elem_ty = true_arg_tys[ix];
let tup_ty = ty::mk_tup(bcx_tcx(cx), true_arg_tys);
// Cast the blob pointer to the appropriate type, if we need to (i.e. if
// the blob pointer isn't dynamically sized).
let llunionptr: ValueRef;
let sp = cx.sp;
let ccx = bcx_ccx(cx);
if check type_has_static_size(ccx, tup_ty) {
let llty = type_of(ccx, sp, tup_ty);
llunionptr = TruncOrBitCast(cx, llblobptr, T_ptr(llty));
} else { llunionptr = llblobptr; }
// Do the GEP_tup_like().
// Silly check -- postcondition on mk_tup?
check type_is_tup_like(cx, tup_ty);
let rs = GEP_tup_like(cx, tup_ty, llunionptr, [0, ix as int]);
// Cast the result to the appropriate type, if necessary.
let rs_ccx = bcx_ccx(rs.bcx);
let val =
if check type_has_static_size(rs_ccx, elem_ty) {
let llelemty = type_of(rs_ccx, sp, elem_ty);
PointerCast(rs.bcx, rs.val, T_ptr(llelemty))
} else { rs.val };
ret rslt(rs.bcx, val);
}
// trans_shared_malloc: expects a type indicating which pointer type we want
// and a size indicating how much space we want malloc'd.
fn trans_shared_malloc(cx: @block_ctxt, llptr_ty: TypeRef, llsize: ValueRef)
-> result {
// FIXME: need a table to collect tydesc globals.
let tydesc = C_null(T_ptr(bcx_ccx(cx).tydesc_type));
let rval =
Call(cx, bcx_ccx(cx).upcalls.shared_malloc,
[llsize, tydesc]);
ret rslt(cx, PointerCast(cx, rval, llptr_ty));
}
// trans_malloc_boxed_raw: expects an unboxed type and returns a pointer to
// enough space for something of that type, along with space for a reference
// count; in other words, it allocates a box for something of that type.
fn trans_malloc_boxed_raw(cx: @block_ctxt, t: ty::t) -> result {
let bcx = cx;
// Synthesize a fake box type structurally so we have something
// to measure the size of.
// We synthesize two types here because we want both the type of the
// pointer and the pointee. boxed_body is the type that we measure the
// size of; box_ptr is the type that's converted to a TypeRef and used as
// the pointer cast target in trans_raw_malloc.
// The mk_int here is the space being
// reserved for the refcount.
let boxed_body = ty::mk_tup(bcx_tcx(bcx), [ty::mk_int(bcx_tcx(cx)), t]);
let box_ptr = ty::mk_imm_box(bcx_tcx(bcx), t);
let r = size_of(cx, boxed_body);
let llsz = r.val; bcx = r.bcx;
// Grab the TypeRef type of box_ptr, because that's what trans_raw_malloc
// wants.
// FIXME: Could avoid this check with a postcondition on mk_imm_box?
// (requires Issue #586)
let ccx = bcx_ccx(bcx);
let sp = bcx.sp;
check (type_has_static_size(ccx, box_ptr));
let llty = type_of(ccx, sp, box_ptr);
let ti = none;
let tydesc_result = get_tydesc(bcx, t, true, ti);
let lltydesc = tydesc_result.result.val; bcx = tydesc_result.result.bcx;
let rval = Call(cx, ccx.upcalls.malloc,
[llsz, lltydesc]);
ret rslt(cx, PointerCast(cx, rval, llty));
}
// trans_malloc_boxed: usefully wraps trans_malloc_box_raw; allocates a box,
// initializes the reference count to 1, and pulls out the body and rc
fn trans_malloc_boxed(cx: @block_ctxt, t: ty::t) ->
{bcx: @block_ctxt, box: ValueRef, body: ValueRef} {
let res = trans_malloc_boxed_raw(cx, t);
let box = res.val;
let rc = GEPi(res.bcx, box, [0, abi::box_rc_field_refcnt]);
Store(res.bcx, C_int(bcx_ccx(cx), 1), rc);
let body = GEPi(res.bcx, box, [0, abi::box_rc_field_body]);
ret {bcx: res.bcx, box: res.val, body: body};
}
// Type descriptor and type glue stuff
// Given a type and a field index into its corresponding type descriptor,
// returns an LLVM ValueRef of that field from the tydesc, generating the
// tydesc if necessary.
fn field_of_tydesc(cx: @block_ctxt, t: ty::t, escapes: bool, field: int) ->
result {
let ti = none::<@tydesc_info>;
let tydesc = get_tydesc(cx, t, escapes, ti).result;
ret rslt(tydesc.bcx,
GEPi(tydesc.bcx, tydesc.val, [0, field]));
}
// Given a type containing ty params, build a vector containing a ValueRef for
// each of the ty params it uses (from the current frame) and a vector of the
// indices of the ty params present in the type. This is used solely for
// constructing derived tydescs.
fn linearize_ty_params(cx: @block_ctxt, t: ty::t) ->
{params: [uint], descs: [ValueRef]} {
let param_vals: [ValueRef] = [];
let param_defs: [uint] = [];
type rr =
{cx: @block_ctxt, mutable vals: [ValueRef], mutable defs: [uint]};
fn linearizer(r: @rr, t: ty::t) {
alt ty::struct(bcx_tcx(r.cx), t) {
ty::ty_param(pid, _) {
let seen: bool = false;
for d: uint in r.defs { if d == pid { seen = true; } }
if !seen {
r.vals += [r.cx.fcx.lltyparams[pid].desc];
r.defs += [pid];
}
}
_ { }
}
}
let x = @{cx: cx, mutable vals: param_vals, mutable defs: param_defs};
let f = bind linearizer(x, _);
ty::walk_ty(bcx_tcx(cx), t, f);
ret {params: x.defs, descs: x.vals};
}
fn trans_stack_local_derived_tydesc(cx: @block_ctxt, llsz: ValueRef,
llalign: ValueRef, llroottydesc: ValueRef,
llfirstparam: ValueRef, n_params: uint)
-> ValueRef {
let llmyroottydesc = alloca(cx, bcx_ccx(cx).tydesc_type);
// By convention, desc 0 is the root descriptor.
let llroottydesc = Load(cx, llroottydesc);
Store(cx, llroottydesc, llmyroottydesc);
// Store a pointer to the rest of the descriptors.
let ccx = bcx_ccx(cx);
store_inbounds(cx, llfirstparam, llmyroottydesc,
[0, abi::tydesc_field_first_param]);
store_inbounds(cx, C_uint(ccx, n_params), llmyroottydesc,
[0, abi::tydesc_field_n_params]);
store_inbounds(cx, llsz, llmyroottydesc,
[0, abi::tydesc_field_size]);
store_inbounds(cx, llalign, llmyroottydesc,
[0, abi::tydesc_field_align]);
// FIXME legacy field, can be dropped
store_inbounds(cx, C_uint(ccx, 0u), llmyroottydesc,
[0, abi::tydesc_field_obj_params]);
ret llmyroottydesc;
}
fn get_derived_tydesc(cx: @block_ctxt, t: ty::t, escapes: bool,
&static_ti: option::t<@tydesc_info>) -> result {
alt cx.fcx.derived_tydescs.find(t) {
some(info) {
// If the tydesc escapes in this context, the cached derived
// tydesc also has to be one that was marked as escaping.
if !(escapes && !info.escapes) {
ret rslt(cx, info.lltydesc);
}
}
none {/* fall through */ }
}
bcx_ccx(cx).stats.n_derived_tydescs += 1u;
let bcx = new_raw_block_ctxt(cx.fcx, cx.fcx.llderivedtydescs);
let tys = linearize_ty_params(bcx, t);
let root_ti = get_static_tydesc(bcx, t, tys.params);
static_ti = some::<@tydesc_info>(root_ti);
lazily_emit_all_tydesc_glue(cx, static_ti);
let root = root_ti.tydesc;
let sz = size_of(bcx, t);
bcx = sz.bcx;
let align = align_of(bcx, t);
bcx = align.bcx;
// Store the captured type descriptors in an alloca if the caller isn't
// promising to do so itself.
let n_params = ty::count_ty_params(bcx_tcx(bcx), t);
assert (n_params == vec::len::<uint>(tys.params));
assert (n_params == vec::len::<ValueRef>(tys.descs));
let llparamtydescs =
alloca(bcx, T_array(T_ptr(bcx_ccx(bcx).tydesc_type), n_params + 1u));
let i = 0;
// If the type descriptor escapes, we need to add in the root as
// the first parameter, because upcall_get_type_desc() expects it.
if escapes {
Store(bcx, root, GEPi(bcx, llparamtydescs, [0, 0]));
i += 1;
}
for td: ValueRef in tys.descs {
Store(bcx, td, GEPi(bcx, llparamtydescs, [0, i]));
i += 1;
}
let llfirstparam =
PointerCast(bcx, llparamtydescs,
T_ptr(T_ptr(bcx_ccx(bcx).tydesc_type)));
let v;
if escapes {
let ccx = bcx_ccx(bcx);
let td_val =
Call(bcx, ccx.upcalls.get_type_desc,
[C_null(T_ptr(T_nil())), sz.val,
align.val, C_uint(ccx, 1u + n_params), llfirstparam,
C_uint(ccx, 0u)]);
v = td_val;
} else {
v = trans_stack_local_derived_tydesc(bcx, sz.val, align.val, root,
llfirstparam, n_params);
}
bcx.fcx.derived_tydescs.insert(t, {lltydesc: v, escapes: escapes});
ret rslt(cx, v);
}
type get_tydesc_result = {kind: tydesc_kind, result: result};
fn get_tydesc(cx: @block_ctxt, t: ty::t, escapes: bool,
&static_ti: option::t<@tydesc_info>)
-> get_tydesc_result {
// Is the supplied type a type param? If so, return the passed-in tydesc.
alt ty::type_param(bcx_tcx(cx), t) {
some(id) {
if id < vec::len(cx.fcx.lltyparams) {
ret {kind: tk_param,
result: rslt(cx, cx.fcx.lltyparams[id].desc)};
} else {
bcx_tcx(cx).sess.span_bug(cx.sp,
"Unbound typaram in get_tydesc: " +
"t = " +
ty_to_str(bcx_tcx(cx), t) +
" ty_param = " +
uint::str(id));
}
}
none {/* fall through */ }
}
// Does it contain a type param? If so, generate a derived tydesc.
if ty::type_contains_params(bcx_tcx(cx), t) {
ret {kind: tk_derived,
result: get_derived_tydesc(cx, t, escapes, static_ti)};
}
// Otherwise, generate a tydesc if necessary, and return it.
let info = get_static_tydesc(cx, t, []);
static_ti = some(info);
ret {kind: tk_static, result: rslt(cx, info.tydesc)};
}
fn get_static_tydesc(cx: @block_ctxt, t: ty::t, ty_params: [uint])
-> @tydesc_info {
alt bcx_ccx(cx).tydescs.find(t) {
some(info) { ret info; }
none {
bcx_ccx(cx).stats.n_static_tydescs += 1u;
let info = declare_tydesc(cx.fcx.lcx, cx.sp, t, ty_params);
bcx_ccx(cx).tydescs.insert(t, info);
ret info;
}
}
}
fn set_no_inline(f: ValueRef) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMNoInlineAttribute as
lib::llvm::llvm::Attribute,
0u as c_uint);
}
// Tell LLVM to emit the information necessary to unwind the stack for the
// function f.
fn set_uwtable(f: ValueRef) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMUWTableAttribute as
lib::llvm::llvm::Attribute,
0u as c_uint);
}
fn set_always_inline(f: ValueRef) {
llvm::LLVMAddFunctionAttr(f,
lib::llvm::LLVMAlwaysInlineAttribute as
lib::llvm::llvm::Attribute,
0u as c_uint);
}
fn set_custom_stack_growth_fn(f: ValueRef) {
// TODO: Remove this hack to work around the lack of u64 in the FFI.
llvm::LLVMAddFunctionAttr(f, 0 as lib::llvm::llvm::Attribute,
1u as c_uint);
}
fn set_glue_inlining(cx: @local_ctxt, f: ValueRef, t: ty::t) {
if ty::type_is_structural(cx.ccx.tcx, t) {
set_no_inline(f);
} else { set_always_inline(f); }
}
// Generates the declaration for (but doesn't emit) a type descriptor.
fn declare_tydesc(cx: @local_ctxt, sp: span, t: ty::t, ty_params: [uint])
-> @tydesc_info {
log(debug, "+++ declare_tydesc " + ty_to_str(cx.ccx.tcx, t));
let ccx = cx.ccx;
let llsize;
let llalign;
if check type_has_static_size(ccx, t) {
let llty = type_of(ccx, sp, t);
llsize = llsize_of(ccx, llty);
llalign = llalign_of(ccx, llty);
} else {
// These will be overwritten as the derived tydesc is generated, so
// we create placeholder values.
llsize = C_int(ccx, 0);
llalign = C_int(ccx, 0);
}
let name;
if cx.ccx.sess.opts.debuginfo {
name = mangle_internal_name_by_type_only(cx.ccx, t, "tydesc");
name = sanitize(name);
} else { name = mangle_internal_name_by_seq(cx.ccx, "tydesc"); }
let gvar =
str::as_buf(name,
{|buf|
llvm::LLVMAddGlobal(ccx.llmod, ccx.tydesc_type, buf)
});
let info =
@{ty: t,
tydesc: gvar,
size: llsize,
align: llalign,
mutable take_glue: none::<ValueRef>,
mutable drop_glue: none::<ValueRef>,
mutable free_glue: none::<ValueRef>,
mutable cmp_glue: none::<ValueRef>,
ty_params: ty_params};
log(debug, "--- declare_tydesc " + ty_to_str(cx.ccx.tcx, t));
ret info;
}
type glue_helper = fn@(@block_ctxt, ValueRef, ty::t);
fn declare_generic_glue(cx: @local_ctxt, t: ty::t, llfnty: TypeRef, name: str)
-> ValueRef {
let name = name;
let fn_nm;
if cx.ccx.sess.opts.debuginfo {
fn_nm = mangle_internal_name_by_type_only(cx.ccx, t, "glue_" + name);
fn_nm = sanitize(fn_nm);
} else { fn_nm = mangle_internal_name_by_seq(cx.ccx, "glue_" + name); }
let llfn = decl_cdecl_fn(cx.ccx.llmod, fn_nm, llfnty);
set_glue_inlining(cx, llfn, t);
ret llfn;
}
// FIXME: was this causing the leak?
fn make_generic_glue_inner(cx: @local_ctxt, sp: span, t: ty::t,
llfn: ValueRef, helper: glue_helper,
ty_params: [uint]) -> ValueRef {
let fcx = new_fn_ctxt(cx, sp, llfn);
llvm::LLVMSetLinkage(llfn,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
cx.ccx.stats.n_glues_created += 1u;
// Any nontrivial glue is with values passed *by alias*; this is a
// requirement since in many contexts glue is invoked indirectly and
// the caller has no idea if it's dealing with something that can be
// passed by value.
let ccx = cx.ccx;
let llty =
if check type_has_static_size(ccx, t) {
T_ptr(type_of(ccx, sp, t))
} else { T_ptr(T_i8()) };
let ty_param_count = vec::len::<uint>(ty_params);
let lltyparams = llvm::LLVMGetParam(llfn, 2u as c_uint);
let load_env_bcx = new_raw_block_ctxt(fcx, fcx.llloadenv);
let lltydescs = [mutable];
let p = 0u;
while p < ty_param_count {
let llparam = GEPi(load_env_bcx, lltyparams, [p as int]);
llparam = Load(load_env_bcx, llparam);
vec::grow_set(lltydescs, ty_params[p], 0 as ValueRef, llparam);
p += 1u;
}
fcx.lltyparams = vec::map_mut(lltydescs, {|d| {desc: d, dicts: none}});
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
let llrawptr0 = llvm::LLVMGetParam(llfn, 3u as c_uint);
let llval0 = BitCast(bcx, llrawptr0, llty);
helper(bcx, llval0, t);
finish_fn(fcx, lltop);
ret llfn;
}
fn make_generic_glue(cx: @local_ctxt, sp: span, t: ty::t, llfn: ValueRef,
helper: glue_helper, ty_params: [uint], name: str) ->
ValueRef {
if !cx.ccx.sess.opts.stats {
ret make_generic_glue_inner(cx, sp, t, llfn, helper, ty_params);
}
let start = time::get_time();
let llval = make_generic_glue_inner(cx, sp, t, llfn, helper, ty_params);
let end = time::get_time();
log_fn_time(cx.ccx, "glue " + name + " " + ty_to_short_str(cx.ccx.tcx, t),
start, end);
ret llval;
}
fn emit_tydescs(ccx: @crate_ctxt) {
ccx.tydescs.items {|key, val|
let glue_fn_ty = T_ptr(T_glue_fn(ccx));
let cmp_fn_ty = T_ptr(T_cmp_glue_fn(ccx));
let ti = val;
let take_glue =
alt ti.take_glue {
none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) }
some(v) { ccx.stats.n_real_glues += 1u; v }
};
let drop_glue =
alt ti.drop_glue {
none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) }
some(v) { ccx.stats.n_real_glues += 1u; v }
};
let free_glue =
alt ti.free_glue {
none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) }
some(v) { ccx.stats.n_real_glues += 1u; v }
};
let cmp_glue =
alt ti.cmp_glue {
none { ccx.stats.n_null_glues += 1u; C_null(cmp_fn_ty) }
some(v) { ccx.stats.n_real_glues += 1u; v }
};
let shape = shape::shape_of(ccx, key, ti.ty_params);
let shape_tables =
llvm::LLVMConstPointerCast(ccx.shape_cx.llshapetables,
T_ptr(T_i8()));
let tydesc =
C_named_struct(ccx.tydesc_type,
[C_null(T_ptr(T_ptr(ccx.tydesc_type))),
ti.size, // size
ti.align, // align
take_glue, // take_glue
drop_glue, // drop_glue
free_glue, // free_glue
C_null(T_ptr(T_i8())), // unused
C_null(glue_fn_ty), // sever_glue
C_null(glue_fn_ty), // mark_glue
C_null(glue_fn_ty), // unused
cmp_glue, // cmp_glue
C_shape(ccx, shape), // shape
shape_tables, // shape_tables
C_int(ccx, 0), // n_params
C_int(ccx, 0)]); // n_obj_params
let gvar = ti.tydesc;
llvm::LLVMSetInitializer(gvar, tydesc);
llvm::LLVMSetGlobalConstant(gvar, True);
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
};
}
fn make_take_glue(cx: @block_ctxt, v: ValueRef, t: ty::t) {
let bcx = cx;
let tcx = bcx_tcx(cx);
// NB: v is an *alias* of type t here, not a direct value.
bcx = alt ty::struct(tcx, t) {
ty::ty_box(_) | ty::ty_iface(_, _) {
incr_refcnt_of_boxed(bcx, Load(bcx, v))
}
ty::ty_uniq(_) {
check trans_uniq::type_is_unique_box(bcx, t);
let r = trans_uniq::duplicate(bcx, Load(bcx, v), t);
Store(r.bcx, r.val, v);
r.bcx
}
ty::ty_vec(_) | ty::ty_str {
let r = tvec::duplicate(bcx, Load(bcx, v), t);
Store(r.bcx, r.val, v);
r.bcx
}
ty::ty_send_type {
// sendable type descriptors are basically unique pointers,
// they must be cloned when copied:
let r = Load(bcx, v);
let s = Call(bcx, bcx_ccx(bcx).upcalls.create_shared_type_desc, [r]);
Store(bcx, s, v);
bcx
}
ty::ty_fn(_) {
trans_closure::make_fn_glue(bcx, v, t, take_ty)
}
ty::ty_opaque_closure_ptr(ck) {
trans_closure::make_opaque_cbox_take_glue(bcx, ck, v)
}
_ if ty::type_is_structural(bcx_tcx(bcx), t) {
iter_structural_ty(bcx, v, t, take_ty)
}
_ { bcx }
};
build_return(bcx);
}
fn incr_refcnt_of_boxed(cx: @block_ctxt, box_ptr: ValueRef) -> @block_ctxt {
let ccx = bcx_ccx(cx);
let rc_ptr =
GEPi(cx, box_ptr, [0, abi::box_rc_field_refcnt]);
let rc = Load(cx, rc_ptr);
rc = Add(cx, rc, C_int(ccx, 1));
Store(cx, rc, rc_ptr);
ret cx;
}
fn free_box(bcx: @block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt {
ret alt ty::struct(bcx_tcx(bcx), t) {
ty::ty_box(body_mt) {
let v = PointerCast(bcx, v, type_of_1(bcx, t));
let body = GEPi(bcx, v, [0, abi::box_rc_field_body]);
let bcx = drop_ty(bcx, body, body_mt.ty);
trans_free_if_not_gc(bcx, v)
}
_ { fail "free_box invoked with non-box type"; }
};
}
fn make_free_glue(bcx: @block_ctxt, v: ValueRef, t: ty::t) {
// v is a pointer to the actual box component of the type here. The
// ValueRef will have the wrong type here (make_generic_glue is casting
// everything to a pointer to the type that the glue acts on).
let bcx = alt ty::struct(bcx_tcx(bcx), t) {
ty::ty_box(body_mt) {
free_box(bcx, v, t)
}
ty::ty_uniq(content_mt) {
check trans_uniq::type_is_unique_box(bcx, t);
let v = PointerCast(bcx, v, type_of_1(bcx, t));
trans_uniq::make_free_glue(bcx, v, t)
}
ty::ty_vec(_) | ty::ty_str {
tvec::make_free_glue(bcx, PointerCast(bcx, v, type_of_1(bcx, t)), t)
}
ty::ty_iface(_, _) {
// Call through the box's own fields-drop glue first.
// Then free the body.
let ccx = bcx_ccx(bcx);
let llbox_ty = T_opaque_iface_ptr(ccx);
let b = PointerCast(bcx, v, llbox_ty);
let body = GEPi(bcx, b, [0, abi::box_rc_field_body]);
let tydescptr = GEPi(bcx, body, [0, 0]);
let tydesc = Load(bcx, tydescptr);
let ti = none;
call_tydesc_glue_full(bcx, body, tydesc,
abi::tydesc_field_drop_glue, ti);
trans_free_if_not_gc(bcx, b)
}
ty::ty_send_type {
// sendable type descriptors are basically unique pointers,
// they must be freed.
let ccx = bcx_ccx(bcx);
let v = PointerCast(bcx, v, T_ptr(ccx.tydesc_type));
Call(bcx, ccx.upcalls.free_shared_type_desc, [v]);
bcx
}
ty::ty_fn(_) {
trans_closure::make_fn_glue(bcx, v, t, free_ty)
}
ty::ty_opaque_closure_ptr(ck) {
trans_closure::make_opaque_cbox_free_glue(bcx, ck, v)
}
_ { bcx }
};
build_return(bcx);
}
fn make_drop_glue(bcx: @block_ctxt, v0: ValueRef, t: ty::t) {
// NB: v0 is an *alias* of type t here, not a direct value.
let ccx = bcx_ccx(bcx);
let bcx =
alt ty::struct(ccx.tcx, t) {
ty::ty_box(_) | ty::ty_iface(_, _) {
decr_refcnt_maybe_free(bcx, Load(bcx, v0), t)
}
ty::ty_uniq(_) | ty::ty_vec(_) | ty::ty_str | ty::ty_send_type {
free_ty(bcx, Load(bcx, v0), t)
}
ty::ty_res(did, inner, tps) {
trans_res_drop(bcx, v0, did, inner, tps)
}
ty::ty_fn(_) {
trans_closure::make_fn_glue(bcx, v0, t, drop_ty)
}
ty::ty_opaque_closure_ptr(ck) {
trans_closure::make_opaque_cbox_drop_glue(bcx, ck, v0)
}
_ {
if ty::type_needs_drop(ccx.tcx, t) &&
ty::type_is_structural(ccx.tcx, t) {
iter_structural_ty(bcx, v0, t, drop_ty)
} else { bcx }
}
};
build_return(bcx);
}
fn trans_res_drop(cx: @block_ctxt, rs: ValueRef, did: ast::def_id,
inner_t: ty::t, tps: [ty::t]) -> @block_ctxt {
let ccx = bcx_ccx(cx);
let inner_t_s = ty::substitute_type_params(ccx.tcx, tps, inner_t);
let tup_ty = ty::mk_tup(ccx.tcx, [ty::mk_int(ccx.tcx), inner_t_s]);
let drop_cx = new_sub_block_ctxt(cx, "drop res");
let next_cx = new_sub_block_ctxt(cx, "next");
// Silly check
check type_is_tup_like(cx, tup_ty);
let drop_flag = GEP_tup_like(cx, tup_ty, rs, [0, 0]);
let cx = drop_flag.bcx;
let null_test = IsNull(cx, Load(cx, drop_flag.val));
CondBr(cx, null_test, next_cx.llbb, drop_cx.llbb);
cx = drop_cx;
check type_is_tup_like(cx, tup_ty);
let val = GEP_tup_like(cx, tup_ty, rs, [0, 1]);
cx = val.bcx;
// Find and call the actual destructor.
let dtor_addr = trans_common::get_res_dtor(ccx, cx.sp, did, inner_t);
let args = [cx.fcx.llretptr, null_env_ptr(cx)];
for tp: ty::t in tps {
let ti: option::t<@tydesc_info> = none;
let td = get_tydesc(cx, tp, false, ti).result;
args += [td.val];
cx = td.bcx;
}
// Kludge to work around the fact that we know the precise type of the
// value here, but the dtor expects a type that still has opaque pointers
// for type variables.
let val_llty = lib::llvm::fn_ty_param_tys
(llvm::LLVMGetElementType
(llvm::LLVMTypeOf(dtor_addr)))[vec::len(args)];
let val_cast = BitCast(cx, val.val, val_llty);
Call(cx, dtor_addr, args + [val_cast]);
cx = drop_ty(cx, val.val, inner_t_s);
// FIXME #1184: Resource flag is larger than necessary
Store(cx, C_int(ccx, 0), drop_flag.val);
Br(cx, next_cx.llbb);
ret next_cx;
}
fn decr_refcnt_maybe_free(cx: @block_ctxt, box_ptr: ValueRef, t: ty::t)
-> @block_ctxt {
let ccx = bcx_ccx(cx);
let rc_adj_cx = new_sub_block_ctxt(cx, "rc--");
let free_cx = new_sub_block_ctxt(cx, "free");
let next_cx = new_sub_block_ctxt(cx, "next");
let llbox_ty = T_opaque_iface_ptr(ccx);
let box_ptr = PointerCast(cx, box_ptr, llbox_ty);
let null_test = IsNull(cx, box_ptr);
CondBr(cx, null_test, next_cx.llbb, rc_adj_cx.llbb);
let rc_ptr =
GEPi(rc_adj_cx, box_ptr, [0, abi::box_rc_field_refcnt]);
let rc = Load(rc_adj_cx, rc_ptr);
rc = Sub(rc_adj_cx, rc, C_int(ccx, 1));
Store(rc_adj_cx, rc, rc_ptr);
let zero_test = ICmp(rc_adj_cx, lib::llvm::LLVMIntEQ, C_int(ccx, 0), rc);
CondBr(rc_adj_cx, zero_test, free_cx.llbb, next_cx.llbb);
let free_cx = free_ty(free_cx, box_ptr, t);
Br(free_cx, next_cx.llbb);
ret next_cx;
}
// Structural comparison: a rather involved form of glue.
fn maybe_name_value(cx: @crate_ctxt, v: ValueRef, s: str) {
if cx.sess.opts.save_temps {
let _: () = str::as_buf(s, {|buf| llvm::LLVMSetValueName(v, buf) });
}
}
// Used only for creating scalar comparison glue.
enum scalar_type { nil_type, signed_int, unsigned_int, floating_point, }
fn compare_scalar_types(cx: @block_ctxt, lhs: ValueRef, rhs: ValueRef,
t: ty::t, op: ast::binop) -> result {
let f = bind compare_scalar_values(cx, lhs, rhs, _, op);
alt ty::struct(bcx_tcx(cx), t) {
ty::ty_nil { ret rslt(cx, f(nil_type)); }
ty::ty_bool | ty::ty_ptr(_) { ret rslt(cx, f(unsigned_int)); }
ty::ty_int(_) { ret rslt(cx, f(signed_int)); }
ty::ty_uint(_) { ret rslt(cx, f(unsigned_int)); }
ty::ty_float(_) { ret rslt(cx, f(floating_point)); }
ty::ty_type {
ret rslt(trans_fail(cx, none,
"attempt to compare values of type type"),
C_nil());
}
ty::ty_native(_) {
let cx = trans_fail(cx, none::<span>,
"attempt to compare values of type native");
ret rslt(cx, C_nil());
}
_ {
// Should never get here, because t is scalar.
bcx_ccx(cx).sess.bug("non-scalar type passed to \
compare_scalar_types");
}
}
}
// A helper function to do the actual comparison of scalar values.
fn compare_scalar_values(cx: @block_ctxt, lhs: ValueRef, rhs: ValueRef,
nt: scalar_type, op: ast::binop) -> ValueRef {
alt nt {
nil_type {
// We don't need to do actual comparisons for nil.
// () == () holds but () < () does not.
alt op {
ast::eq | ast::le | ast::ge { ret C_bool(true); }
ast::ne | ast::lt | ast::gt { ret C_bool(false); }
}
}
floating_point {
let cmp = alt op {
ast::eq { lib::llvm::LLVMRealOEQ }
ast::ne { lib::llvm::LLVMRealUNE }
ast::lt { lib::llvm::LLVMRealOLT }
ast::le { lib::llvm::LLVMRealOLE }
ast::gt { lib::llvm::LLVMRealOGT }
ast::ge { lib::llvm::LLVMRealOGE }
};
ret FCmp(cx, cmp, lhs, rhs);
}
signed_int {
let cmp = alt op {
ast::eq { lib::llvm::LLVMIntEQ }
ast::ne { lib::llvm::LLVMIntNE }
ast::lt { lib::llvm::LLVMIntSLT }
ast::le { lib::llvm::LLVMIntSLE }
ast::gt { lib::llvm::LLVMIntSGT }
ast::ge { lib::llvm::LLVMIntSGE }
};
ret ICmp(cx, cmp, lhs, rhs);
}
unsigned_int {
let cmp = alt op {
ast::eq { lib::llvm::LLVMIntEQ }
ast::ne { lib::llvm::LLVMIntNE }
ast::lt { lib::llvm::LLVMIntULT }
ast::le { lib::llvm::LLVMIntULE }
ast::gt { lib::llvm::LLVMIntUGT }
ast::ge { lib::llvm::LLVMIntUGE }
};
ret ICmp(cx, cmp, lhs, rhs);
}
}
}
type val_pair_fn = fn@(@block_ctxt, ValueRef, ValueRef) -> @block_ctxt;
type val_and_ty_fn = fn@(@block_ctxt, ValueRef, ty::t) -> @block_ctxt;
fn load_inbounds(cx: @block_ctxt, p: ValueRef, idxs: [int]) -> ValueRef {
ret Load(cx, GEPi(cx, p, idxs));
}
fn store_inbounds(cx: @block_ctxt, v: ValueRef, p: ValueRef,
idxs: [int]) {
Store(cx, v, GEPi(cx, p, idxs));
}
// Iterates through the elements of a structural type.
fn iter_structural_ty(cx: @block_ctxt, av: ValueRef, t: ty::t,
f: val_and_ty_fn) -> @block_ctxt {
fn iter_boxpp(cx: @block_ctxt, box_cell: ValueRef, f: val_and_ty_fn) ->
@block_ctxt {
let box_ptr = Load(cx, box_cell);
let tnil = ty::mk_nil(bcx_tcx(cx));
let tbox = ty::mk_imm_box(bcx_tcx(cx), tnil);
let inner_cx = new_sub_block_ctxt(cx, "iter box");
let next_cx = new_sub_block_ctxt(cx, "next");
let null_test = IsNull(cx, box_ptr);
CondBr(cx, null_test, next_cx.llbb, inner_cx.llbb);
let inner_cx = f(inner_cx, box_cell, tbox);
Br(inner_cx, next_cx.llbb);
ret next_cx;
}
fn iter_variant(cx: @block_ctxt, a_tup: ValueRef,
variant: ty::variant_info, tps: [ty::t], tid: ast::def_id,
f: val_and_ty_fn) -> @block_ctxt {
if vec::len::<ty::t>(variant.args) == 0u { ret cx; }
let fn_ty = variant.ctor_ty;
let ccx = bcx_ccx(cx);
let cx = cx;
alt ty::struct(ccx.tcx, fn_ty) {
ty::ty_fn({inputs: args, _}) {
let j = 0u;
let v_id = variant.id;
for a: ty::arg in args {
check (valid_variant_index(j, cx, tid, v_id));
let rslt = GEP_enum(cx, a_tup, tid, v_id, tps, j);
let llfldp_a = rslt.val;
cx = rslt.bcx;
let ty_subst = ty::substitute_type_params(ccx.tcx, tps, a.ty);
cx = f(cx, llfldp_a, ty_subst);
j += 1u;
}
}
}
ret cx;
}
/*
Typestate constraint that shows the unimpl case doesn't happen?
*/
let cx = cx;
alt ty::struct(bcx_tcx(cx), t) {
ty::ty_rec(fields) {
let i: int = 0;
for fld: ty::field in fields {
// Silly check
check type_is_tup_like(cx, t);
let {bcx: bcx, val: llfld_a} = GEP_tup_like(cx, t, av, [0, i]);
cx = f(bcx, llfld_a, fld.mt.ty);
i += 1;
}
}
ty::ty_tup(args) {
let i = 0;
for arg in args {
// Silly check
check type_is_tup_like(cx, t);
let {bcx: bcx, val: llfld_a} = GEP_tup_like(cx, t, av, [0, i]);
cx = f(bcx, llfld_a, arg);
i += 1;
}
}
ty::ty_res(_, inner, tps) {
let tcx = bcx_tcx(cx);
let inner1 = ty::substitute_type_params(tcx, tps, inner);
let inner_t_s = ty::substitute_type_params(tcx, tps, inner);
let tup_t = ty::mk_tup(tcx, [ty::mk_int(tcx), inner_t_s]);
// Silly check
check type_is_tup_like(cx, tup_t);
let {bcx: bcx, val: llfld_a} = GEP_tup_like(cx, tup_t, av, [0, 1]);
ret f(bcx, llfld_a, inner1);
}
ty::ty_enum(tid, tps) {
let variants = ty::enum_variants(bcx_tcx(cx), tid);
let n_variants = vec::len(*variants);
// Cast the enums to types we can GEP into.
if n_variants == 1u {
ret iter_variant(cx, av, variants[0], tps, tid, f);
}
let ccx = bcx_ccx(cx);
let llenumty = T_opaque_enum_ptr(ccx);
let av_enum = PointerCast(cx, av, llenumty);
let lldiscrim_a_ptr = GEPi(cx, av_enum, [0, 0]);
let llunion_a_ptr = GEPi(cx, av_enum, [0, 1]);
let lldiscrim_a = Load(cx, lldiscrim_a_ptr);
// NB: we must hit the discriminant first so that structural
// comparison know not to proceed when the discriminants differ.
cx = f(cx, lldiscrim_a_ptr, ty::mk_int(bcx_tcx(cx)));
let unr_cx = new_sub_block_ctxt(cx, "enum-iter-unr");
Unreachable(unr_cx);
let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb, n_variants);
let next_cx = new_sub_block_ctxt(cx, "enum-iter-next");
for variant: ty::variant_info in *variants {
let variant_cx =
new_sub_block_ctxt(cx,
"enum-iter-variant-" +
int::to_str(variant.disr_val, 10u));
AddCase(llswitch, C_int(ccx, variant.disr_val), variant_cx.llbb);
variant_cx =
iter_variant(variant_cx, llunion_a_ptr, variant, tps, tid, f);
Br(variant_cx, next_cx.llbb);
}
ret next_cx;
}
_ { bcx_ccx(cx).sess.unimpl("type in iter_structural_ty"); }
}
ret cx;
}
fn lazily_emit_all_tydesc_glue(cx: @block_ctxt,
static_ti: option::t<@tydesc_info>) {
lazily_emit_tydesc_glue(cx, abi::tydesc_field_take_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_drop_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_free_glue, static_ti);
lazily_emit_tydesc_glue(cx, abi::tydesc_field_cmp_glue, static_ti);
}
fn lazily_emit_all_generic_info_tydesc_glues(cx: @block_ctxt,
gi: generic_info) {
for ti: option::t<@tydesc_info> in gi.static_tis {
lazily_emit_all_tydesc_glue(cx, ti);
}
}
fn lazily_emit_tydesc_glue(cx: @block_ctxt, field: int,
static_ti: option::t<@tydesc_info>) {
alt static_ti {
none { }
some(ti) {
if field == abi::tydesc_field_take_glue {
alt ti.take_glue {
some(_) { }
none {
#debug("+++ lazily_emit_tydesc_glue TAKE %s",
ty_to_str(bcx_tcx(cx), ti.ty));
let lcx = cx.fcx.lcx;
let glue_fn =
declare_generic_glue(lcx, ti.ty, T_glue_fn(lcx.ccx),
"take");
ti.take_glue = some::<ValueRef>(glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
make_take_glue,
ti.ty_params, "take");
#debug("--- lazily_emit_tydesc_glue TAKE %s",
ty_to_str(bcx_tcx(cx), ti.ty));
}
}
} else if field == abi::tydesc_field_drop_glue {
alt ti.drop_glue {
some(_) { }
none {
#debug("+++ lazily_emit_tydesc_glue DROP %s",
ty_to_str(bcx_tcx(cx), ti.ty));
let lcx = cx.fcx.lcx;
let glue_fn =
declare_generic_glue(lcx, ti.ty, T_glue_fn(lcx.ccx),
"drop");
ti.drop_glue = some::<ValueRef>(glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
make_drop_glue,
ti.ty_params, "drop");
#debug("--- lazily_emit_tydesc_glue DROP %s",
ty_to_str(bcx_tcx(cx), ti.ty));
}
}
} else if field == abi::tydesc_field_free_glue {
alt ti.free_glue {
some(_) { }
none {
#debug("+++ lazily_emit_tydesc_glue FREE %s",
ty_to_str(bcx_tcx(cx), ti.ty));
let lcx = cx.fcx.lcx;
let glue_fn =
declare_generic_glue(lcx, ti.ty, T_glue_fn(lcx.ccx),
"free");
ti.free_glue = some::<ValueRef>(glue_fn);
make_generic_glue(lcx, cx.sp, ti.ty, glue_fn,
make_free_glue,
ti.ty_params, "free");
#debug("--- lazily_emit_tydesc_glue FREE %s",
ty_to_str(bcx_tcx(cx), ti.ty));
}
}
} else if field == abi::tydesc_field_cmp_glue {
alt ti.cmp_glue {
some(_) { }
none {
#debug("+++ lazily_emit_tydesc_glue CMP %s",
ty_to_str(bcx_tcx(cx), ti.ty));
ti.cmp_glue = some(bcx_ccx(cx).upcalls.cmp_type);
#debug("--- lazily_emit_tydesc_glue CMP %s",
ty_to_str(bcx_tcx(cx), ti.ty));
}
}
}
}
}
}
fn call_tydesc_glue_full(cx: @block_ctxt, v: ValueRef, tydesc: ValueRef,
field: int, static_ti: option::t<@tydesc_info>) {
lazily_emit_tydesc_glue(cx, field, static_ti);
let static_glue_fn = none;
alt static_ti {
none {/* no-op */ }
some(sti) {
if field == abi::tydesc_field_take_glue {
static_glue_fn = sti.take_glue;
} else if field == abi::tydesc_field_drop_glue {
static_glue_fn = sti.drop_glue;
} else if field == abi::tydesc_field_free_glue {
static_glue_fn = sti.free_glue;
}
}
}
let llrawptr = PointerCast(cx, v, T_ptr(T_i8()));
let lltydescs =
GEPi(cx, tydesc, [0, abi::tydesc_field_first_param]);
lltydescs = Load(cx, lltydescs);
let llfn;
alt static_glue_fn {
none {
let llfnptr = GEPi(cx, tydesc, [0, field]);
llfn = Load(cx, llfnptr);
}
some(sgf) { llfn = sgf; }
}
Call(cx, llfn, [C_null(T_ptr(T_nil())), C_null(T_ptr(T_nil())),
lltydescs, llrawptr]);
}
fn call_tydesc_glue(cx: @block_ctxt, v: ValueRef, t: ty::t, field: int) ->
@block_ctxt {
let ti: option::t<@tydesc_info> = none::<@tydesc_info>;
let {bcx: bcx, val: td} = get_tydesc(cx, t, false, ti).result;
call_tydesc_glue_full(bcx, v, td, field, ti);
ret bcx;
}
fn call_cmp_glue(cx: @block_ctxt, lhs: ValueRef, rhs: ValueRef, t: ty::t,
llop: ValueRef) -> result {
// We can't use call_tydesc_glue_full() and friends here because compare
// glue has a special signature.
let bcx = cx;
let r = spill_if_immediate(bcx, lhs, t);
let lllhs = r.val;
bcx = r.bcx;
r = spill_if_immediate(bcx, rhs, t);
let llrhs = r.val;
bcx = r.bcx;
let llrawlhsptr = BitCast(bcx, lllhs, T_ptr(T_i8()));
let llrawrhsptr = BitCast(bcx, llrhs, T_ptr(T_i8()));
let ti = none::<@tydesc_info>;
r = get_tydesc(bcx, t, false, ti).result;
let lltydesc = r.val;
bcx = r.bcx;
lazily_emit_tydesc_glue(bcx, abi::tydesc_field_cmp_glue, ti);
let lltydescs =
GEPi(bcx, lltydesc, [0, abi::tydesc_field_first_param]);
lltydescs = Load(bcx, lltydescs);
let llfn;
alt ti {
none {
let llfnptr =
GEPi(bcx, lltydesc, [0, abi::tydesc_field_cmp_glue]);
llfn = Load(bcx, llfnptr);
}
some(sti) { llfn = option::get(sti.cmp_glue); }
}
let llcmpresultptr = alloca(bcx, T_i1());
Call(bcx, llfn, [llcmpresultptr, lltydesc, lltydescs,
llrawlhsptr, llrawrhsptr, llop]);
ret rslt(bcx, Load(bcx, llcmpresultptr));
}
fn take_ty(cx: @block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt {
if ty::type_needs_drop(bcx_tcx(cx), t) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_take_glue);
}
ret cx;
}
fn drop_ty(cx: @block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt {
if ty::type_needs_drop(bcx_tcx(cx), t) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_drop_glue);
}
ret cx;
}
fn drop_ty_immediate(bcx: @block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt {
alt ty::struct(bcx_tcx(bcx), t) {
ty::ty_uniq(_) | ty::ty_vec(_) | ty::ty_str { free_ty(bcx, v, t) }
ty::ty_box(_) | ty::ty_iface(_, _) { decr_refcnt_maybe_free(bcx, v, t) }
}
}
fn take_ty_immediate(bcx: @block_ctxt, v: ValueRef, t: ty::t) -> result {
alt ty::struct(bcx_tcx(bcx), t) {
ty::ty_box(_) | ty::ty_iface(_, _) {
rslt(incr_refcnt_of_boxed(bcx, v), v)
}
ty::ty_uniq(_) {
check trans_uniq::type_is_unique_box(bcx, t);
trans_uniq::duplicate(bcx, v, t)
}
ty::ty_str | ty::ty_vec(_) { tvec::duplicate(bcx, v, t) }
_ { rslt(bcx, v) }
}
}
fn free_ty(cx: @block_ctxt, v: ValueRef, t: ty::t) -> @block_ctxt {
if ty::type_needs_drop(bcx_tcx(cx), t) {
ret call_tydesc_glue(cx, v, t, abi::tydesc_field_free_glue);
}
ret cx;
}
fn call_memmove(cx: @block_ctxt, dst: ValueRef, src: ValueRef,
n_bytes: ValueRef) -> result {
// TODO: Provide LLVM with better alignment information when the alignment
// is statically known (it must be nothing more than a constant int, or
// LLVM complains -- not even a constant element of a tydesc works).
let ccx = bcx_ccx(cx);
let key = alt ccx.sess.targ_cfg.arch {
session::arch_x86 | session::arch_arm { "llvm.memmove.p0i8.p0i8.i32" }
session::arch_x86_64 { "llvm.memmove.p0i8.p0i8.i64" }
};
let i = ccx.intrinsics;
assert (i.contains_key(key));
let memmove = i.get(key);
let src_ptr = PointerCast(cx, src, T_ptr(T_i8()));
let dst_ptr = PointerCast(cx, dst, T_ptr(T_i8()));
// FIXME #1184: Resource flag is larger than necessary
let size = IntCast(cx, n_bytes, ccx.int_type);
let align = C_i32(1i32);
let volatile = C_bool(false);
let ret_val = Call(cx, memmove, [dst_ptr, src_ptr, size,
align, volatile]);
ret rslt(cx, ret_val);
}
fn memmove_ty(bcx: @block_ctxt, dst: ValueRef, src: ValueRef, t: ty::t) ->
@block_ctxt {
let ccx = bcx_ccx(bcx);
if check type_has_static_size(ccx, t) {
if ty::type_is_structural(bcx_tcx(bcx), t) {
let sp = bcx.sp;
let llsz = llsize_of(ccx, type_of(ccx, sp, t));
ret call_memmove(bcx, dst, src, llsz).bcx;
}
Store(bcx, Load(bcx, src), dst);
ret bcx;
}
let {bcx, val: llsz} = size_of(bcx, t);
ret call_memmove(bcx, dst, src, llsz).bcx;
}
enum copy_action { INIT, DROP_EXISTING, }
// These are the types that are passed by pointer.
fn type_is_structural_or_param(tcx: ty::ctxt, t: ty::t) -> bool {
if ty::type_is_structural(tcx, t) { ret true; }
alt ty::struct(tcx, t) {
ty::ty_param(_, _) { ret true; }
_ { ret false; }
}
}
fn copy_val(cx: @block_ctxt, action: copy_action, dst: ValueRef,
src: ValueRef, t: ty::t) -> @block_ctxt {
if action == DROP_EXISTING &&
(type_is_structural_or_param(bcx_tcx(cx), t) ||
ty::type_is_unique(bcx_tcx(cx), t)) {
let do_copy_cx = new_sub_block_ctxt(cx, "do_copy");
let next_cx = new_sub_block_ctxt(cx, "next");
let dstcmp = load_if_immediate(cx, dst, t);
let self_assigning =
ICmp(cx, lib::llvm::LLVMIntNE,
PointerCast(cx, dstcmp, val_ty(src)), src);
CondBr(cx, self_assigning, do_copy_cx.llbb, next_cx.llbb);
do_copy_cx = copy_val_no_check(do_copy_cx, action, dst, src, t);
Br(do_copy_cx, next_cx.llbb);
ret next_cx;
}
ret copy_val_no_check(cx, action, dst, src, t);
}
fn copy_val_no_check(bcx: @block_ctxt, action: copy_action, dst: ValueRef,
src: ValueRef, t: ty::t) -> @block_ctxt {
let ccx = bcx_ccx(bcx), bcx = bcx;
if ty::type_is_scalar(ccx.tcx, t) || ty::type_is_native(ccx.tcx, t) {
Store(bcx, src, dst);
ret bcx;
}
if ty::type_is_nil(ccx.tcx, t) || ty::type_is_bot(ccx.tcx, t) { ret bcx; }
if ty::type_is_boxed(ccx.tcx, t) || ty::type_is_vec(ccx.tcx, t) ||
ty::type_is_unique_box(ccx.tcx, t) {
if action == DROP_EXISTING { bcx = drop_ty(bcx, dst, t); }
Store(bcx, src, dst);
ret take_ty(bcx, dst, t);
}
if type_is_structural_or_param(ccx.tcx, t) {
if action == DROP_EXISTING { bcx = drop_ty(bcx, dst, t); }
bcx = memmove_ty(bcx, dst, src, t);
ret take_ty(bcx, dst, t);
}
ccx.sess.bug("unexpected type in trans::copy_val_no_check: " +
ty_to_str(ccx.tcx, t));
}
// This works like copy_val, except that it deinitializes the source.
// Since it needs to zero out the source, src also needs to be an lval.
// FIXME: We always zero out the source. Ideally we would detect the
// case where a variable is always deinitialized by block exit and thus
// doesn't need to be dropped.
fn move_val(cx: @block_ctxt, action: copy_action, dst: ValueRef,
src: lval_result, t: ty::t) -> @block_ctxt {
let src_val = src.val;
let tcx = bcx_tcx(cx), cx = cx;
if ty::type_is_scalar(tcx, t) || ty::type_is_native(tcx, t) {
if src.kind == owned { src_val = Load(cx, src_val); }
Store(cx, src_val, dst);
ret cx;
} else if ty::type_is_nil(tcx, t) || ty::type_is_bot(tcx, t) {
ret cx;
} else if ty::type_is_boxed(tcx, t) || ty::type_is_unique(tcx, t) {
if src.kind == owned { src_val = Load(cx, src_val); }
if action == DROP_EXISTING { cx = drop_ty(cx, dst, t); }
Store(cx, src_val, dst);
if src.kind == owned { ret zero_alloca(cx, src.val, t); }
// If we're here, it must be a temporary.
revoke_clean(cx, src_val);
ret cx;
} else if type_is_structural_or_param(tcx, t) {
if action == DROP_EXISTING { cx = drop_ty(cx, dst, t); }
cx = memmove_ty(cx, dst, src_val, t);
if src.kind == owned { ret zero_alloca(cx, src_val, t); }
// If we're here, it must be a temporary.
revoke_clean(cx, src_val);
ret cx;
}
/* FIXME: suggests a type constraint */
bcx_ccx(cx).sess.bug("unexpected type in trans::move_val: " +
ty_to_str(tcx, t));
}
fn store_temp_expr(cx: @block_ctxt, action: copy_action, dst: ValueRef,
src: lval_result, t: ty::t, last_use: bool)
-> @block_ctxt {
// Lvals in memory are not temporaries. Copy them.
if src.kind != temporary && !last_use {
let v = src.kind == owned ? load_if_immediate(cx, src.val, t)
: src.val;
ret copy_val(cx, action, dst, v, t);
}
ret move_val(cx, action, dst, src, t);
}
fn trans_crate_lit(cx: @crate_ctxt, lit: ast::lit) -> ValueRef {
alt lit.node {
ast::lit_int(i, t) { C_integral(T_int_ty(cx, t), i as u64, True) }
ast::lit_uint(u, t) { C_integral(T_uint_ty(cx, t), u, False) }
ast::lit_float(fs, t) { C_floating(fs, T_float_ty(cx, t)) }
ast::lit_bool(b) { C_bool(b) }
ast::lit_nil { C_nil() }
ast::lit_str(s) {
cx.sess.span_unimpl(lit.span, "unique string in this context");
}
}
}
fn trans_lit(cx: @block_ctxt, lit: ast::lit, dest: dest) -> @block_ctxt {
if dest == ignore { ret cx; }
alt lit.node {
ast::lit_str(s) { ret tvec::trans_str(cx, s, dest); }
_ {
ret store_in_dest(cx, trans_crate_lit(bcx_ccx(cx), lit), dest);
}
}
}
// Converts an annotation to a type
fn node_id_type(cx: @crate_ctxt, id: ast::node_id) -> ty::t {
ret ty::node_id_to_monotype(cx.tcx, id);
}
fn node_type(cx: @crate_ctxt, sp: span, id: ast::node_id) -> TypeRef {
let ty = node_id_type(cx, id);
// How to make this a precondition?
// FIXME (again, would require a predicate that implies
// another predicate)
check (type_has_static_size(cx, ty));
type_of(cx, sp, ty)
}
fn trans_unary(bcx: @block_ctxt, op: ast::unop, e: @ast::expr,
un_expr: @ast::expr, dest: dest) -> @block_ctxt {
// Check for user-defined method call
alt bcx_ccx(bcx).method_map.find(un_expr.id) {
some(origin) {
let callee_id = ast_util::op_expr_callee_id(un_expr);
let fty = ty::node_id_to_monotype(bcx_tcx(bcx), callee_id);
ret trans_call_inner(bcx, fty, {|bcx|
trans_impl::trans_method_callee(bcx, callee_id, e, origin)
}, [], un_expr.id, dest);
}
_ {}
}
if dest == ignore { ret trans_expr(bcx, e, ignore); }
let e_ty = ty::expr_ty(bcx_tcx(bcx), e);
alt op {
ast::not {
let {bcx, val} = trans_temp_expr(bcx, e);
ret store_in_dest(bcx, Not(bcx, val), dest);
}
ast::neg {
let {bcx, val} = trans_temp_expr(bcx, e);
let neg = if ty::type_is_fp(bcx_tcx(bcx), e_ty) {
FNeg(bcx, val)
} else { Neg(bcx, val) };
ret store_in_dest(bcx, neg, dest);
}
ast::box(_) {
let {bcx, box, body} = trans_malloc_boxed(bcx, e_ty);
add_clean_free(bcx, box, false);
// Cast the body type to the type of the value. This is needed to
// make enums work, since enums have a different LLVM type depending
// on whether they're boxed or not
let ccx = bcx_ccx(bcx);
if check type_has_static_size(ccx, e_ty) {
let e_sp = e.span;
let llety = T_ptr(type_of(ccx, e_sp, e_ty));
body = PointerCast(bcx, body, llety);
}
bcx = trans_expr_save_in(bcx, e, body);
revoke_clean(bcx, box);
ret store_in_dest(bcx, box, dest);
}
ast::uniq(_) {
ret trans_uniq::trans_uniq(bcx, e, un_expr.id, dest);
}
ast::deref {
bcx_ccx(bcx).sess.bug("deref expressions should have been \
translated using trans_lval(), not \
trans_unary()");
}
}
}
fn trans_compare(cx: @block_ctxt, op: ast::binop, lhs: ValueRef,
_lhs_t: ty::t, rhs: ValueRef, rhs_t: ty::t) -> result {
if ty::type_is_scalar(bcx_tcx(cx), rhs_t) {
let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, op);
ret rslt(rs.bcx, rs.val);
}
// Determine the operation we need.
let llop;
alt op {
ast::eq | ast::ne { llop = C_u8(abi::cmp_glue_op_eq); }
ast::lt | ast::ge { llop = C_u8(abi::cmp_glue_op_lt); }
ast::le | ast::gt { llop = C_u8(abi::cmp_glue_op_le); }
}
let rs = call_cmp_glue(cx, lhs, rhs, rhs_t, llop);
// Invert the result if necessary.
alt op {
ast::eq | ast::lt | ast::le { ret rslt(rs.bcx, rs.val); }
ast::ne | ast::ge | ast::gt {
ret rslt(rs.bcx, Not(rs.bcx, rs.val));
}
}
}
// Important to get types for both lhs and rhs, because one might be _|_
// and the other not.
fn trans_eager_binop(cx: @block_ctxt, op: ast::binop, lhs: ValueRef,
lhs_t: ty::t, rhs: ValueRef, rhs_t: ty::t, dest: dest)
-> @block_ctxt {
if dest == ignore { ret cx; }
let intype = lhs_t;
if ty::type_is_bot(bcx_tcx(cx), intype) { intype = rhs_t; }
let is_float = ty::type_is_fp(bcx_tcx(cx), intype);
if op == ast::add && ty::type_is_sequence(bcx_tcx(cx), intype) {
ret tvec::trans_add(cx, intype, lhs, rhs, dest);
}
let cx = cx, val = alt op {
ast::add {
if is_float { FAdd(cx, lhs, rhs) }
else { Add(cx, lhs, rhs) }
}
ast::subtract {
if is_float { FSub(cx, lhs, rhs) }
else { Sub(cx, lhs, rhs) }
}
ast::mul {
if is_float { FMul(cx, lhs, rhs) }
else { Mul(cx, lhs, rhs) }
}
ast::div {
if is_float { FDiv(cx, lhs, rhs) }
else if ty::type_is_signed(bcx_tcx(cx), intype) {
SDiv(cx, lhs, rhs)
} else { UDiv(cx, lhs, rhs) }
}
ast::rem {
if is_float { FRem(cx, lhs, rhs) }
else if ty::type_is_signed(bcx_tcx(cx), intype) {
SRem(cx, lhs, rhs)
} else { URem(cx, lhs, rhs) }
}
ast::bitor { Or(cx, lhs, rhs) }
ast::bitand { And(cx, lhs, rhs) }
ast::bitxor { Xor(cx, lhs, rhs) }
ast::lsl { Shl(cx, lhs, rhs) }
ast::lsr { LShr(cx, lhs, rhs) }
ast::asr { AShr(cx, lhs, rhs) }
_ {
let cmpr = trans_compare(cx, op, lhs, lhs_t, rhs, rhs_t);
cx = cmpr.bcx;
cmpr.val
}
};
ret store_in_dest(cx, val, dest);
}
fn trans_assign_op(bcx: @block_ctxt, ex: @ast::expr, op: ast::binop,
dst: @ast::expr, src: @ast::expr) -> @block_ctxt {
let tcx = bcx_tcx(bcx);
let t = ty::expr_ty(tcx, src);
let lhs_res = trans_lval(bcx, dst);
assert (lhs_res.kind == owned);
// A user-defined operator method
alt bcx_ccx(bcx).method_map.find(ex.id) {
some(origin) {
let callee_id = ast_util::op_expr_callee_id(ex);
let fty = ty::node_id_to_monotype(bcx_tcx(bcx), callee_id);
ret trans_call_inner(bcx, fty, {|bcx|
// FIXME provide the already-computed address, not the expr
trans_impl::trans_method_callee(bcx, callee_id, dst, origin)
}, [src], ex.id, save_in(lhs_res.val));
}
_ {}
}
// Special case for `+= [x]`
alt ty::struct(tcx, t) {
ty::ty_vec(_) {
alt src.node {
ast::expr_vec(args, _) {
ret tvec::trans_append_literal(lhs_res.bcx,
lhs_res.val, t, args);
}
_ { }
}
}
_ { }
}
let {bcx, val: rhs_val} = trans_temp_expr(lhs_res.bcx, src);
if ty::type_is_sequence(tcx, t) {
alt op {
ast::add {
ret tvec::trans_append(bcx, t, lhs_res.val, rhs_val);
}
_ { }
}
}
ret trans_eager_binop(bcx, op, Load(bcx, lhs_res.val), t, rhs_val, t,
save_in(lhs_res.val));
}
fn autoderef(cx: @block_ctxt, v: ValueRef, t: ty::t) -> result_t {
let v1: ValueRef = v;
let t1: ty::t = t;
let ccx = bcx_ccx(cx);
let sp = cx.sp;
while true {
alt ty::struct(ccx.tcx, t1) {
ty::ty_box(mt) {
let body = GEPi(cx, v1, [0, abi::box_rc_field_body]);
t1 = mt.ty;
// Since we're changing levels of box indirection, we may have
// to cast this pointer, since statically-sized enum types have
// different types depending on whether they're behind a box
// or not.
if check type_has_static_size(ccx, t1) {
let llty = type_of(ccx, sp, t1);
v1 = PointerCast(cx, body, T_ptr(llty));
} else { v1 = body; }
}
ty::ty_uniq(_) {
check trans_uniq::type_is_unique_box(cx, t1);
let derefed = trans_uniq::autoderef(cx, v1, t1);
t1 = derefed.t;
v1 = derefed.v;
}
ty::ty_res(did, inner, tps) {
t1 = ty::substitute_type_params(ccx.tcx, tps, inner);
v1 = GEPi(cx, v1, [0, 1]);
}
ty::ty_enum(did, tps) {
let variants = ty::enum_variants(ccx.tcx, did);
if vec::len(*variants) != 1u ||
vec::len(variants[0].args) != 1u {
break;
}
t1 =
ty::substitute_type_params(ccx.tcx, tps, variants[0].args[0]);
if check type_has_static_size(ccx, t1) {
v1 = PointerCast(cx, v1, T_ptr(type_of(ccx, sp, t1)));
} else { } // FIXME: typestate hack
}
_ { break; }
}
v1 = load_if_immediate(cx, v1, t1);
}
ret {bcx: cx, val: v1, ty: t1};
}
fn trans_lazy_binop(bcx: @block_ctxt, op: ast::binop, a: @ast::expr,
b: @ast::expr, dest: dest) -> @block_ctxt {
let is_and = alt op { ast::and { true } ast::or { false } };
let lhs_res = trans_temp_expr(bcx, a);
if lhs_res.bcx.unreachable { ret lhs_res.bcx; }
let rhs_cx = new_scope_block_ctxt(lhs_res.bcx, "rhs");
let rhs_res = trans_temp_expr(rhs_cx, b);
let lhs_past_cx = new_scope_block_ctxt(lhs_res.bcx, "lhs");
// The following line ensures that any cleanups for rhs
// are done within the block for rhs. This is necessary
// because and/or are lazy. So the rhs may never execute,
// and the cleanups can't be pushed into later code.
let rhs_bcx = trans_block_cleanups(rhs_res.bcx, rhs_cx);
if is_and {
CondBr(lhs_res.bcx, lhs_res.val, rhs_cx.llbb, lhs_past_cx.llbb);
} else {
CondBr(lhs_res.bcx, lhs_res.val, lhs_past_cx.llbb, rhs_cx.llbb);
}
let join_cx = new_sub_block_ctxt(bcx, "join");
Br(lhs_past_cx, join_cx.llbb);
if rhs_bcx.unreachable {
ret store_in_dest(join_cx, C_bool(!is_and), dest);
}
Br(rhs_bcx, join_cx.llbb);
let phi = Phi(join_cx, T_bool(), [C_bool(!is_and), rhs_res.val],
[lhs_past_cx.llbb, rhs_bcx.llbb]);
ret store_in_dest(join_cx, phi, dest);
}
fn trans_binary(bcx: @block_ctxt, op: ast::binop, lhs: @ast::expr,
rhs: @ast::expr, dest: dest, ex: @ast::expr) -> @block_ctxt {
// User-defined operators
alt bcx_ccx(bcx).method_map.find(ex.id) {
some(origin) {
let callee_id = ast_util::op_expr_callee_id(ex);
let fty = ty::node_id_to_monotype(bcx_tcx(bcx), callee_id);
ret trans_call_inner(bcx, fty, {|bcx|
trans_impl::trans_method_callee(bcx, callee_id, lhs, origin)
}, [rhs], ex.id, dest);
}
_ {}
}
// First couple cases are lazy:
alt op {
ast::and | ast::or {
ret trans_lazy_binop(bcx, op, lhs, rhs, dest);
}
_ {
// Remaining cases are eager:
let lhs_res = trans_temp_expr(bcx, lhs);
let rhs_res = trans_temp_expr(lhs_res.bcx, rhs);
ret trans_eager_binop(rhs_res.bcx, op, lhs_res.val,
ty::expr_ty(bcx_tcx(bcx), lhs), rhs_res.val,
ty::expr_ty(bcx_tcx(bcx), rhs), dest);
}
}
}
enum dest {
by_val(@mutable ValueRef),
save_in(ValueRef),
ignore,
}
fn empty_dest_cell() -> @mutable ValueRef {
ret @mutable llvm::LLVMGetUndef(T_nil());
}
fn dup_for_join(dest: dest) -> dest {
alt dest {
by_val(_) { by_val(empty_dest_cell()) }
_ { dest }
}
}
fn join_returns(parent_cx: @block_ctxt, in_cxs: [@block_ctxt],
in_ds: [dest], out_dest: dest) -> @block_ctxt {
let out = new_sub_block_ctxt(parent_cx, "join");
let reachable = false, i = 0u, phi = none;
for cx in in_cxs {
if !cx.unreachable {
Br(cx, out.llbb);
reachable = true;
alt in_ds[i] {
by_val(cell) {
if option::is_none(phi) {
phi = some(EmptyPhi(out, val_ty(*cell)));
}
AddIncomingToPhi(option::get(phi), *cell, cx.llbb);
}
_ {}
}
}
i += 1u;
}
if !reachable {
Unreachable(out);
} else {
alt out_dest {
by_val(cell) { *cell = option::get(phi); }
_ {}
}
}
ret out;
}
// Used to put an immediate value in a dest.
fn store_in_dest(bcx: @block_ctxt, val: ValueRef, dest: dest) -> @block_ctxt {
alt dest {
ignore {}
by_val(cell) { *cell = val; }
save_in(addr) { Store(bcx, val, addr); }
}
ret bcx;
}
fn get_dest_addr(dest: dest) -> ValueRef {
alt dest { save_in(a) { a } }
}
fn trans_if(cx: @block_ctxt, cond: @ast::expr, thn: ast::blk,
els: option::t<@ast::expr>, dest: dest)
-> @block_ctxt {
let {bcx, val: cond_val} = trans_temp_expr(cx, cond);
let then_dest = dup_for_join(dest);
let else_dest = dup_for_join(dest);
let then_cx = new_scope_block_ctxt(bcx, "then");
let else_cx = new_scope_block_ctxt(bcx, "else");
CondBr(bcx, cond_val, then_cx.llbb, else_cx.llbb);
then_cx = trans_block_dps(then_cx, thn, then_dest);
// Calling trans_block directly instead of trans_expr
// because trans_expr will create another scope block
// context for the block, but we've already got the
// 'else' context
alt els {
some(elexpr) {
alt elexpr.node {
ast::expr_if(_, _, _) {
let elseif_blk = ast_util::block_from_expr(elexpr);
else_cx = trans_block_dps(else_cx, elseif_blk, else_dest);
}
ast::expr_block(blk) {
else_cx = trans_block_dps(else_cx, blk, else_dest);
}
}
}
_ {}
}
ret join_returns(cx, [then_cx, else_cx], [then_dest, else_dest], dest);
}
fn trans_for(cx: @block_ctxt, local: @ast::local, seq: @ast::expr,
body: ast::blk) -> @block_ctxt {
fn inner(bcx: @block_ctxt, local: @ast::local, curr: ValueRef, t: ty::t,
body: ast::blk, outer_next_cx: @block_ctxt) -> @block_ctxt {
let next_cx = new_sub_block_ctxt(bcx, "next");
let scope_cx =
new_loop_scope_block_ctxt(bcx, option::some(next_cx),
outer_next_cx, "for loop scope");
Br(bcx, scope_cx.llbb);
let curr = PointerCast(bcx, curr, T_ptr(type_of_or_i8(bcx, t)));
let bcx = trans_alt::bind_irrefutable_pat(scope_cx, local.node.pat,
curr, false);
bcx = trans_block_dps(bcx, body, ignore);
Br(bcx, next_cx.llbb);
ret next_cx;
}
let ccx = bcx_ccx(cx);
let next_cx = new_sub_block_ctxt(cx, "next");
let seq_ty = ty::expr_ty(bcx_tcx(cx), seq);
let {bcx: bcx, val: seq} = trans_temp_expr(cx, seq);
let seq = PointerCast(bcx, seq, T_ptr(ccx.opaque_vec_type));
let fill = tvec::get_fill(bcx, seq);
if ty::type_is_str(bcx_tcx(bcx), seq_ty) {
fill = Sub(bcx, fill, C_int(ccx, 1));
}
let bcx = tvec::iter_vec_raw(bcx, seq, seq_ty, fill,
bind inner(_, local, _, _, body, next_cx));
Br(bcx, next_cx.llbb);
ret next_cx;
}
fn trans_while(cx: @block_ctxt, cond: @ast::expr, body: ast::blk)
-> @block_ctxt {
let next_cx = new_sub_block_ctxt(cx, "while next");
let cond_cx =
new_loop_scope_block_ctxt(cx, option::none::<@block_ctxt>, next_cx,
"while cond");
let body_cx = new_scope_block_ctxt(cond_cx, "while loop body");
let body_end = trans_block(body_cx, body);
let cond_res = trans_temp_expr(cond_cx, cond);
Br(body_end, cond_cx.llbb);
let cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx);
CondBr(cond_bcx, cond_res.val, body_cx.llbb, next_cx.llbb);
Br(cx, cond_cx.llbb);
ret next_cx;
}
fn trans_do_while(cx: @block_ctxt, body: ast::blk, cond: @ast::expr) ->
@block_ctxt {
let next_cx = new_sub_block_ctxt(cx, "next");
let body_cx =
new_loop_scope_block_ctxt(cx, option::none::<@block_ctxt>, next_cx,
"do-while loop body");
let body_end = trans_block(body_cx, body);
let cond_cx = new_scope_block_ctxt(body_cx, "do-while cond");
Br(body_end, cond_cx.llbb);
let cond_res = trans_temp_expr(cond_cx, cond);
let cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx);
CondBr(cond_bcx, cond_res.val, body_cx.llbb, next_cx.llbb);
Br(cx, body_cx.llbb);
ret next_cx;
}
type generic_info = {
item_type: ty::t,
static_tis: [option::t<@tydesc_info>],
tydescs: [ValueRef],
param_bounds: @[ty::param_bounds],
origins: option::t<typeck::dict_res>
};
enum lval_kind {
temporary, //< Temporary value passed by value if of immediate type
owned, //< Non-temporary value passed by pointer
owned_imm, //< Non-temporary value passed by value
}
type local_var_result = {val: ValueRef, kind: lval_kind};
type lval_result = {bcx: @block_ctxt, val: ValueRef, kind: lval_kind};
enum callee_env {
null_env,
is_closure,
self_env(ValueRef),
dict_env(ValueRef, ValueRef),
}
type lval_maybe_callee = {bcx: @block_ctxt,
val: ValueRef,
kind: lval_kind,
env: callee_env,
generic: option::t<generic_info>};
fn null_env_ptr(bcx: @block_ctxt) -> ValueRef {
C_null(T_opaque_cbox_ptr(bcx_ccx(bcx)))
}
fn lval_from_local_var(bcx: @block_ctxt, r: local_var_result) -> lval_result {
ret { bcx: bcx, val: r.val, kind: r.kind };
}
fn lval_owned(bcx: @block_ctxt, val: ValueRef) -> lval_result {
ret {bcx: bcx, val: val, kind: owned};
}
fn lval_temp(bcx: @block_ctxt, val: ValueRef) -> lval_result {
ret {bcx: bcx, val: val, kind: temporary};
}
fn lval_no_env(bcx: @block_ctxt, val: ValueRef, kind: lval_kind)
-> lval_maybe_callee {
ret {bcx: bcx, val: val, kind: kind, env: is_closure, generic: none};
}
fn trans_external_path(cx: @block_ctxt, did: ast::def_id,
tpt: ty::ty_param_bounds_and_ty) -> ValueRef {
let lcx = cx.fcx.lcx;
let name = csearch::get_symbol(lcx.ccx.sess.cstore, did);
ret get_extern_const(lcx.ccx.externs, lcx.ccx.llmod, name,
type_of_ty_param_bounds_and_ty(lcx, cx.sp, tpt));
}
fn lval_static_fn(bcx: @block_ctxt, fn_id: ast::def_id, id: ast::node_id)
-> lval_maybe_callee {
let ccx = bcx_ccx(bcx);
let tpt = ty::lookup_item_type(ccx.tcx, fn_id);
let val = if fn_id.crate == ast::local_crate {
// Internal reference.
assert (ccx.item_ids.contains_key(fn_id.node));
ccx.item_ids.get(fn_id.node)
} else {
// External reference.
trans_external_path(bcx, fn_id, tpt)
};
let tys = ty::node_id_to_type_params(ccx.tcx, id);
let gen = none, bcx = bcx;
if vec::len(tys) != 0u {
let tydescs = [], tis = [];
for t in tys {
// TODO: Doesn't always escape.
let ti = none;
let td = get_tydesc(bcx, t, true, ti).result;
tis += [ti];
bcx = td.bcx;
tydescs += [td.val];
}
gen = some({item_type: tpt.ty,
static_tis: tis,
tydescs: tydescs,
param_bounds: tpt.bounds,
origins: ccx.dict_map.find(id)});
}
ret {bcx: bcx, val: val, kind: owned, env: null_env, generic: gen};
}
fn lookup_discriminant(lcx: @local_ctxt, vid: ast::def_id) -> ValueRef {
let ccx = lcx.ccx;
alt ccx.discrims.find(vid) {
none {
// It's an external discriminant that we haven't seen yet.
assert (vid.crate != ast::local_crate);
let sym = csearch::get_symbol(lcx.ccx.sess.cstore, vid);
let gvar =
str::as_buf(sym,
{|buf|
llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf)
});
llvm::LLVMSetLinkage(gvar,
lib::llvm::LLVMExternalLinkage as llvm::Linkage);
llvm::LLVMSetGlobalConstant(gvar, True);
lcx.ccx.discrims.insert(vid, gvar);
ret gvar;
}
some(llval) { ret llval; }
}
}
fn trans_local_var(cx: @block_ctxt, def: ast::def) -> local_var_result {
fn take_local(table: hashmap<ast::node_id, local_val>,
id: ast::node_id) -> local_var_result {
alt table.find(id) {
some(local_mem(v)) { {val: v, kind: owned} }
some(local_imm(v)) { {val: v, kind: owned_imm} }
r { fail("take_local: internal error"); }
}
}
alt def {
ast::def_upvar(did, _, _) {
assert (cx.fcx.llupvars.contains_key(did.node));
ret { val: cx.fcx.llupvars.get(did.node), kind: owned };
}
ast::def_arg(did, _) {
assert (cx.fcx.llargs.contains_key(did.node));
ret take_local(cx.fcx.llargs, did.node);
}
ast::def_local(did, _) | ast::def_binding(did) {
assert (cx.fcx.lllocals.contains_key(did.node));
ret take_local(cx.fcx.lllocals, did.node);
}
ast::def_self(did) {
let slf = option::get(cx.fcx.llself);
let ptr = PointerCast(cx, slf.v, T_ptr(type_of_or_i8(cx, slf.t)));
ret {val: ptr, kind: owned};
}
_ {
bcx_ccx(cx).sess.span_unimpl
(cx.sp, "unsupported def type in trans_local_def");
}
}
}
fn trans_path(cx: @block_ctxt, p: @ast::path, id: ast::node_id)
-> lval_maybe_callee {
ret trans_var(cx, p.span, bcx_tcx(cx).def_map.get(id), id);
}
fn trans_var(cx: @block_ctxt, sp: span, def: ast::def, id: ast::node_id)
-> lval_maybe_callee {
let ccx = bcx_ccx(cx);
alt def {
ast::def_fn(did, _) {
ret lval_static_fn(cx, did, id);
}
ast::def_variant(tid, vid) {
if vec::len(ty::enum_variant_with_id(ccx.tcx, tid, vid).args) > 0u {
// N-ary variant.
ret lval_static_fn(cx, vid, id);
} else {
// Nullary variant.
let enum_ty = node_id_type(ccx, id);
let alloc_result = alloc_ty(cx, enum_ty);
let llenumblob = alloc_result.val;
let llenumty = type_of_enum(ccx, sp, tid, enum_ty);
let bcx = alloc_result.bcx;
let llenumptr = PointerCast(bcx, llenumblob, T_ptr(llenumty));
let lldiscrimptr = GEPi(bcx, llenumptr, [0, 0]);
let lldiscrim_gv = lookup_discriminant(bcx.fcx.lcx, vid);
let lldiscrim = Load(bcx, lldiscrim_gv);
Store(bcx, lldiscrim, lldiscrimptr);
ret lval_no_env(bcx, llenumptr, temporary);
}
}
ast::def_const(did) {
if did.crate == ast::local_crate {
assert (ccx.consts.contains_key(did.node));
ret lval_no_env(cx, ccx.consts.get(did.node), owned);
} else {
let tp = ty::node_id_to_monotype(ccx.tcx, id);
let val = trans_external_path(cx, did, {bounds: @[], ty: tp});
ret lval_no_env(cx, load_if_immediate(cx, val, tp), owned_imm);
}
}
_ {
let loc = trans_local_var(cx, def);
ret lval_no_env(cx, loc.val, loc.kind);
}
}
}
fn trans_rec_field(bcx: @block_ctxt, base: @ast::expr,
field: ast::ident) -> lval_result {
let {bcx, val} = trans_temp_expr(bcx, base);
let {bcx, val, ty} = autoderef(bcx, val, ty::expr_ty(bcx_tcx(bcx), base));
let fields = alt ty::struct(bcx_tcx(bcx), ty) { ty::ty_rec(fs) { fs } };
let ix = option::get(ty::field_idx(field, fields));
// Silly check
check type_is_tup_like(bcx, ty);
let {bcx, val} = GEP_tup_like(bcx, ty, val, [0, ix as int]);
ret {bcx: bcx, val: val, kind: owned};
}
fn trans_index(cx: @block_ctxt, ex: @ast::expr, base: @ast::expr,
idx: @ast::expr) -> lval_result {
let base_ty = ty::expr_ty(bcx_tcx(cx), base);
let exp = trans_temp_expr(cx, base);
let lv = autoderef(exp.bcx, exp.val, base_ty);
let ix = trans_temp_expr(lv.bcx, idx);
let v = lv.val;
let bcx = ix.bcx;
let ccx = bcx_ccx(cx);
// Cast to an LLVM integer. Rust is less strict than LLVM in this regard.
let ix_val;
let ix_size = llsize_of_real(bcx_ccx(cx), val_ty(ix.val));
let int_size = llsize_of_real(bcx_ccx(cx), ccx.int_type);
if ix_size < int_size {
ix_val = ZExt(bcx, ix.val, ccx.int_type);
} else if ix_size > int_size {
ix_val = Trunc(bcx, ix.val, ccx.int_type);
} else { ix_val = ix.val; }
let unit_ty = node_id_type(bcx_ccx(cx), ex.id);
let unit_sz = size_of(bcx, unit_ty);
bcx = unit_sz.bcx;
maybe_name_value(bcx_ccx(cx), unit_sz.val, "unit_sz");
let scaled_ix = Mul(bcx, ix_val, unit_sz.val);
maybe_name_value(bcx_ccx(cx), scaled_ix, "scaled_ix");
let lim = tvec::get_fill(bcx, v);
let body = tvec::get_dataptr(bcx, v, type_of_or_i8(bcx, unit_ty));
let bounds_check = ICmp(bcx, lib::llvm::LLVMIntULT, scaled_ix, lim);
let fail_cx = new_sub_block_ctxt(bcx, "fail");
let next_cx = new_sub_block_ctxt(bcx, "next");
let ncx = bcx_ccx(next_cx);
CondBr(bcx, bounds_check, next_cx.llbb, fail_cx.llbb);
// fail: bad bounds check.
trans_fail(fail_cx, some(ex.span), "bounds check");
let elt =
if check type_has_static_size(ncx, unit_ty) {
let elt_1 = GEP(next_cx, body, [ix_val]);
let llunitty = type_of(ncx, ex.span, unit_ty);
PointerCast(next_cx, elt_1, T_ptr(llunitty))
} else {
body = PointerCast(next_cx, body, T_ptr(T_i8()));
GEP(next_cx, body, [scaled_ix])
};
ret lval_owned(next_cx, elt);
}
fn expr_is_lval(bcx: @block_ctxt, e: @ast::expr) -> bool {
let ccx = bcx_ccx(bcx);
ty::expr_is_lval(ccx.method_map, e)
}
fn trans_callee(bcx: @block_ctxt, e: @ast::expr) -> lval_maybe_callee {
alt e.node {
ast::expr_path(p) { ret trans_path(bcx, p, e.id); }
ast::expr_field(base, ident, _) {
// Lval means this is a record field, so not a method
if !expr_is_lval(bcx, e) {
alt bcx_ccx(bcx).method_map.find(e.id) {
some(origin) { // An impl method
ret trans_impl::trans_method_callee(bcx, e.id, base, origin);
}
}
}
}
_ {}
}
let lv = trans_temp_lval(bcx, e);
ret lval_no_env(lv.bcx, lv.val, lv.kind);
}
// Use this when you know you are compiling an lval.
// The additional bool returned indicates whether it's mem (that is
// represented as an alloca or heap, hence needs a 'load' to be used as an
// immediate).
fn trans_lval(cx: @block_ctxt, e: @ast::expr) -> lval_result {
alt e.node {
ast::expr_path(p) {
let v = trans_path(cx, p, e.id);
ret lval_maybe_callee_to_lval(v, ty::expr_ty(bcx_tcx(cx), e));
}
ast::expr_field(base, ident, _) {
ret trans_rec_field(cx, base, ident);
}
ast::expr_index(base, idx) {
ret trans_index(cx, e, base, idx);
}
ast::expr_unary(ast::deref, base) {
let ccx = bcx_ccx(cx);
let sub = trans_temp_expr(cx, base);
let t = ty::expr_ty(ccx.tcx, base);
let val =
alt ty::struct(ccx.tcx, t) {
ty::ty_box(_) {
GEPi(sub.bcx, sub.val, [0, abi::box_rc_field_body])
}
ty::ty_res(_, _, _) {
GEPi(sub.bcx, sub.val, [0, 1])
}
ty::ty_enum(_, _) {
let ety = ty::expr_ty(ccx.tcx, e);
let sp = e.span;
let ellty =
if check type_has_static_size(ccx, ety) {
T_ptr(type_of(ccx, sp, ety))
} else { T_typaram_ptr(ccx.tn) };
PointerCast(sub.bcx, sub.val, ellty)
}
ty::ty_ptr(_) | ty::ty_uniq(_) { sub.val }
};
ret lval_owned(sub.bcx, val);
}
// This is a by-ref returning call. Regular calls are not lval
ast::expr_call(f, args, _) {
let cell = empty_dest_cell();
let bcx = trans_call(cx, f, args, e.id, by_val(cell));
ret lval_owned(bcx, *cell);
}
_ { bcx_ccx(cx).sess.span_bug(e.span, "non-lval in trans_lval"); }
}
}
fn maybe_add_env(bcx: @block_ctxt, c: lval_maybe_callee)
-> (lval_kind, ValueRef) {
alt c.env {
is_closure { (c.kind, c.val) }
self_env(_) | dict_env(_, _) {
fail "Taking the value of a method does not work yet (issue #435)";
}
null_env {
let llfnty = llvm::LLVMGetElementType(val_ty(c.val));
(temporary, create_real_fn_pair(bcx, llfnty, c.val,
null_env_ptr(bcx)))
}
}
}
fn lval_maybe_callee_to_lval(c: lval_maybe_callee, ty: ty::t) -> lval_result {
alt c.generic {
some(gi) {
let n_args = vec::len(ty::ty_fn_args(bcx_tcx(c.bcx), ty));
let args = vec::init_elt(n_args, none::<@ast::expr>);
let space = alloc_ty(c.bcx, ty);
let bcx = trans_closure::trans_bind_1(space.bcx, ty, c, args, ty,
save_in(space.val));
add_clean_temp(bcx, space.val, ty);
ret {bcx: bcx, val: space.val, kind: temporary};
}
none {
let (kind, val) = maybe_add_env(c.bcx, c);
ret {bcx: c.bcx, val: val, kind: kind};
}
}
}
fn int_cast(bcx: @block_ctxt, lldsttype: TypeRef, llsrctype: TypeRef,
llsrc: ValueRef, signed: bool) -> ValueRef {
let srcsz = llvm::LLVMGetIntTypeWidth(llsrctype);
let dstsz = llvm::LLVMGetIntTypeWidth(lldsttype);
ret if dstsz == srcsz {
BitCast(bcx, llsrc, lldsttype)
} else if srcsz > dstsz {
TruncOrBitCast(bcx, llsrc, lldsttype)
} else if signed {
SExtOrBitCast(bcx, llsrc, lldsttype)
} else { ZExtOrBitCast(bcx, llsrc, lldsttype) };
}
fn float_cast(bcx: @block_ctxt, lldsttype: TypeRef, llsrctype: TypeRef,
llsrc: ValueRef) -> ValueRef {
let srcsz = lib::llvm::float_width(llsrctype);
let dstsz = lib::llvm::float_width(lldsttype);
ret if dstsz > srcsz {
FPExt(bcx, llsrc, lldsttype)
} else if srcsz > dstsz {
FPTrunc(bcx, llsrc, lldsttype)
} else { llsrc };
}
fn trans_cast(cx: @block_ctxt, e: @ast::expr, id: ast::node_id,
dest: dest) -> @block_ctxt {
let ccx = bcx_ccx(cx);
let t_out = node_id_type(ccx, id);
alt ty::struct(ccx.tcx, t_out) {
ty::ty_iface(_, _) { ret trans_impl::trans_cast(cx, e, id, dest); }
_ {}
}
let e_res = trans_temp_expr(cx, e);
let ll_t_in = val_ty(e_res.val);
let t_in = ty::expr_ty(ccx.tcx, e);
// Check should be avoidable because it's a cast.
// FIXME: Constrain types so as to avoid this check.
check (type_has_static_size(ccx, t_out));
let ll_t_out = type_of(ccx, e.span, t_out);
enum kind { pointer, integral, float, enum_, other, }
fn t_kind(tcx: ty::ctxt, t: ty::t) -> kind {
ret if ty::type_is_fp(tcx, t) {
float
} else if ty::type_is_native(tcx, t) ||
ty::type_is_unsafe_ptr(tcx, t) {
pointer
} else if ty::type_is_integral(tcx, t) {
integral
} else if ty::type_is_enum(tcx, t) {
enum_
} else { other };
}
let k_in = t_kind(ccx.tcx, t_in);
let k_out = t_kind(ccx.tcx, t_out);
let s_in = k_in == integral && ty::type_is_signed(ccx.tcx, t_in);
let newval =
alt {in: k_in, out: k_out} {
{in: integral, out: integral} {
int_cast(e_res.bcx, ll_t_out, ll_t_in, e_res.val, s_in)
}
{in: float, out: float} {
float_cast(e_res.bcx, ll_t_out, ll_t_in, e_res.val)
}
{in: integral, out: float} {
if s_in {
SIToFP(e_res.bcx, e_res.val, ll_t_out)
} else { UIToFP(e_res.bcx, e_res.val, ll_t_out) }
}
{in: float, out: integral} {
if ty::type_is_signed(ccx.tcx, t_out) {
FPToSI(e_res.bcx, e_res.val, ll_t_out)
} else { FPToUI(e_res.bcx, e_res.val, ll_t_out) }
}
{in: integral, out: pointer} {
IntToPtr(e_res.bcx, e_res.val, ll_t_out)
}
{in: pointer, out: integral} {
PtrToInt(e_res.bcx, e_res.val, ll_t_out)
}
{in: pointer, out: pointer} {
PointerCast(e_res.bcx, e_res.val, ll_t_out)
}
{in: enum_, out: integral} | {in: enum_, out: float} {
let cx = e_res.bcx;
let llenumty = T_opaque_enum_ptr(ccx);
let av_enum = PointerCast(cx, e_res.val, llenumty);
let lldiscrim_a_ptr = GEPi(cx, av_enum, [0, 0]);
let lldiscrim_a = Load(cx, lldiscrim_a_ptr);
alt k_out {
integral {int_cast(e_res.bcx, ll_t_out,
val_ty(lldiscrim_a), lldiscrim_a, true)}
float {SIToFP(e_res.bcx, lldiscrim_a, ll_t_out)}
}
}
_ { ccx.sess.bug("Translating unsupported cast.") }
};
ret store_in_dest(e_res.bcx, newval, dest);
}
fn trans_arg_expr(cx: @block_ctxt, arg: ty::arg, lldestty: TypeRef,
&to_zero: [{v: ValueRef, t: ty::t}],
&to_revoke: [{v: ValueRef, t: ty::t}], e: @ast::expr) ->
result {
let ccx = bcx_ccx(cx);
let e_ty = ty::expr_ty(ccx.tcx, e);
let is_bot = ty::type_is_bot(ccx.tcx, e_ty);
let lv = trans_temp_lval(cx, e);
let bcx = lv.bcx;
let val = lv.val;
if is_bot {
// For values of type _|_, we generate an
// "undef" value, as such a value should never
// be inspected. It's important for the value
// to have type lldestty (the callee's expected type).
val = llvm::LLVMGetUndef(lldestty);
} else if arg.mode == ast::by_ref || arg.mode == ast::by_val {
let copied = false, imm = ty::type_is_immediate(ccx.tcx, e_ty);
if arg.mode == ast::by_ref && lv.kind != owned && imm {
val = do_spill_noroot(bcx, val);
copied = true;
}
if ccx.copy_map.contains_key(e.id) && lv.kind != temporary {
if !copied {
let alloc = alloc_ty(bcx, e_ty);
bcx = copy_val(alloc.bcx, INIT, alloc.val,
load_if_immediate(alloc.bcx, val, e_ty), e_ty);
val = alloc.val;
} else { bcx = take_ty(bcx, val, e_ty); }
add_clean(bcx, val, e_ty);
}
if arg.mode == ast::by_val && (lv.kind == owned || !imm) {
val = Load(bcx, val);
}
} else if arg.mode == ast::by_copy {
let {bcx: cx, val: alloc} = alloc_ty(bcx, e_ty);
let last_use = ccx.last_uses.contains_key(e.id);
bcx = cx;
if lv.kind == temporary { revoke_clean(bcx, val); }
if lv.kind == owned || !ty::type_is_immediate(ccx.tcx, e_ty) {
bcx = memmove_ty(bcx, alloc, val, e_ty);
if last_use && ty::type_needs_drop(ccx.tcx, e_ty) {
bcx = zero_alloca(bcx, val, e_ty);
}
} else { Store(bcx, val, alloc); }
val = alloc;
if lv.kind != temporary && !last_use {
bcx = take_ty(bcx, val, e_ty);
}
} else if ty::type_is_immediate(ccx.tcx, e_ty) && lv.kind != owned {
let r = do_spill(bcx, val, e_ty);
val = r.val;
bcx = r.bcx;
}
if !is_bot && ty::type_contains_params(ccx.tcx, arg.ty) {
val = PointerCast(bcx, val, lldestty);
}
// Collect arg for later if it happens to be one we've moving out.
if arg.mode == ast::by_move {
if lv.kind == owned {
// Use actual ty, not declared ty -- anything else doesn't make
// sense if declared ty is a ty param
to_zero += [{v: lv.val, t: e_ty}];
} else { to_revoke += [{v: lv.val, t: e_ty}]; }
}
ret rslt(bcx, val);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn trans_args(cx: @block_ctxt, llenv: ValueRef,
gen: option::t<generic_info>, es: [@ast::expr], fn_ty: ty::t,
dest: dest)
-> {bcx: @block_ctxt,
args: [ValueRef],
retslot: ValueRef,
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}]} {
let args: [ty::arg] = ty::ty_fn_args(bcx_tcx(cx), fn_ty);
let llargs: [ValueRef] = [];
let lltydescs: [ValueRef] = [];
let to_zero = [];
let to_revoke = [];
let ccx = bcx_ccx(cx);
let tcx = ccx.tcx;
let bcx = cx;
let retty = ty::ty_fn_ret(tcx, fn_ty), full_retty = retty;
alt gen {
some(g) {
lazily_emit_all_generic_info_tydesc_glues(cx, g);
let i = 0u, n_orig = 0u;
for param in *g.param_bounds {
lltydescs += [g.tydescs[i]];
for bound in *param {
alt bound {
ty::bound_iface(_) {
let res = trans_impl::get_dict(
bcx, option::get(g.origins)[n_orig]);
lltydescs += [res.val];
bcx = res.bcx;
n_orig += 1u;
}
_ {}
}
}
i += 1u;
}
args = ty::ty_fn_args(tcx, g.item_type);
retty = ty::ty_fn_ret(tcx, g.item_type);
}
_ { }
}
// Arg 0: Output pointer.
let llretslot = alt dest {
ignore {
if ty::type_is_nil(tcx, retty) {
llvm::LLVMGetUndef(T_ptr(T_nil()))
} else {
let {bcx: cx, val} = alloc_ty(bcx, full_retty);
bcx = cx;
val
}
}
save_in(dst) { dst }
by_val(_) {
let {bcx: cx, val} = alloc_ty(bcx, full_retty);
bcx = cx;
val
}
};
if ty::type_contains_params(tcx, retty) {
// It's possible that the callee has some generic-ness somewhere in
// its return value -- say a method signature within an obj or a fn
// type deep in a structure -- which the caller has a concrete view
// of. If so, cast the caller's view of the restlot to the callee's
// view, for the sake of making a type-compatible call.
check non_ty_var(ccx, retty);
let llretty = T_ptr(type_of_inner(ccx, bcx.sp, retty));
llargs += [PointerCast(cx, llretslot, llretty)];
} else { llargs += [llretslot]; }
// Arg 1: Env (closure-bindings / self value)
llargs += [llenv];
// Args >2: ty_params ...
llargs += lltydescs;
// ... then explicit args.
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
let arg_tys = type_of_explicit_args(ccx, cx.sp, args);
let i = 0u;
for e: @ast::expr in es {
let r = trans_arg_expr(bcx, args[i], arg_tys[i], to_zero, to_revoke,
e);
bcx = r.bcx;
llargs += [r.val];
i += 1u;
}
ret {bcx: bcx,
args: llargs,
retslot: llretslot,
to_zero: to_zero,
to_revoke: to_revoke};
}
fn trans_call(in_cx: @block_ctxt, f: @ast::expr,
args: [@ast::expr], id: ast::node_id, dest: dest)
-> @block_ctxt {
trans_call_inner(in_cx, ty::expr_ty(bcx_tcx(in_cx), f),
{|cx| trans_callee(cx, f)}, args, id, dest)
}
fn trans_call_inner(in_cx: @block_ctxt, fn_expr_ty: ty::t,
get_callee: fn(@block_ctxt) -> lval_maybe_callee,
args: [@ast::expr], id: ast::node_id, dest: dest)
-> @block_ctxt {
// NB: 'f' isn't necessarily a function; it might be an entire self-call
// expression because of the hack that allows us to process self-calls
// with trans_call.
let tcx = bcx_tcx(in_cx);
let cx = new_scope_block_ctxt(in_cx, "call");
Br(in_cx, cx.llbb);
let f_res = get_callee(cx);
let bcx = f_res.bcx;
let faddr = f_res.val;
let llenv, dict_param = none;
alt f_res.env {
null_env {
llenv = llvm::LLVMGetUndef(T_opaque_cbox_ptr(bcx_ccx(cx)));
}
self_env(e) { llenv = e; }
dict_env(dict, e) { llenv = e; dict_param = some(dict); }
is_closure {
// It's a closure. Have to fetch the elements
if f_res.kind == owned {
faddr = load_if_immediate(bcx, faddr, fn_expr_ty);
}
let pair = faddr;
faddr = GEPi(bcx, pair, [0, abi::fn_field_code]);
faddr = Load(bcx, faddr);
let llclosure = GEPi(bcx, pair, [0, abi::fn_field_box]);
llenv = Load(bcx, llclosure);
}
}
let ret_ty = ty::node_id_to_type(tcx, id);
let args_res =
trans_args(bcx, llenv, f_res.generic, args, fn_expr_ty, dest);
bcx = args_res.bcx;
let llargs = args_res.args;
option::may(dict_param) {|dict| llargs = [dict] + llargs}
let llretslot = args_res.retslot;
/* If the block is terminated,
then one or more of the args has
type _|_. Since that means it diverges, the code
for the call itself is unreachable. */
bcx = invoke_full(bcx, faddr, llargs, args_res.to_zero,
args_res.to_revoke);
alt dest {
ignore {
if llvm::LLVMIsUndef(llretslot) != lib::llvm::True {
bcx = drop_ty(bcx, llretslot, ret_ty);
}
}
save_in(_) { } // Already saved by callee
by_val(cell) {
*cell = Load(bcx, llretslot);
}
}
// Forget about anything we moved out.
bcx = zero_and_revoke(bcx, args_res.to_zero, args_res.to_revoke);
bcx = trans_block_cleanups(bcx, cx);
let next_cx = new_sub_block_ctxt(in_cx, "next");
if bcx.unreachable || ty::type_is_bot(tcx, ret_ty) {
Unreachable(next_cx);
}
Br(bcx, next_cx.llbb);
ret next_cx;
}
fn zero_and_revoke(bcx: @block_ctxt,
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}]) -> @block_ctxt {
let bcx = bcx;
for {v, t} in to_zero {
bcx = zero_alloca(bcx, v, t);
}
for {v, _} in to_revoke { revoke_clean(bcx, v); }
ret bcx;
}
fn invoke(bcx: @block_ctxt, llfn: ValueRef,
llargs: [ValueRef]) -> @block_ctxt {
ret invoke_(bcx, llfn, llargs, [], [], Invoke);
}
fn invoke_full(bcx: @block_ctxt, llfn: ValueRef, llargs: [ValueRef],
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}]) -> @block_ctxt {
ret invoke_(bcx, llfn, llargs, to_zero, to_revoke, Invoke);
}
fn invoke_(bcx: @block_ctxt, llfn: ValueRef, llargs: [ValueRef],
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}],
invoker: fn(@block_ctxt, ValueRef, [ValueRef],
BasicBlockRef, BasicBlockRef)) -> @block_ctxt {
// FIXME: May be worth turning this into a plain call when there are no
// cleanups to run
if bcx.unreachable { ret bcx; }
let normal_bcx = new_sub_block_ctxt(bcx, "normal return");
invoker(bcx, llfn, llargs, normal_bcx.llbb,
get_landing_pad(bcx, to_zero, to_revoke));
ret normal_bcx;
}
fn get_landing_pad(bcx: @block_ctxt,
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}]
) -> BasicBlockRef {
let have_zero_or_revoke = vec::is_not_empty(to_zero)
|| vec::is_not_empty(to_revoke);
let scope_bcx = find_scope_for_lpad(bcx, have_zero_or_revoke);
if scope_bcx.lpad_dirty || have_zero_or_revoke {
let unwind_bcx = new_sub_block_ctxt(bcx, "unwind");
trans_landing_pad(unwind_bcx, to_zero, to_revoke);
scope_bcx.lpad = some(unwind_bcx.llbb);
scope_bcx.lpad_dirty = have_zero_or_revoke;
}
assert option::is_some(scope_bcx.lpad);
ret option::get(scope_bcx.lpad);
fn find_scope_for_lpad(bcx: @block_ctxt,
have_zero_or_revoke: bool) -> @block_ctxt {
let scope_bcx = bcx;
while true {
scope_bcx = find_scope_cx(scope_bcx);
if vec::is_not_empty(scope_bcx.cleanups)
|| have_zero_or_revoke {
ret scope_bcx;
} else {
scope_bcx = alt scope_bcx.parent {
parent_some(b) { b }
parent_none {
ret scope_bcx;
}
};
}
}
fail;
}
}
fn trans_landing_pad(bcx: @block_ctxt,
to_zero: [{v: ValueRef, t: ty::t}],
to_revoke: [{v: ValueRef, t: ty::t}]) -> BasicBlockRef {
// The landing pad return type (the type being propagated). Not sure what
// this represents but it's determined by the personality function and
// this is what the EH proposal example uses.
let llretty = T_struct([T_ptr(T_i8()), T_i32()]);
// The exception handling personality function. This is the C++
// personality function __gxx_personality_v0, wrapped in our naming
// convention.
let personality = bcx_ccx(bcx).upcalls.rust_personality;
// The only landing pad clause will be 'cleanup'
let clauses = 1u;
let llpad = LandingPad(bcx, llretty, personality, clauses);
// The landing pad result is used both for modifying the landing pad
// in the C API and as the exception value
let llretval = llpad;
// The landing pad block is a cleanup
SetCleanup(bcx, llpad);
// Because we may have unwound across a stack boundary, we must call into
// the runtime to figure out which stack segment we are on and place the
// stack limit back into the TLS.
Call(bcx, bcx_ccx(bcx).upcalls.reset_stack_limit, []);
// FIXME: This seems like a very naive and redundant way to generate the
// landing pads, as we're re-generating all in-scope cleanups for each
// function call. Probably good optimization opportunities here.
let bcx = zero_and_revoke(bcx, to_zero, to_revoke);
let scope_cx = bcx;
while true {
scope_cx = find_scope_cx(scope_cx);
bcx = trans_block_cleanups(bcx, scope_cx);
scope_cx = alt scope_cx.parent {
parent_some(b) { b }
parent_none { break; }
};
}
// Continue unwinding
Resume(bcx, llretval);
ret bcx.llbb;
}
fn trans_tup(bcx: @block_ctxt, elts: [@ast::expr], id: ast::node_id,
dest: dest) -> @block_ctxt {
let t = node_id_type(bcx.fcx.lcx.ccx, id);
let bcx = bcx;
let addr = alt dest {
ignore {
for ex in elts { bcx = trans_expr(bcx, ex, ignore); }
ret bcx;
}
save_in(pos) { pos }
};
let temp_cleanups = [], i = 0;
for e in elts {
let dst = GEP_tup_like_1(bcx, t, addr, [0, i]);
let e_ty = ty::expr_ty(bcx_tcx(bcx), e);
bcx = trans_expr_save_in(dst.bcx, e, dst.val);
add_clean_temp_mem(bcx, dst.val, e_ty);
temp_cleanups += [dst.val];
i += 1;
}
for cleanup in temp_cleanups { revoke_clean(bcx, cleanup); }
ret bcx;
}
fn trans_rec(bcx: @block_ctxt, fields: [ast::field],
base: option::t<@ast::expr>, id: ast::node_id,
dest: dest) -> @block_ctxt {
let t = node_id_type(bcx_ccx(bcx), id);
let bcx = bcx;
let addr = alt dest {
ignore {
for fld in fields {
bcx = trans_expr(bcx, fld.node.expr, ignore);
}
ret bcx;
}
save_in(pos) { pos }
};
let ty_fields = alt ty::struct(bcx_tcx(bcx), t) { ty::ty_rec(f) { f } };
let temp_cleanups = [];
for fld in fields {
let ix = option::get(vec::position_pred(ty_fields, {|ft|
str::eq(fld.node.ident, ft.ident)
}));
let dst = GEP_tup_like_1(bcx, t, addr, [0, ix as int]);
bcx = trans_expr_save_in(dst.bcx, fld.node.expr, dst.val);
add_clean_temp_mem(bcx, dst.val, ty_fields[ix].mt.ty);
temp_cleanups += [dst.val];
}
alt base {
some(bexp) {
let {bcx: cx, val: base_val} = trans_temp_expr(bcx, bexp), i = 0;
bcx = cx;
// Copy over inherited fields
for tf in ty_fields {
if !vec::any(fields, {|f| str::eq(f.node.ident, tf.ident)}) {
let dst = GEP_tup_like_1(bcx, t, addr, [0, i]);
let base = GEP_tup_like_1(bcx, t, base_val, [0, i]);
let val = load_if_immediate(base.bcx, base.val, tf.mt.ty);
bcx = copy_val(base.bcx, INIT, dst.val, val, tf.mt.ty);
}
i += 1;
}
}
none {}
};
// Now revoke the cleanups as we pass responsibility for the data
// structure on to the caller
for cleanup in temp_cleanups { revoke_clean(bcx, cleanup); }
ret bcx;
}
// Store the result of an expression in the given memory location, ensuring
// that nil or bot expressions get ignore rather than save_in as destination.
fn trans_expr_save_in(bcx: @block_ctxt, e: @ast::expr, dest: ValueRef)
-> @block_ctxt {
let tcx = bcx_tcx(bcx), t = ty::expr_ty(tcx, e);
let do_ignore = ty::type_is_bot(tcx, t) || ty::type_is_nil(tcx, t);
ret trans_expr(bcx, e, do_ignore ? ignore : save_in(dest));
}
// Call this to compile an expression that you need as an intermediate value,
// and you want to know whether you're dealing with an lval or not (the kind
// field in the returned struct). For non-intermediates, use trans_expr or
// trans_expr_save_in. For intermediates where you don't care about lval-ness,
// use trans_temp_expr.
fn trans_temp_lval(bcx: @block_ctxt, e: @ast::expr) -> lval_result {
let bcx = bcx;
if expr_is_lval(bcx, e) {
ret trans_lval(bcx, e);
} else {
let tcx = bcx_tcx(bcx);
let ty = ty::expr_ty(tcx, e);
if ty::type_is_nil(tcx, ty) || ty::type_is_bot(tcx, ty) {
bcx = trans_expr(bcx, e, ignore);
ret {bcx: bcx, val: C_nil(), kind: temporary};
} else if ty::type_is_immediate(bcx_tcx(bcx), ty) {
let cell = empty_dest_cell();
bcx = trans_expr(bcx, e, by_val(cell));
add_clean_temp(bcx, *cell, ty);
ret {bcx: bcx, val: *cell, kind: temporary};
} else {
let {bcx, val: scratch} = alloc_ty(bcx, ty);
bcx = trans_expr_save_in(bcx, e, scratch);
add_clean_temp(bcx, scratch, ty);
ret {bcx: bcx, val: scratch, kind: temporary};
}
}
}
// Use only for intermediate values. See trans_expr and trans_expr_save_in for
// expressions that must 'end up somewhere' (or get ignored).
fn trans_temp_expr(bcx: @block_ctxt, e: @ast::expr) -> result {
let {bcx, val, kind} = trans_temp_lval(bcx, e);
if kind == owned {
val = load_if_immediate(bcx, val, ty::expr_ty(bcx_tcx(bcx), e));
}
ret {bcx: bcx, val: val};
}
// Translate an expression, with the dest argument deciding what happens with
// the result. Invariants:
// - exprs returning nil or bot always get dest=ignore
// - exprs with non-immediate type never get dest=by_val
fn trans_expr(bcx: @block_ctxt, e: @ast::expr, dest: dest) -> @block_ctxt {
let tcx = bcx_tcx(bcx);
debuginfo::update_source_pos(bcx, e.span);
if expr_is_lval(bcx, e) {
ret lval_to_dps(bcx, e, dest);
}
alt e.node {
ast::expr_if(cond, thn, els) | ast::expr_if_check(cond, thn, els) {
ret trans_if(bcx, cond, thn, els, dest);
}
ast::expr_ternary(_, _, _) {
ret trans_expr(bcx, ast_util::ternary_to_if(e), dest);
}
ast::expr_alt(expr, arms) {
// tcx.sess.span_note(e.span, "about to call trans_alt");
ret trans_alt::trans_alt(bcx, expr, arms, dest);
}
ast::expr_block(blk) {
let sub_cx = new_scope_block_ctxt(bcx, "block-expr body");
Br(bcx, sub_cx.llbb);
sub_cx = trans_block_dps(sub_cx, blk, dest);
let next_cx = new_sub_block_ctxt(bcx, "next");
Br(sub_cx, next_cx.llbb);
if sub_cx.unreachable { Unreachable(next_cx); }
ret next_cx;
}
ast::expr_rec(args, base) {
ret trans_rec(bcx, args, base, e.id, dest);
}
ast::expr_tup(args) { ret trans_tup(bcx, args, e.id, dest); }
ast::expr_lit(lit) { ret trans_lit(bcx, *lit, dest); }
ast::expr_vec(args, _) { ret tvec::trans_vec(bcx, args, e.id, dest); }
ast::expr_binary(op, lhs, rhs) {
ret trans_binary(bcx, op, lhs, rhs, dest, e);
}
ast::expr_unary(op, x) {
assert op != ast::deref; // lvals are handled above
ret trans_unary(bcx, op, x, e, dest);
}
ast::expr_fn(proto, decl, body, cap_clause) {
ret trans_closure::trans_expr_fn(
bcx, proto, decl, body, e.span, e.id, *cap_clause, dest);
}
ast::expr_fn_block(decl, body) {
alt ty::struct(tcx, ty::expr_ty(tcx, e)) {
ty::ty_fn({proto, _}) {
#debug("translating fn_block %s with type %s",
expr_to_str(e), ty_to_str(tcx, ty::expr_ty(tcx, e)));
let cap_clause = { copies: [], moves: [] };
ret trans_closure::trans_expr_fn(
bcx, proto, decl, body, e.span, e.id, cap_clause, dest);
}
_ {
fail "Type of fn block is not a function!";
}
}
}
ast::expr_bind(f, args) {
ret trans_closure::trans_bind(
bcx, f, args, e.id, dest);
}
ast::expr_copy(a) {
if !expr_is_lval(bcx, a) {
ret trans_expr(bcx, a, dest);
}
else { ret lval_to_dps(bcx, a, dest); }
}
ast::expr_cast(val, _) { ret trans_cast(bcx, val, e.id, dest); }
ast::expr_call(f, args, _) {
ret trans_call(bcx, f, args, e.id, dest);
}
ast::expr_field(_, _, _) {
fail "Taking the value of a method does not work yet (issue #435)";
}
ast::expr_index(base, idx) {
// If it is here, it's not an lval, so this is a user-defined index op
let origin = bcx_ccx(bcx).method_map.get(e.id);
let callee_id = ast_util::op_expr_callee_id(e);
let fty = ty::node_id_to_monotype(tcx, callee_id);
ret trans_call_inner(bcx, fty, {|bcx|
trans_impl::trans_method_callee(bcx, callee_id, base, origin)
}, [idx], e.id, dest);
}
// These return nothing
ast::expr_break {
assert dest == ignore;
ret trans_break(e.span, bcx);
}
ast::expr_cont {
assert dest == ignore;
ret trans_cont(e.span, bcx);
}
ast::expr_ret(ex) {
assert dest == ignore;
ret trans_ret(bcx, ex);
}
ast::expr_be(ex) {
// Ideally, the expr_be enum would have a precondition
// that is_call_expr(ex) -- but we don't support that
// yet
// FIXME
check (ast_util::is_call_expr(ex));
ret trans_be(bcx, ex);
}
ast::expr_fail(expr) {
assert dest == ignore;
ret trans_fail_expr(bcx, some(e.span), expr);
}
ast::expr_log(_, lvl, a) {
assert dest == ignore;
ret trans_log(lvl, bcx, a);
}
ast::expr_assert(a) {
assert dest == ignore;
ret trans_check_expr(bcx, a, "Assertion");
}
ast::expr_check(ast::checked_expr, a) {
assert dest == ignore;
ret trans_check_expr(bcx, a, "Predicate");
}
ast::expr_check(ast::claimed_expr, a) {
assert dest == ignore;
/* Claims are turned on and off by a global variable
that the RTS sets. This case generates code to
check the value of that variable, doing nothing
if it's set to false and acting like a check
otherwise. */
let c =
get_extern_const(bcx_ccx(bcx).externs, bcx_ccx(bcx).llmod,
"check_claims", T_bool());
let cond = Load(bcx, c);
let then_cx = new_scope_block_ctxt(bcx, "claim_then");
let check_cx = trans_check_expr(then_cx, a, "Claim");
let next_cx = new_sub_block_ctxt(bcx, "join");
CondBr(bcx, cond, then_cx.llbb, next_cx.llbb);
Br(check_cx, next_cx.llbb);
ret next_cx;
}
ast::expr_for(decl, seq, body) {
assert dest == ignore;
ret trans_for(bcx, decl, seq, body);
}
ast::expr_while(cond, body) {
assert dest == ignore;
ret trans_while(bcx, cond, body);
}
ast::expr_do_while(body, cond) {
assert dest == ignore;
ret trans_do_while(bcx, body, cond);
}
ast::expr_assign(dst, src) {
assert dest == ignore;
let src_r = trans_temp_lval(bcx, src);
let {bcx, val: addr, kind} = trans_lval(src_r.bcx, dst);
assert kind == owned;
ret store_temp_expr(bcx, DROP_EXISTING, addr, src_r,
ty::expr_ty(bcx_tcx(bcx), src),
bcx_ccx(bcx).last_uses.contains_key(src.id));
}
ast::expr_move(dst, src) {
// FIXME: calculate copy init-ness in typestate.
assert dest == ignore;
let src_r = trans_temp_lval(bcx, src);
let {bcx, val: addr, kind} = trans_lval(src_r.bcx, dst);
assert kind == owned;
ret move_val(bcx, DROP_EXISTING, addr, src_r,
ty::expr_ty(bcx_tcx(bcx), src));
}
ast::expr_swap(dst, src) {
assert dest == ignore;
let lhs_res = trans_lval(bcx, dst);
assert lhs_res.kind == owned;
let rhs_res = trans_lval(lhs_res.bcx, src);
let t = ty::expr_ty(tcx, src);
let {bcx: bcx, val: tmp_alloc} = alloc_ty(rhs_res.bcx, t);
// Swap through a temporary.
bcx = move_val(bcx, INIT, tmp_alloc, lhs_res, t);
bcx = move_val(bcx, INIT, lhs_res.val, rhs_res, t);
ret move_val(bcx, INIT, rhs_res.val, lval_owned(bcx, tmp_alloc), t);
}
ast::expr_assign_op(op, dst, src) {
assert dest == ignore;
ret trans_assign_op(bcx, e, op, dst, src);
}
}
}
fn lval_to_dps(bcx: @block_ctxt, e: @ast::expr, dest: dest) -> @block_ctxt {
let lv = trans_lval(bcx, e), ccx = bcx_ccx(bcx);
let {bcx, val, kind} = lv;
let last_use = kind == owned && ccx.last_uses.contains_key(e.id);
let ty = ty::expr_ty(ccx.tcx, e);
alt dest {
by_val(cell) {
if kind == temporary {
revoke_clean(bcx, val);
*cell = val;
} else if last_use {
*cell = Load(bcx, val);
if ty::type_needs_drop(ccx.tcx, ty) {
bcx = zero_alloca(bcx, val, ty);
}
} else {
if kind == owned { val = Load(bcx, val); }
let {bcx: cx, val} = take_ty_immediate(bcx, val, ty);
*cell = val;
bcx = cx;
}
}
save_in(loc) {
bcx = store_temp_expr(bcx, INIT, loc, lv, ty, last_use);
}
ignore {}
}
ret bcx;
}
fn do_spill(cx: @block_ctxt, v: ValueRef, t: ty::t) -> result {
// We have a value but we have to spill it, and root it, to pass by alias.
let bcx = cx;
if ty::type_is_bot(bcx_tcx(bcx), t) {
ret rslt(bcx, C_null(T_ptr(T_i8())));
}
let r = alloc_ty(bcx, t);
bcx = r.bcx;
let llptr = r.val;
Store(bcx, v, llptr);
ret rslt(bcx, llptr);
}
// Since this function does *not* root, it is the caller's responsibility to
// ensure that the referent is pointed to by a root.
fn do_spill_noroot(cx: @block_ctxt, v: ValueRef) -> ValueRef {
let llptr = alloca(cx, val_ty(v));
Store(cx, v, llptr);
ret llptr;
}
fn spill_if_immediate(cx: @block_ctxt, v: ValueRef, t: ty::t) -> result {
if ty::type_is_immediate(bcx_tcx(cx), t) { ret do_spill(cx, v, t); }
ret rslt(cx, v);
}
fn load_if_immediate(cx: @block_ctxt, v: ValueRef, t: ty::t) -> ValueRef {
if ty::type_is_immediate(bcx_tcx(cx), t) { ret Load(cx, v); }
ret v;
}
fn trans_log(lvl: @ast::expr, cx: @block_ctxt, e: @ast::expr) -> @block_ctxt {
let ccx = bcx_ccx(cx);
let lcx = cx.fcx.lcx;
let tcx = ccx.tcx;
let modname = str::connect(lcx.module_path, "::");
if ty::type_is_bot(tcx, ty::expr_ty(tcx, lvl)) {
ret trans_expr(cx, lvl, ignore);
}
let global = if lcx.ccx.module_data.contains_key(modname) {
lcx.ccx.module_data.get(modname)
} else {
let s = link::mangle_internal_name_by_path_and_seq(
lcx.ccx, lcx.module_path, "loglevel");
let global = str::as_buf(s, {|buf|
llvm::LLVMAddGlobal(lcx.ccx.llmod, T_i32(), buf)
});
llvm::LLVMSetGlobalConstant(global, False);
llvm::LLVMSetInitializer(global, C_null(T_i32()));
llvm::LLVMSetLinkage(global,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
lcx.ccx.module_data.insert(modname, global);
global
};
let level_cx = new_scope_block_ctxt(cx, "level");
let log_cx = new_scope_block_ctxt(cx, "log");
let after_cx = new_sub_block_ctxt(cx, "after");
let load = Load(cx, global);
Br(cx, level_cx.llbb);
let level_res = trans_temp_expr(level_cx, lvl);
let test = ICmp(level_res.bcx, lib::llvm::LLVMIntUGE,
load, level_res.val);
CondBr(level_res.bcx, test, log_cx.llbb, after_cx.llbb);
let sub = trans_temp_expr(log_cx, e);
let e_ty = ty::expr_ty(bcx_tcx(cx), e);
let log_bcx = sub.bcx;
let ti = none::<@tydesc_info>;
let r = get_tydesc(log_bcx, e_ty, false, ti).result;
log_bcx = r.bcx;
let lltydesc = r.val;
// Call the polymorphic log function.
r = spill_if_immediate(log_bcx, sub.val, e_ty);
log_bcx = r.bcx;
let llvalptr = r.val;
let llval_i8 = PointerCast(log_bcx, llvalptr, T_ptr(T_i8()));
Call(log_bcx, ccx.upcalls.log_type,
[lltydesc, llval_i8, level_res.val]);
log_bcx = trans_block_cleanups(log_bcx, log_cx);
Br(log_bcx, after_cx.llbb);
ret trans_block_cleanups(after_cx, level_cx);
}
fn trans_check_expr(cx: @block_ctxt, e: @ast::expr, s: str) -> @block_ctxt {
let cond_res = trans_temp_expr(cx, e);
let expr_str = s + " " + expr_to_str(e) + " failed";
let fail_cx = new_sub_block_ctxt(cx, "fail");
trans_fail(fail_cx, some::<span>(e.span), expr_str);
let next_cx = new_sub_block_ctxt(cx, "next");
CondBr(cond_res.bcx, cond_res.val, next_cx.llbb, fail_cx.llbb);
ret next_cx;
}
fn trans_fail_expr(bcx: @block_ctxt, sp_opt: option::t<span>,
fail_expr: option::t<@ast::expr>) -> @block_ctxt {
let bcx = bcx;
alt fail_expr {
some(expr) {
let tcx = bcx_tcx(bcx);
let expr_res = trans_temp_expr(bcx, expr);
let e_ty = ty::expr_ty(tcx, expr);
bcx = expr_res.bcx;
if ty::type_is_str(tcx, e_ty) {
let data = tvec::get_dataptr(
bcx, expr_res.val, type_of_or_i8(
bcx, ty::mk_mach_uint(tcx, ast::ty_u8)));
ret trans_fail_value(bcx, sp_opt, data);
} else if bcx.unreachable || ty::type_is_bot(tcx, e_ty) {
ret bcx;
} else {
bcx_ccx(bcx).sess.span_bug(
expr.span, "fail called with unsupported type " +
ty_to_str(tcx, e_ty));
}
}
_ { ret trans_fail(bcx, sp_opt, "explicit failure"); }
}
}
fn trans_fail(bcx: @block_ctxt, sp_opt: option::t<span>, fail_str: str) ->
@block_ctxt {
let V_fail_str = C_cstr(bcx_ccx(bcx), fail_str);
ret trans_fail_value(bcx, sp_opt, V_fail_str);
}
fn trans_fail_value(bcx: @block_ctxt, sp_opt: option::t<span>,
V_fail_str: ValueRef) -> @block_ctxt {
let ccx = bcx_ccx(bcx);
let V_filename;
let V_line;
alt sp_opt {
some(sp) {
let sess = bcx_ccx(bcx).sess;
let loc = codemap::lookup_char_pos(sess.parse_sess.cm, sp.lo);
V_filename = C_cstr(bcx_ccx(bcx), loc.filename);
V_line = loc.line as int;
}
none { V_filename = C_cstr(bcx_ccx(bcx), "<runtime>"); V_line = 0; }
}
let V_str = PointerCast(bcx, V_fail_str, T_ptr(T_i8()));
V_filename = PointerCast(bcx, V_filename, T_ptr(T_i8()));
let args = [V_str, V_filename, C_int(ccx, V_line)];
let bcx = invoke(bcx, bcx_ccx(bcx).upcalls._fail, args);
Unreachable(bcx);
ret bcx;
}
fn trans_break_cont(sp: span, bcx: @block_ctxt, to_end: bool)
-> @block_ctxt {
// Locate closest loop block, outputting cleanup as we go.
let cleanup_cx = bcx, bcx = bcx;
while true {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt copy cleanup_cx.kind {
LOOP_SCOPE_BLOCK(_cont, _break) {
if to_end {
Br(bcx, _break.llbb);
} else {
alt _cont {
option::some(_cont) { Br(bcx, _cont.llbb); }
_ { Br(bcx, cleanup_cx.llbb); }
}
}
Unreachable(bcx);
ret bcx;
}
_ {
alt cleanup_cx.parent {
parent_some(cx) { cleanup_cx = cx; }
parent_none {
bcx_ccx(bcx).sess.span_fatal
(sp, if to_end { "Break" } else { "Cont" } +
" outside a loop");
}
}
}
}
}
// If we get here without returning, it's a bug
bcx_ccx(bcx).sess.bug("in trans::trans_break_cont()");
}
fn trans_break(sp: span, cx: @block_ctxt) -> @block_ctxt {
ret trans_break_cont(sp, cx, true);
}
fn trans_cont(sp: span, cx: @block_ctxt) -> @block_ctxt {
ret trans_break_cont(sp, cx, false);
}
fn trans_ret(bcx: @block_ctxt, e: option::t<@ast::expr>) -> @block_ctxt {
let cleanup_cx = bcx, bcx = bcx;
alt e {
some(x) { bcx = trans_expr_save_in(bcx, x, bcx.fcx.llretptr); }
_ {}
}
// run all cleanups and back out.
let more_cleanups: bool = true;
while more_cleanups {
bcx = trans_block_cleanups(bcx, cleanup_cx);
alt cleanup_cx.parent {
parent_some(b) { cleanup_cx = b; }
parent_none { more_cleanups = false; }
}
}
build_return(bcx);
Unreachable(bcx);
ret bcx;
}
fn build_return(bcx: @block_ctxt) { Br(bcx, bcx_fcx(bcx).llreturn); }
// fn trans_be(cx: &@block_ctxt, e: &@ast::expr) -> result {
fn trans_be(cx: @block_ctxt, e: @ast::expr) : ast_util::is_call_expr(e) ->
@block_ctxt {
// FIXME: Turn this into a real tail call once
// calling convention issues are settled
ret trans_ret(cx, some(e));
}
fn init_local(bcx: @block_ctxt, local: @ast::local) -> @block_ctxt {
let ty = node_id_type(bcx_ccx(bcx), local.node.id);
let llptr = alt bcx.fcx.lllocals.find(local.node.id) {
some(local_mem(v)) { v }
// This is a local that is kept immediate
none {
let initexpr = alt local.node.init { some({expr, _}) { expr } };
let {bcx, val, kind} = trans_temp_lval(bcx, initexpr);
if kind != temporary {
if kind == owned { val = Load(bcx, val); }
let rs = take_ty_immediate(bcx, val, ty);
bcx = rs.bcx; val = rs.val;
add_clean_temp(bcx, val, ty);
}
bcx.fcx.lllocals.insert(local.node.pat.id, local_imm(val));
ret bcx;
}
};
let bcx = bcx;
alt local.node.init {
some(init) {
if init.op == ast::init_assign || !expr_is_lval(bcx, init.expr) {
bcx = trans_expr_save_in(bcx, init.expr, llptr);
} else { // This is a move from an lval, must perform an actual move
let sub = trans_lval(bcx, init.expr);
bcx = move_val(sub.bcx, INIT, llptr, sub, ty);
}
}
_ { bcx = zero_alloca(bcx, llptr, ty); }
}
// Make a note to drop this slot on the way out.
add_clean(bcx, llptr, ty);
ret trans_alt::bind_irrefutable_pat(bcx, local.node.pat, llptr, false);
}
fn init_ref_local(bcx: @block_ctxt, local: @ast::local) -> @block_ctxt {
let init_expr = option::get(local.node.init).expr;
let {bcx, val, kind} = trans_lval(bcx, init_expr);
alt kind {
owned_imm { val = do_spill_noroot(bcx, val); }
owned {}
}
ret trans_alt::bind_irrefutable_pat(bcx, local.node.pat, val, false);
}
fn zero_alloca(cx: @block_ctxt, llptr: ValueRef, t: ty::t)
-> @block_ctxt {
let bcx = cx;
let ccx = bcx_ccx(cx);
if check type_has_static_size(ccx, t) {
let sp = cx.sp;
let llty = type_of(ccx, sp, t);
Store(bcx, C_null(llty), llptr);
} else {
let key = alt ccx.sess.targ_cfg.arch {
session::arch_x86 | session::arch_arm { "llvm.memset.p0i8.i32" }
session::arch_x86_64 { "llvm.memset.p0i8.i64" }
};
let i = ccx.intrinsics;
let memset = i.get(key);
let dst_ptr = PointerCast(cx, llptr, T_ptr(T_i8()));
let size = size_of(cx, t);
bcx = size.bcx;
let align = C_i32(1i32); // cannot use computed value here.
let volatile = C_bool(false);
Call(cx, memset, [dst_ptr, C_u8(0u), size.val, align, volatile]);
}
ret bcx;
}
fn trans_stmt(cx: @block_ctxt, s: ast::stmt) -> @block_ctxt {
// FIXME Fill in cx.sp
if (!bcx_ccx(cx).sess.opts.no_asm_comments) {
add_span_comment(cx, s.span, stmt_to_str(s));
}
let bcx = cx;
debuginfo::update_source_pos(cx, s.span);
alt s.node {
ast::stmt_expr(e, _) | ast::stmt_semi(e, _) {
bcx = trans_expr(cx, e, ignore);
}
ast::stmt_decl(d, _) {
alt d.node {
ast::decl_local(locals) {
for (style, local) in locals {
if style == ast::let_copy {
bcx = init_local(bcx, local);
} else {
bcx = init_ref_local(bcx, local);
}
if bcx_ccx(cx).sess.opts.extra_debuginfo {
debuginfo::create_local_var(bcx, local);
}
}
}
ast::decl_item(i) { trans_item(cx.fcx.lcx, *i); }
}
}
_ { bcx_ccx(cx).sess.unimpl("stmt variant"); }
}
ret bcx;
}
// You probably don't want to use this one. See the
// next three functions instead.
fn new_block_ctxt(cx: @fn_ctxt, parent: block_parent, kind: block_kind,
name: str) -> @block_ctxt {
let s = "";
if cx.lcx.ccx.sess.opts.save_temps ||
cx.lcx.ccx.sess.opts.debuginfo {
s = cx.lcx.ccx.names(name);
}
let llbb: BasicBlockRef =
str::as_buf(s, {|buf| llvm::LLVMAppendBasicBlock(cx.llfn, buf) });
let bcx = @{llbb: llbb,
mutable terminated: false,
mutable unreachable: false,
parent: parent,
kind: kind,
mutable cleanups: [],
mutable lpad_dirty: true,
mutable lpad: option::none,
sp: cx.sp,
fcx: cx};
alt parent {
parent_some(cx) {
if cx.unreachable { Unreachable(bcx); }
}
_ {}
}
ret bcx;
}
// Use this when you're at the top block of a function or the like.
fn new_top_block_ctxt(fcx: @fn_ctxt) -> @block_ctxt {
ret new_block_ctxt(fcx, parent_none, SCOPE_BLOCK, "function top level");
}
// Use this when you're at a curly-brace or similar lexical scope.
fn new_scope_block_ctxt(bcx: @block_ctxt, n: str) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), SCOPE_BLOCK, n);
}
fn new_loop_scope_block_ctxt(bcx: @block_ctxt, _cont: option::t<@block_ctxt>,
_break: @block_ctxt, n: str) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx),
LOOP_SCOPE_BLOCK(_cont, _break), n);
}
// Use this when you're making a general CFG BB within a scope.
fn new_sub_block_ctxt(bcx: @block_ctxt, n: str) -> @block_ctxt {
ret new_block_ctxt(bcx.fcx, parent_some(bcx), NON_SCOPE_BLOCK, n);
}
fn new_raw_block_ctxt(fcx: @fn_ctxt, llbb: BasicBlockRef) -> @block_ctxt {
ret @{llbb: llbb,
mutable terminated: false,
mutable unreachable: false,
parent: parent_none,
kind: NON_SCOPE_BLOCK,
mutable cleanups: [],
mutable lpad_dirty: true,
mutable lpad: option::none,
sp: fcx.sp,
fcx: fcx};
}
// trans_block_cleanups: Go through all the cleanups attached to this
// block_ctxt and execute them.
//
// When translating a block that introdces new variables during its scope, we
// need to make sure those variables go out of scope when the block ends. We
// do that by running a 'cleanup' function for each variable.
// trans_block_cleanups runs all the cleanup functions for the block.
fn trans_block_cleanups(bcx: @block_ctxt, cleanup_cx: @block_ctxt) ->
@block_ctxt {
if bcx.unreachable { ret bcx; }
if cleanup_cx.kind == NON_SCOPE_BLOCK {
assert (vec::len::<cleanup>(cleanup_cx.cleanups) == 0u);
}
let i = vec::len::<cleanup>(cleanup_cx.cleanups), bcx = bcx;
while i > 0u {
i -= 1u;
let c = cleanup_cx.cleanups[i];
alt c {
clean(cfn) { bcx = cfn(bcx); }
clean_temp(_, cfn) { bcx = cfn(bcx); }
}
}
ret bcx;
}
fn trans_fn_cleanups(fcx: @fn_ctxt, cx: @block_ctxt) {
alt fcx.llobstacktoken {
some(lltoken_) {
let lltoken = lltoken_; // satisfy alias checker
Call(cx, fcx_ccx(fcx).upcalls.dynastack_free, [lltoken]);
}
none {/* nothing to do */ }
}
}
fn block_locals(b: ast::blk, it: fn(@ast::local)) {
for s: @ast::stmt in b.node.stmts {
alt s.node {
ast::stmt_decl(d, _) {
alt d.node {
ast::decl_local(locals) {
for (style, local) in locals {
if style == ast::let_copy { it(local); }
}
}
_ {/* fall through */ }
}
}
_ {/* fall through */ }
}
}
}
fn llstaticallocas_block_ctxt(fcx: @fn_ctxt) -> @block_ctxt {
ret @{llbb: fcx.llstaticallocas,
mutable terminated: false,
mutable unreachable: false,
parent: parent_none,
kind: SCOPE_BLOCK,
mutable cleanups: [],
mutable lpad_dirty: true,
mutable lpad: option::none,
sp: fcx.sp,
fcx: fcx};
}
fn llderivedtydescs_block_ctxt(fcx: @fn_ctxt) -> @block_ctxt {
ret @{llbb: fcx.llderivedtydescs,
mutable terminated: false,
mutable unreachable: false,
parent: parent_none,
kind: SCOPE_BLOCK,
mutable cleanups: [],
mutable lpad_dirty: true,
mutable lpad: option::none,
sp: fcx.sp,
fcx: fcx};
}
fn alloc_ty(cx: @block_ctxt, t: ty::t) -> result {
let bcx = cx;
let ccx = bcx_ccx(cx);
let val =
if check type_has_static_size(ccx, t) {
let sp = cx.sp;
alloca(bcx, type_of(ccx, sp, t))
} else {
// NB: we have to run this particular 'size_of' in a
// block_ctxt built on the llderivedtydescs block for the fn,
// so that the size dominates the array_alloca that
// comes next.
let n = size_of(llderivedtydescs_block_ctxt(bcx.fcx), t);
bcx.fcx.llderivedtydescs = n.bcx.llbb;
dynastack_alloca(bcx, T_i8(), n.val, t)
};
// NB: since we've pushed all size calculations in this
// function up to the alloca block, we actually return the
// block passed into us unmodified; it doesn't really
// have to be passed-and-returned here, but it fits
// past caller conventions and may well make sense again,
// so we leave it as-is.
if bcx_tcx(cx).sess.opts.do_gc {
bcx = gc::add_gc_root(bcx, val, t);
}
ret rslt(cx, val);
}
fn alloc_local(cx: @block_ctxt, local: @ast::local) -> @block_ctxt {
let t = node_id_type(bcx_ccx(cx), local.node.id);
let p = normalize_pat(bcx_tcx(cx), local.node.pat);
let is_simple = alt p.node {
ast::pat_ident(_, none) { true } _ { false }
};
// Do not allocate space for locals that can be kept immediate.
let ccx = bcx_ccx(cx);
if is_simple && !ccx.mut_map.contains_key(local.node.pat.id) &&
!ccx.last_uses.contains_key(local.node.pat.id) &&
ty::type_is_immediate(ccx.tcx, t) {
alt local.node.init {
some({op: ast::init_assign, _}) { ret cx; }
_ {}
}
}
let r = alloc_ty(cx, t);
alt p.node {
ast::pat_ident(pth, none) {
if bcx_ccx(cx).sess.opts.debuginfo {
let _: () = str::as_buf(path_to_ident(pth), {|buf|
llvm::LLVMSetValueName(r.val, buf)
});
}
}
_ { }
}
cx.fcx.lllocals.insert(local.node.id, local_mem(r.val));
ret r.bcx;
}
fn trans_block(bcx: @block_ctxt, b: ast::blk) -> @block_ctxt {
trans_block_dps(bcx, b, ignore)
}
fn trans_block_dps(bcx: @block_ctxt, b: ast::blk, dest: dest)
-> @block_ctxt {
let bcx = bcx;
block_locals(b) {|local| bcx = alloc_local(bcx, local); };
for s: @ast::stmt in b.node.stmts {
debuginfo::update_source_pos(bcx, b.span);
bcx = trans_stmt(bcx, *s);
}
alt b.node.expr {
some(e) {
let bt = ty::type_is_bot(bcx_tcx(bcx), ty::expr_ty(bcx_tcx(bcx), e));
debuginfo::update_source_pos(bcx, e.span);
bcx = trans_expr(bcx, e, bt ? ignore : dest);
}
_ { assert dest == ignore || bcx.unreachable; }
}
let rv = trans_block_cleanups(bcx, find_scope_cx(bcx));
ret rv;
}
fn new_local_ctxt(ccx: @crate_ctxt) -> @local_ctxt {
let pth: [str] = [];
ret @{path: pth,
module_path: [ccx.link_meta.name],
ccx: ccx};
}
// Creates the standard quartet of basic blocks: static allocas, copy args,
// derived tydescs, and dynamic allocas.
fn mk_standard_basic_blocks(llfn: ValueRef) ->
{sa: BasicBlockRef,
ca: BasicBlockRef,
dt: BasicBlockRef,
da: BasicBlockRef,
rt: BasicBlockRef} {
ret {sa:
str::as_buf("static_allocas",
{|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }),
ca:
str::as_buf("load_env",
{|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }),
dt:
str::as_buf("derived_tydescs",
{|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }),
da:
str::as_buf("dynamic_allocas",
{|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }),
rt:
str::as_buf("return",
{|buf| llvm::LLVMAppendBasicBlock(llfn, buf) })};
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
fn new_fn_ctxt_w_id(cx: @local_ctxt, sp: span, llfndecl: ValueRef,
id: ast::node_id, rstyle: ast::ret_style)
-> @fn_ctxt {
let llbbs = mk_standard_basic_blocks(llfndecl);
ret @{llfn: llfndecl,
llenv: llvm::LLVMGetParam(llfndecl, 1u as c_uint),
llretptr: llvm::LLVMGetParam(llfndecl, 0u as c_uint),
mutable llstaticallocas: llbbs.sa,
mutable llloadenv: llbbs.ca,
mutable llderivedtydescs_first: llbbs.dt,
mutable llderivedtydescs: llbbs.dt,
mutable lldynamicallocas: llbbs.da,
mutable llreturn: llbbs.rt,
mutable llobstacktoken: none::<ValueRef>,
mutable llself: none::<val_self_pair>,
llargs: new_int_hash::<local_val>(),
lllocals: new_int_hash::<local_val>(),
llupvars: new_int_hash::<ValueRef>(),
mutable lltyparams: [],
derived_tydescs: ty::new_ty_hash(),
id: id,
ret_style: rstyle,
sp: sp,
lcx: cx};
}
fn new_fn_ctxt(cx: @local_ctxt, sp: span, llfndecl: ValueRef) -> @fn_ctxt {
ret new_fn_ctxt_w_id(cx, sp, llfndecl, -1, ast::return_val);
}
// NB: must keep 4 fns in sync:
//
// - type_of_fn
// - create_llargs_for_fn_args.
// - new_fn_ctxt
// - trans_args
// create_llargs_for_fn_args: Creates a mapping from incoming arguments to
// allocas created for them.
//
// When we translate a function, we need to map its incoming arguments to the
// spaces that have been created for them (by code in the llallocas field of
// the function's fn_ctxt). create_llargs_for_fn_args populates the llargs
// field of the fn_ctxt with
fn create_llargs_for_fn_args(cx: @fn_ctxt, ty_self: self_arg,
args: [ast::arg], ty_params: [ast::ty_param]) {
// Skip the implicit arguments 0, and 1. TODO: Pull out 2u and define
// it as a constant, since we're using it in several places in trans this
// way.
let arg_n = 2u;
alt ty_self {
impl_self(tt) {
cx.llself = some({v: cx.llenv, t: tt});
}
no_self {}
}
for tp in ty_params {
let lltydesc = llvm::LLVMGetParam(cx.llfn, arg_n as c_uint);
let dicts = none;
arg_n += 1u;
for bound in *fcx_tcx(cx).ty_param_bounds.get(tp.id) {
alt bound {
ty::bound_iface(_) {
let dict = llvm::LLVMGetParam(cx.llfn, arg_n as c_uint);
arg_n += 1u;
dicts = some(alt dicts {
none { [dict] }
some(ds) { ds + [dict] }
});
}
_ {}
}
}
cx.lltyparams += [{desc: lltydesc, dicts: dicts}];
}
// Populate the llargs field of the function context with the ValueRefs
// that we get from llvm::LLVMGetParam for each argument.
for arg: ast::arg in args {
let llarg = llvm::LLVMGetParam(cx.llfn, arg_n as c_uint);
assert (llarg as int != 0);
// Note that this uses local_mem even for things passed by value.
// copy_args_to_allocas will overwrite the table entry with local_imm
// before it's actually used.
cx.llargs.insert(arg.id, local_mem(llarg));
arg_n += 1u;
}
}
fn copy_args_to_allocas(fcx: @fn_ctxt, bcx: @block_ctxt, args: [ast::arg],
arg_tys: [ty::arg]) -> @block_ctxt {
let arg_n: uint = 0u, bcx = bcx;
for arg in arg_tys {
let id = args[arg_n].id;
let argval = alt fcx.llargs.get(id) { local_mem(v) { v } };
alt arg.mode {
ast::by_mut_ref { }
ast::by_move | ast::by_copy { add_clean(bcx, argval, arg.ty); }
ast::by_val {
if !ty::type_is_immediate(bcx_tcx(bcx), arg.ty) {
let {bcx: cx, val: alloc} = alloc_ty(bcx, arg.ty);
bcx = cx;
Store(bcx, argval, alloc);
fcx.llargs.insert(id, local_mem(alloc));
} else {
fcx.llargs.insert(id, local_imm(argval));
}
}
ast::by_ref {}
}
if fcx_ccx(fcx).sess.opts.extra_debuginfo {
debuginfo::create_arg(bcx, args[arg_n]);
}
arg_n += 1u;
}
ret bcx;
}
fn arg_tys_of_fn(ccx: @crate_ctxt, id: ast::node_id) -> [ty::arg] {
alt ty::struct(ccx.tcx, ty::node_id_to_type(ccx.tcx, id)) {
ty::ty_fn({inputs, _}) { inputs }
}
}
// Ties up the llstaticallocas -> llloadenv -> llderivedtydescs ->
// lldynamicallocas -> lltop edges, and builds the return block.
fn finish_fn(fcx: @fn_ctxt, lltop: BasicBlockRef) {
Br(new_raw_block_ctxt(fcx, fcx.llstaticallocas), fcx.llloadenv);
Br(new_raw_block_ctxt(fcx, fcx.llloadenv), fcx.llderivedtydescs_first);
Br(new_raw_block_ctxt(fcx, fcx.llderivedtydescs), fcx.lldynamicallocas);
Br(new_raw_block_ctxt(fcx, fcx.lldynamicallocas), lltop);
let ret_cx = new_raw_block_ctxt(fcx, fcx.llreturn);
trans_fn_cleanups(fcx, ret_cx);
RetVoid(ret_cx);
}
enum self_arg { impl_self(ty::t), no_self, }
// trans_closure: Builds an LLVM function out of a source function.
// If the function closes over its environment a closure will be
// returned.
fn trans_closure(cx: @local_ctxt, sp: span, decl: ast::fn_decl,
body: ast::blk, llfndecl: ValueRef,
ty_self: self_arg, ty_params: [ast::ty_param],
id: ast::node_id, maybe_load_env: fn(@fn_ctxt)) {
set_uwtable(llfndecl);
// Set up arguments to the function.
let fcx = new_fn_ctxt_w_id(cx, sp, llfndecl, id, decl.cf);
create_llargs_for_fn_args(fcx, ty_self, decl.inputs, ty_params);
// Create the first basic block in the function and keep a handle on it to
// pass to finish_fn later.
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
let block_ty = node_id_type(cx.ccx, body.node.id);
let arg_tys = arg_tys_of_fn(fcx.lcx.ccx, id);
bcx = copy_args_to_allocas(fcx, bcx, decl.inputs, arg_tys);
maybe_load_env(fcx);
// This call to trans_block is the place where we bridge between
// translation calls that don't have a return value (trans_crate,
// trans_mod, trans_item, et cetera) and those that do
// (trans_block, trans_expr, et cetera).
if option::is_none(body.node.expr) ||
ty::type_is_bot(cx.ccx.tcx, block_ty) ||
ty::type_is_nil(cx.ccx.tcx, block_ty) {
bcx = trans_block(bcx, body);
} else {
bcx = trans_block_dps(bcx, body, save_in(fcx.llretptr));
}
// FIXME: until LLVM has a unit type, we are moving around
// C_nil values rather than their void type.
if !bcx.unreachable { build_return(bcx); }
// Insert the mandatory first few basic blocks before lltop.
finish_fn(fcx, lltop);
}
// trans_fn: creates an LLVM function corresponding to a source language
// function.
fn trans_fn(cx: @local_ctxt, sp: span, decl: ast::fn_decl, body: ast::blk,
llfndecl: ValueRef, ty_self: self_arg, ty_params: [ast::ty_param],
id: ast::node_id) {
let do_time = cx.ccx.sess.opts.stats;
let start = do_time ? time::get_time() : {sec: 0u32, usec: 0u32};
let fcx = option::none;
trans_closure(cx, sp, decl, body, llfndecl, ty_self, ty_params, id,
{|new_fcx| fcx = option::some(new_fcx);});
if cx.ccx.sess.opts.extra_debuginfo {
debuginfo::create_function(option::get(fcx));
}
if do_time {
let end = time::get_time();
log_fn_time(cx.ccx, str::connect(cx.path, "::"), start, end);
}
}
fn trans_res_ctor(cx: @local_ctxt, sp: span, dtor: ast::fn_decl,
ctor_id: ast::node_id, ty_params: [ast::ty_param]) {
let ccx = cx.ccx;
// Create a function for the constructor
let llctor_decl;
alt ccx.item_ids.find(ctor_id) {
some(x) { llctor_decl = x; }
_ { ccx.sess.span_fatal(sp, "unbound ctor_id in trans_res_ctor"); }
}
let fcx = new_fn_ctxt(cx, sp, llctor_decl);
let ret_t = ty::ret_ty_of_fn(cx.ccx.tcx, ctor_id);
create_llargs_for_fn_args(fcx, no_self, dtor.inputs, ty_params);
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
let arg_t = arg_tys_of_fn(ccx, ctor_id)[0].ty;
let tup_t = ty::mk_tup(ccx.tcx, [ty::mk_int(ccx.tcx), arg_t]);
let arg = alt fcx.llargs.find(dtor.inputs[0].id) {
some(local_mem(x)) { x }
};
let llretptr = fcx.llretptr;
if ty::type_has_dynamic_size(ccx.tcx, ret_t) {
let llret_t = T_ptr(T_struct([ccx.int_type, llvm::LLVMTypeOf(arg)]));
llretptr = BitCast(bcx, llretptr, llret_t);
}
// FIXME: silly checks
check type_is_tup_like(bcx, tup_t);
let {bcx, val: dst} = GEP_tup_like(bcx, tup_t, llretptr, [0, 1]);
bcx = memmove_ty(bcx, dst, arg, arg_t);
check type_is_tup_like(bcx, tup_t);
let flag = GEP_tup_like(bcx, tup_t, llretptr, [0, 0]);
bcx = flag.bcx;
// FIXME #1184: Resource flag is larger than necessary
let one = C_int(ccx, 1);
Store(bcx, one, flag.val);
build_return(bcx);
finish_fn(fcx, lltop);
}
fn trans_enum_variant(cx: @local_ctxt, enum_id: ast::node_id,
variant: ast::variant, disr: int, is_degen: bool,
ty_params: [ast::ty_param]) {
let ccx = cx.ccx;
if vec::len::<ast::variant_arg>(variant.node.args) == 0u {
ret; // nullary constructors are just constants
}
// Translate variant arguments to function arguments.
let fn_args: [ast::arg] = [];
let i = 0u;
for varg: ast::variant_arg in variant.node.args {
fn_args +=
[{mode: ast::by_copy,
ty: varg.ty,
ident: "arg" + uint::to_str(i, 10u),
id: varg.id}];
}
assert (ccx.item_ids.contains_key(variant.node.id));
let llfndecl: ValueRef;
alt ccx.item_ids.find(variant.node.id) {
some(x) { llfndecl = x; }
_ {
ccx.sess.span_fatal(variant.span,
"unbound variant id in trans_enum_variant");
}
}
let fcx = new_fn_ctxt(cx, variant.span, llfndecl);
create_llargs_for_fn_args(fcx, no_self, fn_args, ty_params);
let ty_param_substs: [ty::t] = [];
i = 0u;
for tp: ast::ty_param in ty_params {
ty_param_substs += [ty::mk_param(ccx.tcx, i,
ast_util::local_def(tp.id))];
i += 1u;
}
let arg_tys = arg_tys_of_fn(ccx, variant.node.id);
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
bcx = copy_args_to_allocas(fcx, bcx, fn_args, arg_tys);
// Cast the enum to a type we can GEP into.
let llblobptr =
if is_degen {
fcx.llretptr
} else {
let llenumptr =
PointerCast(bcx, fcx.llretptr, T_opaque_enum_ptr(ccx));
let lldiscrimptr = GEPi(bcx, llenumptr, [0, 0]);
Store(bcx, C_int(ccx, disr), lldiscrimptr);
GEPi(bcx, llenumptr, [0, 1])
};
i = 0u;
let t_id = ast_util::local_def(enum_id);
let v_id = ast_util::local_def(variant.node.id);
for va: ast::variant_arg in variant.node.args {
check (valid_variant_index(i, bcx, t_id, v_id));
let rslt = GEP_enum(bcx, llblobptr, t_id, v_id, ty_param_substs, i);
bcx = rslt.bcx;
let lldestptr = rslt.val;
// If this argument to this function is a enum, it'll have come in to
// this function as an opaque blob due to the way that type_of()
// works. So we have to cast to the destination's view of the type.
let llarg = alt fcx.llargs.find(va.id) { some(local_mem(x)) { x } };
let arg_ty = arg_tys[i].ty;
if ty::type_contains_params(bcx_tcx(bcx), arg_ty) {
lldestptr = PointerCast(bcx, lldestptr, val_ty(llarg));
}
bcx = memmove_ty(bcx, lldestptr, llarg, arg_ty);
i += 1u;
}
build_return(bcx);
finish_fn(fcx, lltop);
}
// FIXME: this should do some structural hash-consing to avoid
// duplicate constants. I think. Maybe LLVM has a magical mode
// that does so later on?
fn trans_const_expr(cx: @crate_ctxt, e: @ast::expr) -> ValueRef {
alt e.node {
ast::expr_lit(lit) { ret trans_crate_lit(cx, *lit); }
ast::expr_binary(b, e1, e2) {
let te1 = trans_const_expr(cx, e1);
let te2 = trans_const_expr(cx, e2);
/* Neither type is bottom, and we expect them to be unified already,
* so the following is safe. */
let ty = ty::expr_ty(ccx_tcx(cx), e1);
let is_float = ty::type_is_fp(ccx_tcx(cx), ty);
let signed = ty::type_is_signed(ccx_tcx(cx), ty);
ret alt b {
ast::add {
if is_float { llvm::LLVMConstFAdd(te1, te2) }
else { llvm::LLVMConstAdd(te1, te2) }
}
ast::subtract {
if is_float { llvm::LLVMConstFSub(te1, te2) }
else { llvm::LLVMConstSub(te1, te2) }
}
ast::mul {
if is_float { llvm::LLVMConstFMul(te1, te2) }
else { llvm::LLVMConstMul(te1, te2) }
}
ast::div {
if is_float { llvm::LLVMConstFDiv(te1, te2) }
else if signed { llvm::LLVMConstSDiv(te1, te2) }
else { llvm::LLVMConstUDiv(te1, te2) }
}
ast::rem {
if is_float { llvm::LLVMConstFRem(te1, te2) }
else if signed { llvm::LLVMConstSRem(te1, te2) }
else { llvm::LLVMConstURem(te1, te2) }
}
ast::and |
ast::or { cx.sess.span_unimpl(e.span, "binop logic"); }
ast::bitxor { llvm::LLVMConstXor(te1, te2) }
ast::bitand { llvm::LLVMConstAnd(te1, te2) }
ast::bitor { llvm::LLVMConstOr(te1, te2) }
ast::lsl { llvm::LLVMConstShl(te1, te2) }
ast::lsr { llvm::LLVMConstLShr(te1, te2) }
ast::asr { llvm::LLVMConstAShr(te1, te2) }
ast::eq |
ast::lt |
ast::le |
ast::ne |
ast::ge |
ast::gt { cx.sess.span_unimpl(e.span, "binop comparator"); }
}
}
ast::expr_unary(u, e) {
let te = trans_const_expr(cx, e);
let ty = ty::expr_ty(ccx_tcx(cx), e);
let is_float = ty::type_is_fp(ccx_tcx(cx), ty);
ret alt u {
ast::box(_) |
ast::uniq(_) |
ast::deref { cx.sess.span_bug(e.span,
"bad unop type in trans_const_expr"); }
ast::not { llvm::LLVMConstNot(te) }
ast::neg {
if is_float { llvm::LLVMConstFNeg(te) }
else { llvm::LLVMConstNeg(te) }
}
}
}
_ { cx.sess.span_bug(e.span,
"bad constant expression type in trans_const_expr"); }
}
}
fn trans_const(cx: @crate_ctxt, e: @ast::expr, id: ast::node_id) {
let v = trans_const_expr(cx, e);
// The scalars come back as 1st class LLVM vals
// which we have to stick into global constants.
alt cx.consts.find(id) {
some(g) {
llvm::LLVMSetInitializer(g, v);
llvm::LLVMSetGlobalConstant(g, True);
}
_ { cx.sess.span_fatal(e.span, "Unbound const in trans_const"); }
}
}
type c_stack_tys = {
arg_tys: [TypeRef],
ret_ty: TypeRef,
ret_def: bool,
base_fn_ty: TypeRef,
bundle_ty: TypeRef,
shim_fn_ty: TypeRef
};
fn c_stack_tys(ccx: @crate_ctxt,
sp: span,
id: ast::node_id) -> @c_stack_tys {
alt ty::struct(ccx.tcx, ty::node_id_to_type(ccx.tcx, id)) {
ty::ty_fn({inputs: arg_tys, output: ret_ty, _}) {
let tcx = ccx.tcx;
let llargtys = type_of_explicit_args(ccx, sp, arg_tys);
check non_ty_var(ccx, ret_ty); // NDM does this truly hold?
let llretty = type_of_inner(ccx, sp, ret_ty);
let bundle_ty = T_struct(llargtys + [T_ptr(llretty)]);
ret @{
arg_tys: llargtys,
ret_ty: llretty,
ret_def: !ty::type_is_bot(tcx, ret_ty) &&
!ty::type_is_nil(tcx, ret_ty),
base_fn_ty: T_fn(llargtys, llretty),
bundle_ty: bundle_ty,
shim_fn_ty: T_fn([T_ptr(bundle_ty)], T_void())
};
}
_ {
ccx.sess.span_fatal(
sp,
"Non-function type for native fn");
}
}
}
// For each native function F, we generate a wrapper function W and a shim
// function S that all work together. The wrapper function W is the function
// that other rust code actually invokes. Its job is to marshall the
// arguments into a struct. It then uses a small bit of assembly to switch
// over to the C stack and invoke the shim function. The shim function S then
// unpacks the arguments from the struct and invokes the actual function F
// according to its specified calling convention.
//
// Example: Given a native c-stack function F(x: X, y: Y) -> Z,
// we generate a wrapper function W that looks like:
//
// void W(Z* dest, void *env, X x, Y y) {
// struct { X x; Y y; Z *z; } args = { x, y, z };
// call_on_c_stack_shim(S, &args);
// }
//
// The shim function S then looks something like:
//
// void S(struct { X x; Y y; Z *z; } *args) {
// *args->z = F(args->x, args->y);
// }
//
// However, if the return type of F is dynamically sized or of aggregate type,
// the shim function looks like:
//
// void S(struct { X x; Y y; Z *z; } *args) {
// F(args->z, args->x, args->y);
// }
//
// Note: on i386, the layout of the args struct is generally the same as the
// desired layout of the arguments on the C stack. Therefore, we could use
// upcall_alloc_c_stack() to allocate the `args` structure and switch the
// stack pointer appropriately to avoid a round of copies. (In fact, the shim
// function itself is unnecessary). We used to do this, in fact, and will
// perhaps do so in the future.
fn trans_native_mod(lcx: @local_ctxt, native_mod: ast::native_mod,
abi: ast::native_abi) {
fn build_shim_fn(lcx: @local_ctxt,
native_item: @ast::native_item,
tys: @c_stack_tys,
cc: uint) -> ValueRef {
let lname = link_name(native_item);
let ccx = lcx_ccx(lcx);
let span = native_item.span;
// Declare the "prototype" for the base function F:
let llbasefn = decl_fn(ccx.llmod, lname, cc, tys.base_fn_ty);
// Create the shim function:
let shim_name = lname + "__c_stack_shim";
let llshimfn = decl_internal_cdecl_fn(
ccx.llmod, shim_name, tys.shim_fn_ty);
// Declare the body of the shim function:
let fcx = new_fn_ctxt(lcx, span, llshimfn);
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
let llargbundle = llvm::LLVMGetParam(llshimfn, 0 as c_uint);
let i = 0u, n = vec::len(tys.arg_tys);
let llargvals = [];
while i < n {
let llargval = load_inbounds(bcx, llargbundle, [0, i as int]);
llargvals += [llargval];
i += 1u;
}
// Create the call itself and store the return value:
let llretval = CallWithConv(bcx, llbasefn,
llargvals, cc as c_uint); // r
if tys.ret_def {
// R** llretptr = &args->r;
let llretptr = GEPi(bcx, llargbundle, [0, n as int]);
// R* llretloc = *llretptr; /* (args->r) */
let llretloc = Load(bcx, llretptr);
// *args->r = r;
Store(bcx, llretval, llretloc);
}
// Finish up:
build_return(bcx);
finish_fn(fcx, lltop);
ret llshimfn;
}
fn build_wrap_fn(lcx: @local_ctxt,
native_item: @ast::native_item,
tys: @c_stack_tys,
num_tps: uint,
llshimfn: ValueRef,
llwrapfn: ValueRef) {
let span = native_item.span;
let ccx = lcx_ccx(lcx);
let fcx = new_fn_ctxt(lcx, span, llwrapfn);
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
// Allocate the struct and write the arguments into it.
let llargbundle = alloca(bcx, tys.bundle_ty);
let i = 0u, n = vec::len(tys.arg_tys);
let implicit_args = 2u + num_tps; // ret + env
while i < n {
let llargval = llvm::LLVMGetParam(llwrapfn,
(i + implicit_args) as c_uint);
store_inbounds(bcx, llargval, llargbundle, [0, i as int]);
i += 1u;
}
let llretptr = llvm::LLVMGetParam(llwrapfn, 0 as c_uint);
store_inbounds(bcx, llretptr, llargbundle, [0, n as int]);
// Create call itself.
let call_shim_on_c_stack = ccx.upcalls.call_shim_on_c_stack;
let llshimfnptr = PointerCast(bcx, llshimfn, T_ptr(T_i8()));
let llrawargbundle = PointerCast(bcx, llargbundle, T_ptr(T_i8()));
Call(bcx, call_shim_on_c_stack, [llrawargbundle, llshimfnptr]);
build_return(bcx);
finish_fn(fcx, lltop);
}
let ccx = lcx_ccx(lcx);
let cc = lib::llvm::LLVMCCallConv;
alt abi {
ast::native_abi_rust_intrinsic { ret; }
ast::native_abi_cdecl { cc = lib::llvm::LLVMCCallConv; }
ast::native_abi_stdcall { cc = lib::llvm::LLVMX86StdcallCallConv; }
}
for native_item in native_mod.items {
alt native_item.node {
ast::native_item_ty {}
ast::native_item_fn(fn_decl, tps) {
let span = native_item.span;
let id = native_item.id;
let tys = c_stack_tys(ccx, span, id);
alt ccx.item_ids.find(id) {
some(llwrapfn) {
let llshimfn = build_shim_fn(lcx, native_item, tys, cc);
build_wrap_fn(lcx, native_item, tys,
vec::len(tps), llshimfn, llwrapfn);
}
none {
ccx.sess.span_fatal(
native_item.span,
"unbound function item in trans_native_mod");
}
}
}
}
}
}
fn trans_item(cx: @local_ctxt, item: ast::item) {
alt item.node {
ast::item_fn(decl, tps, body) {
let sub_cx = extend_path(cx, item.ident);
alt cx.ccx.item_ids.find(item.id) {
some(llfndecl) {
trans_fn(sub_cx, item.span, decl, body, llfndecl, no_self, tps,
item.id);
}
_ {
cx.ccx.sess.span_fatal(item.span,
"unbound function item in trans_item");
}
}
}
ast::item_impl(tps, _, _, ms) {
trans_impl::trans_impl(cx, item.ident, ms, item.id, tps);
}
ast::item_res(decl, tps, body, dtor_id, ctor_id) {
trans_res_ctor(cx, item.span, decl, ctor_id, tps);
// Create a function for the destructor
alt cx.ccx.item_ids.find(item.id) {
some(lldtor_decl) {
trans_fn(cx, item.span, decl, body, lldtor_decl, no_self,
tps, dtor_id);
}
_ {
cx.ccx.sess.span_fatal(item.span, "unbound dtor in trans_item");
}
}
}
ast::item_mod(m) {
let sub_cx =
@{path: cx.path + [item.ident],
module_path: cx.module_path + [item.ident] with *cx};
trans_mod(sub_cx, m);
}
ast::item_enum(variants, tps) {
let sub_cx = extend_path(cx, item.ident);
let degen = vec::len(variants) == 1u;
let vi = ty::enum_variants(cx.ccx.tcx, {crate: ast::local_crate,
node: item.id});
let i = 0;
for variant: ast::variant in variants {
trans_enum_variant(sub_cx, item.id, variant,
vi[i].disr_val, degen, tps);
i += 1;
}
}
ast::item_const(_, expr) { trans_const(cx.ccx, expr, item.id); }
ast::item_native_mod(native_mod) {
let abi = alt attr::native_abi(item.attrs) {
either::right(abi_) { abi_ }
either::left(msg) { cx.ccx.sess.span_fatal(item.span, msg) }
};
trans_native_mod(cx, native_mod, abi);
}
_ {/* fall through */ }
}
}
// Translate a module. Doing this amounts to translating the items in the
// module; there ends up being no artifact (aside from linkage names) of
// separate modules in the compiled program. That's because modules exist
// only as a convenience for humans working with the code, to organize names
// and control visibility.
fn trans_mod(cx: @local_ctxt, m: ast::_mod) {
for item: @ast::item in m.items { trans_item(cx, *item); }
}
fn get_pair_fn_ty(llpairty: TypeRef) -> TypeRef {
// Bit of a kludge: pick the fn typeref out of the pair.
ret struct_elt(llpairty, 0u);
}
fn register_fn(ccx: @crate_ctxt, sp: span, path: [str], flav: str,
ty_params: [ast::ty_param], node_id: ast::node_id) {
// FIXME: pull this out
let t = node_id_type(ccx, node_id);
check returns_non_ty_var(ccx, t);
register_fn_full(ccx, sp, path, flav, ty_params, node_id, t);
}
fn param_bounds(ccx: @crate_ctxt, tp: ast::ty_param) -> ty::param_bounds {
ccx.tcx.ty_param_bounds.get(tp.id)
}
fn register_fn_full(ccx: @crate_ctxt, sp: span, path: [str], _flav: str,
tps: [ast::ty_param], node_id: ast::node_id,
node_type: ty::t)
: returns_non_ty_var(ccx, node_type) {
let path = path;
let llfty = type_of_fn_from_ty(ccx, sp, node_type,
vec::map(tps, {|p| param_bounds(ccx, p)}));
let ps: str = mangle_exported_name(ccx, path, node_type);
let llfn: ValueRef = decl_cdecl_fn(ccx.llmod, ps, llfty);
ccx.item_ids.insert(node_id, llfn);
ccx.item_symbols.insert(node_id, ps);
let is_main: bool = is_main_name(path) && !ccx.sess.building_library;
if is_main { create_main_wrapper(ccx, sp, llfn, node_type); }
}
// Create a _rust_main(args: [str]) function which will be called from the
// runtime rust_start function
fn create_main_wrapper(ccx: @crate_ctxt, sp: span, main_llfn: ValueRef,
main_node_type: ty::t) {
if ccx.main_fn != none::<ValueRef> {
ccx.sess.span_fatal(sp, "multiple 'main' functions");
}
let main_takes_argv =
alt ty::struct(ccx.tcx, main_node_type) {
ty::ty_fn({inputs, _}) { vec::len(inputs) != 0u }
};
let llfn = create_main(ccx, sp, main_llfn, main_takes_argv);
ccx.main_fn = some(llfn);
create_entry_fn(ccx, llfn);
fn create_main(ccx: @crate_ctxt, sp: span, main_llfn: ValueRef,
takes_argv: bool) -> ValueRef {
let unit_ty = ty::mk_str(ccx.tcx);
let vecarg_ty: ty::arg =
{mode: ast::by_val,
ty: ty::mk_vec(ccx.tcx, {ty: unit_ty, mut: ast::imm})};
// FIXME: mk_nil should have a postcondition
let nt = ty::mk_nil(ccx.tcx);
let llfty = type_of_fn(ccx, sp, [vecarg_ty], nt, []);
let llfdecl = decl_fn(ccx.llmod, "_rust_main",
lib::llvm::LLVMCCallConv, llfty);
let fcx = new_fn_ctxt(new_local_ctxt(ccx), sp, llfdecl);
let bcx = new_top_block_ctxt(fcx);
let lltop = bcx.llbb;
let lloutputarg = llvm::LLVMGetParam(llfdecl, 0 as c_uint);
let llenvarg = llvm::LLVMGetParam(llfdecl, 1 as c_uint);
let args = [lloutputarg, llenvarg];
if takes_argv { args += [llvm::LLVMGetParam(llfdecl, 2 as c_uint)]; }
Call(bcx, main_llfn, args);
build_return(bcx);
finish_fn(fcx, lltop);
ret llfdecl;
}
fn create_entry_fn(ccx: @crate_ctxt, rust_main: ValueRef) {
#[cfg(target_os = "win32")]
fn main_name() -> str { ret "WinMain@16"; }
#[cfg(target_os = "macos")]
fn main_name() -> str { ret "main"; }
#[cfg(target_os = "linux")]
fn main_name() -> str { ret "main"; }
#[cfg(target_os = "freebsd")]
fn main_name() -> str { ret "main"; }
let llfty = T_fn([ccx.int_type, ccx.int_type], ccx.int_type);
let llfn = decl_cdecl_fn(ccx.llmod, main_name(), llfty);
let llbb = str::as_buf("top", {|buf|
llvm::LLVMAppendBasicBlock(llfn, buf)
});
let bld = *ccx.builder;
llvm::LLVMPositionBuilderAtEnd(bld, llbb);
let crate_map = ccx.crate_map;
let start_ty = T_fn([val_ty(rust_main), ccx.int_type, ccx.int_type,
val_ty(crate_map)], ccx.int_type);
let start = str::as_buf("rust_start", {|buf|
llvm::LLVMAddGlobal(ccx.llmod, start_ty, buf)
});
let args = [rust_main, llvm::LLVMGetParam(llfn, 0 as c_uint),
llvm::LLVMGetParam(llfn, 1 as c_uint), crate_map];
let result = unsafe {
llvm::LLVMBuildCall(bld, start, vec::to_ptr(args),
vec::len(args) as c_uint, noname())
};
llvm::LLVMBuildRet(bld, result);
}
}
// Create a /real/ closure: this is like create_fn_pair, but creates a
// a fn value on the stack with a specified environment (which need not be
// on the stack).
fn create_real_fn_pair(cx: @block_ctxt, llfnty: TypeRef, llfn: ValueRef,
llenvptr: ValueRef) -> ValueRef {
let lcx = cx.fcx.lcx;
let pair = alloca(cx, T_fn_pair(lcx.ccx, llfnty));
fill_fn_pair(cx, pair, llfn, llenvptr);
ret pair;
}
fn fill_fn_pair(bcx: @block_ctxt, pair: ValueRef, llfn: ValueRef,
llenvptr: ValueRef) {
let ccx = bcx_ccx(bcx);
let code_cell = GEPi(bcx, pair, [0, abi::fn_field_code]);
Store(bcx, llfn, code_cell);
let env_cell = GEPi(bcx, pair, [0, abi::fn_field_box]);
let llenvblobptr =
PointerCast(bcx, llenvptr, T_opaque_cbox_ptr(ccx));
Store(bcx, llenvblobptr, env_cell);
}
// Returns the number of type parameters that the given native function has.
fn native_fn_ty_param_count(cx: @crate_ctxt, id: ast::node_id) -> uint {
let count;
let native_item =
alt cx.ast_map.find(id) { some(ast_map::node_native_item(i)) { i } };
alt native_item.node {
ast::native_item_ty {
cx.sess.bug("register_native_fn(): native fn isn't \
actually a fn");
}
ast::native_item_fn(_, tps) {
count = vec::len::<ast::ty_param>(tps);
}
}
ret count;
}
fn native_fn_wrapper_type(cx: @crate_ctxt, sp: span,
param_bounds: [ty::param_bounds],
x: ty::t) -> TypeRef {
alt ty::struct(cx.tcx, x) {
ty::ty_fn({inputs: args, output: out, _}) {
ret type_of_fn(cx, sp, args, out, param_bounds);
}
}
}
fn raw_native_fn_type(ccx: @crate_ctxt, sp: span, args: [ty::arg],
ret_ty: ty::t) -> TypeRef {
check type_has_static_size(ccx, ret_ty);
ret T_fn(type_of_explicit_args(ccx, sp, args), type_of(ccx, sp, ret_ty));
}
fn link_name(i: @ast::native_item) -> str {
alt attr::get_meta_item_value_str_by_name(i.attrs, "link_name") {
none { ret i.ident; }
option::some(ln) { ret ln; }
}
}
fn collect_native_item(ccx: @crate_ctxt,
abi: @mutable option::t<ast::native_abi>,
i: @ast::native_item,
&&pt: [str],
_v: vt<[str]>) {
alt i.node {
ast::native_item_fn(_, tps) {
let sp = i.span;
let id = i.id;
let node_type = node_id_type(ccx, id);
let fn_abi =
alt attr::get_meta_item_value_str_by_name(i.attrs, "abi") {
option::none {
// if abi isn't specified for this function, inherit from
// its enclosing native module
option::get(*abi)
}
_ {
alt attr::native_abi(i.attrs) {
either::right(abi_) { abi_ }
either::left(msg) { ccx.sess.span_fatal(i.span, msg) }
}
}
};
alt fn_abi {
ast::native_abi_rust_intrinsic {
// For intrinsics: link the function directly to the intrinsic
// function itself.
let fn_type = type_of_fn_from_ty(
ccx, sp, node_type,
vec::map(tps, {|p| param_bounds(ccx, p)}));
let ri_name = "rust_intrinsic_" + link_name(i);
let llnativefn = get_extern_fn(
ccx.externs, ccx.llmod, ri_name,
lib::llvm::LLVMCCallConv, fn_type);
ccx.item_ids.insert(id, llnativefn);
ccx.item_symbols.insert(id, ri_name);
}
ast::native_abi_cdecl | ast::native_abi_stdcall {
// For true external functions: create a rust wrapper
// and link to that. The rust wrapper will handle
// switching to the C stack.
let new_pt = pt + [i.ident];
register_fn(ccx, i.span, new_pt, "native fn", tps, i.id);
}
}
}
_ { }
}
}
fn collect_item(ccx: @crate_ctxt, abi: @mutable option::t<ast::native_abi>,
i: @ast::item, &&pt: [str], v: vt<[str]>) {
let new_pt = pt + [i.ident];
alt i.node {
ast::item_const(_, _) {
let typ = node_id_type(ccx, i.id);
let s =
mangle_exported_name(ccx, pt + [i.ident],
node_id_type(ccx, i.id));
// FIXME: Could follow from a constraint on types of const
// items
let g = str::as_buf(s, {|buf|
check (type_has_static_size(ccx, typ));
llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, i.span, typ), buf)
});
ccx.item_symbols.insert(i.id, s);
ccx.consts.insert(i.id, g);
}
ast::item_native_mod(native_mod) {
// Propagate the native ABI down to collect_native_item(),
alt attr::native_abi(i.attrs) {
either::left(msg) { ccx.sess.span_fatal(i.span, msg); }
either::right(abi_) {
*abi = option::some(abi_);
}
}
}
ast::item_fn(_, tps, _) {
register_fn(ccx, i.span, new_pt, "fn", tps, i.id);
}
ast::item_impl(tps, _, _, methods) {
let name = i.ident + int::str(i.id);
for m in methods {
register_fn(ccx, i.span, pt + [name, m.ident],
"impl_method", tps + m.tps, m.id);
}
}
ast::item_res(_, tps, _, dtor_id, ctor_id) {
register_fn(ccx, i.span, new_pt, "res_ctor", tps, ctor_id);
// Note that the destructor is associated with the item's id, not
// the dtor_id. This is a bit counter-intuitive, but simplifies
// ty_res, which would have to carry around two def_ids otherwise
// -- one to identify the type, and one to find the dtor symbol.
let t = node_id_type(ccx, dtor_id);
// FIXME: how to get rid of this check?
check returns_non_ty_var(ccx, t);
register_fn_full(ccx, i.span, new_pt, "res_dtor", tps, i.id, t);
}
ast::item_enum(variants, tps) {
for variant in variants {
if vec::len(variant.node.args) != 0u {
register_fn(ccx, i.span, new_pt + [variant.node.name],
"enum", tps, variant.node.id);
}
}
}
_ { }
}
visit::visit_item(i, new_pt, v);
}
fn collect_items(ccx: @crate_ctxt, crate: @ast::crate) {
let abi = @mutable none::<ast::native_abi>;
visit::visit_crate(*crate, [], visit::mk_vt(@{
visit_native_item: bind collect_native_item(ccx, abi, _, _, _),
visit_item: bind collect_item(ccx, abi, _, _, _)
with *visit::default_visitor()
}));
}
// The constant translation pass.
fn trans_constant(ccx: @crate_ctxt, it: @ast::item, &&pt: [str],
v: vt<[str]>) {
let new_pt = pt + [it.ident];
visit::visit_item(it, new_pt, v);
alt it.node {
ast::item_enum(variants, _) {
let vi = ty::enum_variants(ccx.tcx, {crate: ast::local_crate,
node: it.id});
let i = 0;
for variant in variants {
let p = new_pt + [variant.node.name, "discrim"];
let s = mangle_exported_name(ccx, p, ty::mk_int(ccx.tcx));
let disr_val = vi[i].disr_val;
let discrim_gvar = str::as_buf(s, {|buf|
llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf)
});
llvm::LLVMSetInitializer(discrim_gvar, C_int(ccx, disr_val));
llvm::LLVMSetGlobalConstant(discrim_gvar, True);
ccx.discrims.insert(
ast_util::local_def(variant.node.id), discrim_gvar);
ccx.discrim_symbols.insert(variant.node.id, s);
i += 1;
}
}
ast::item_impl(tps, some(@{node: ast::ty_path(_, id), _}), _, ms) {
let i_did = ast_util::def_id_of_def(ccx.tcx.def_map.get(id));
trans_impl::trans_impl_vtable(ccx, pt, i_did, ms, tps, it);
}
ast::item_iface(_, _) {
trans_impl::trans_iface_vtable(ccx, pt, it);
}
_ { }
}
}
fn trans_constants(ccx: @crate_ctxt, crate: @ast::crate) {
let visitor =
@{visit_item: bind trans_constant(ccx, _, _, _)
with *visit::default_visitor()};
visit::visit_crate(*crate, [], visit::mk_vt(visitor));
}
fn vp2i(cx: @block_ctxt, v: ValueRef) -> ValueRef {
let ccx = bcx_ccx(cx);
ret PtrToInt(cx, v, ccx.int_type);
}
fn p2i(ccx: @crate_ctxt, v: ValueRef) -> ValueRef {
ret llvm::LLVMConstPtrToInt(v, ccx.int_type);
}
fn declare_intrinsics(llmod: ModuleRef) -> hashmap<str, ValueRef> {
let T_memmove32_args: [TypeRef] =
[T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()];
let T_memmove64_args: [TypeRef] =
[T_ptr(T_i8()), T_ptr(T_i8()), T_i64(), T_i32(), T_i1()];
let T_memset32_args: [TypeRef] =
[T_ptr(T_i8()), T_i8(), T_i32(), T_i32(), T_i1()];
let T_memset64_args: [TypeRef] =
[T_ptr(T_i8()), T_i8(), T_i64(), T_i32(), T_i1()];
let T_trap_args: [TypeRef] = [];
let gcroot =
decl_cdecl_fn(llmod, "llvm.gcroot",
T_fn([T_ptr(T_ptr(T_i8())), T_ptr(T_i8())], T_void()));
let gcread =
decl_cdecl_fn(llmod, "llvm.gcread",
T_fn([T_ptr(T_i8()), T_ptr(T_ptr(T_i8()))], T_void()));
let memmove32 =
decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i32",
T_fn(T_memmove32_args, T_void()));
let memmove64 =
decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i64",
T_fn(T_memmove64_args, T_void()));
let memset32 =
decl_cdecl_fn(llmod, "llvm.memset.p0i8.i32",
T_fn(T_memset32_args, T_void()));
let memset64 =
decl_cdecl_fn(llmod, "llvm.memset.p0i8.i64",
T_fn(T_memset64_args, T_void()));
let trap = decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void()));
let intrinsics = new_str_hash::<ValueRef>();
intrinsics.insert("llvm.gcroot", gcroot);
intrinsics.insert("llvm.gcread", gcread);
intrinsics.insert("llvm.memmove.p0i8.p0i8.i32", memmove32);
intrinsics.insert("llvm.memmove.p0i8.p0i8.i64", memmove64);
intrinsics.insert("llvm.memset.p0i8.i32", memset32);
intrinsics.insert("llvm.memset.p0i8.i64", memset64);
intrinsics.insert("llvm.trap", trap);
ret intrinsics;
}
fn declare_dbg_intrinsics(llmod: ModuleRef,
intrinsics: hashmap<str, ValueRef>) {
let declare =
decl_cdecl_fn(llmod, "llvm.dbg.declare",
T_fn([T_metadata(), T_metadata()], T_void()));
let value =
decl_cdecl_fn(llmod, "llvm.dbg.value",
T_fn([T_metadata(), T_i64(), T_metadata()], T_void()));
intrinsics.insert("llvm.dbg.declare", declare);
intrinsics.insert("llvm.dbg.value", value);
}
fn trap(bcx: @block_ctxt) {
let v: [ValueRef] = [];
alt bcx_ccx(bcx).intrinsics.find("llvm.trap") {
some(x) { Call(bcx, x, v); }
_ { bcx_ccx(bcx).sess.bug("unbound llvm.trap in trap"); }
}
}
fn create_module_map(ccx: @crate_ctxt) -> ValueRef {
let elttype = T_struct([ccx.int_type, ccx.int_type]);
let maptype = T_array(elttype, ccx.module_data.size() + 1u);
let map =
str::as_buf("_rust_mod_map",
{|buf| llvm::LLVMAddGlobal(ccx.llmod, maptype, buf) });
llvm::LLVMSetLinkage(map,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
let elts: [ValueRef] = [];
ccx.module_data.items {|key, val|
let elt = C_struct([p2i(ccx, C_cstr(ccx, key)),
p2i(ccx, val)]);
elts += [elt];
};
let term = C_struct([C_int(ccx, 0), C_int(ccx, 0)]);
elts += [term];
llvm::LLVMSetInitializer(map, C_array(elttype, elts));
ret map;
}
fn decl_crate_map(sess: session::session, mapname: str,
llmod: ModuleRef) -> ValueRef {
let targ_cfg = sess.targ_cfg;
let int_type = T_int(targ_cfg);
let n_subcrates = 1;
let cstore = sess.cstore;
while cstore::have_crate_data(cstore, n_subcrates) { n_subcrates += 1; }
let mapname = sess.building_library ? mapname : "toplevel";
let sym_name = "_rust_crate_map_" + mapname;
let arrtype = T_array(int_type, n_subcrates as uint);
let maptype = T_struct([int_type, arrtype]);
let map = str::as_buf(sym_name, {|buf|
llvm::LLVMAddGlobal(llmod, maptype, buf)
});
llvm::LLVMSetLinkage(map, lib::llvm::LLVMExternalLinkage
as llvm::Linkage);
ret map;
}
// FIXME use hashed metadata instead of crate names once we have that
fn fill_crate_map(ccx: @crate_ctxt, map: ValueRef) {
let subcrates: [ValueRef] = [];
let i = 1;
let cstore = ccx.sess.cstore;
while cstore::have_crate_data(cstore, i) {
let nm = "_rust_crate_map_" + cstore::get_crate_data(cstore, i).name;
let cr = str::as_buf(nm, {|buf|
llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf)
});
subcrates += [p2i(ccx, cr)];
i += 1;
}
subcrates += [C_int(ccx, 0)];
llvm::LLVMSetInitializer(map, C_struct(
[p2i(ccx, create_module_map(ccx)),
C_array(ccx.int_type, subcrates)]));
}
fn write_metadata(cx: @crate_ctxt, crate: @ast::crate) {
if !cx.sess.building_library { ret; }
let llmeta = C_postr(metadata::encoder::encode_metadata(cx, crate));
let llconst = trans_common::C_struct([llmeta]);
let llglobal =
str::as_buf("rust_metadata",
{|buf|
llvm::LLVMAddGlobal(cx.llmod, val_ty(llconst), buf)
});
llvm::LLVMSetInitializer(llglobal, llconst);
let _: () =
str::as_buf(cx.sess.targ_cfg.target_strs.meta_sect_name,
{|buf| llvm::LLVMSetSection(llglobal, buf) });
llvm::LLVMSetLinkage(llglobal,
lib::llvm::LLVMInternalLinkage as llvm::Linkage);
let t_ptr_i8 = T_ptr(T_i8());
llglobal = llvm::LLVMConstBitCast(llglobal, t_ptr_i8);
let llvm_used =
str::as_buf("llvm.used",
{|buf|
llvm::LLVMAddGlobal(cx.llmod, T_array(t_ptr_i8, 1u),
buf)
});
llvm::LLVMSetLinkage(llvm_used,
lib::llvm::LLVMAppendingLinkage as llvm::Linkage);
llvm::LLVMSetInitializer(llvm_used, C_array(t_ptr_i8, [llglobal]));
}
// Writes the current ABI version into the crate.
fn write_abi_version(ccx: @crate_ctxt) {
shape::mk_global(ccx, "rust_abi_version", C_uint(ccx, abi::abi_version),
false);
}
fn trans_crate(sess: session::session, crate: @ast::crate, tcx: ty::ctxt,
output: str, emap: resolve::exp_map, amap: ast_map::map,
mut_map: mut::mut_map, copy_map: alias::copy_map,
last_uses: last_use::last_uses, method_map: typeck::method_map,
dict_map: typeck::dict_map)
-> (ModuleRef, link::link_meta) {
let sha = std::sha1::mk_sha1();
let link_meta = link::build_link_meta(sess, *crate, output, sha);
// Append ".rc" to crate name as LLVM module identifier.
//
// LLVM code generator emits a ".file filename" directive
// for ELF backends. Value of the "filename" is set as the
// LLVM module identifier. Due to a LLVM MC bug[1], LLVM
// crashes if the module identifer is same as other symbols
// such as a function name in the module.
// 1. http://llvm.org/bugs/show_bug.cgi?id=11479
let llmod_id = link_meta.name + ".rc";
let llmod = str::as_buf(llmod_id, {|buf|
llvm::LLVMModuleCreateWithNameInContext
(buf, llvm::LLVMGetGlobalContext())
});
let data_layout = sess.targ_cfg.target_strs.data_layout;
let targ_triple = sess.targ_cfg.target_strs.target_triple;
let _: () =
str::as_buf(data_layout,
{|buf| llvm::LLVMSetDataLayout(llmod, buf) });
let _: () =
str::as_buf(targ_triple,
{|buf| llvm::LLVMSetTarget(llmod, buf) });
let targ_cfg = sess.targ_cfg;
let td = mk_target_data(sess.targ_cfg.target_strs.data_layout);
let tn = mk_type_names();
let intrinsics = declare_intrinsics(llmod);
if sess.opts.extra_debuginfo {
declare_dbg_intrinsics(llmod, intrinsics);
}
let int_type = T_int(targ_cfg);
let float_type = T_float(targ_cfg);
let task_type = T_task(targ_cfg);
let taskptr_type = T_ptr(task_type);
lib::llvm::associate_type(tn, "taskptr", taskptr_type);
let tydesc_type = T_tydesc(targ_cfg);
lib::llvm::associate_type(tn, "tydesc", tydesc_type);
let crate_map = decl_crate_map(sess, link_meta.name, llmod);
let dbg_cx = if sess.opts.debuginfo {
option::some(@{llmetadata: map::new_int_hash(),
names: new_namegen()})
} else {
option::none
};
let ccx =
@{sess: sess,
llmod: llmod,
td: td,
tn: tn,
externs: new_str_hash::<ValueRef>(),
intrinsics: intrinsics,
item_ids: new_int_hash::<ValueRef>(),
ast_map: amap,
exp_map: emap,
item_symbols: new_int_hash::<str>(),
mutable main_fn: none::<ValueRef>,
link_meta: link_meta,
enum_sizes: ty::new_ty_hash(),
discrims: ast_util::new_def_id_hash::<ValueRef>(),
discrim_symbols: new_int_hash::<str>(),
consts: new_int_hash::<ValueRef>(),
tydescs: ty::new_ty_hash(),
dicts: map::mk_hashmap(hash_dict_id, {|a, b| a == b}),
module_data: new_str_hash::<ValueRef>(),
lltypes: ty::new_ty_hash(),
names: new_namegen(),
sha: sha,
type_sha1s: ty::new_ty_hash(),
type_short_names: ty::new_ty_hash(),
tcx: tcx,
mut_map: mut_map,
copy_map: copy_map,
last_uses: last_uses,
method_map: method_map,
dict_map: dict_map,
stats:
{mutable n_static_tydescs: 0u,
mutable n_derived_tydescs: 0u,
mutable n_glues_created: 0u,
mutable n_null_glues: 0u,
mutable n_real_glues: 0u,
fn_times: @mutable []},
upcalls:
upcall::declare_upcalls(targ_cfg, tn, tydesc_type,
llmod),
tydesc_type: tydesc_type,
int_type: int_type,
float_type: float_type,
task_type: task_type,
opaque_vec_type: T_opaque_vec(targ_cfg),
builder: BuilderRef_res(llvm::LLVMCreateBuilder()),
shape_cx: shape::mk_ctxt(llmod),
gc_cx: gc::mk_ctxt(),
crate_map: crate_map,
dbg_cx: dbg_cx};
let cx = new_local_ctxt(ccx);
collect_items(ccx, crate);
trans_constants(ccx, crate);
trans_mod(cx, crate.node.module);
fill_crate_map(ccx, crate_map);
emit_tydescs(ccx);
shape::gen_shape_tables(ccx);
write_abi_version(ccx);
// Translate the metadata.
write_metadata(cx.ccx, crate);
if ccx.sess.opts.stats {
#error("--- trans stats ---");
#error("n_static_tydescs: %u", ccx.stats.n_static_tydescs);
#error("n_derived_tydescs: %u", ccx.stats.n_derived_tydescs);
#error("n_glues_created: %u", ccx.stats.n_glues_created);
#error("n_null_glues: %u", ccx.stats.n_null_glues);
#error("n_real_glues: %u", ccx.stats.n_real_glues);
for timing: {ident: str, time: int} in *ccx.stats.fn_times {
#error("time: %s took %d ms", timing.ident, timing.time);
}
}
ret (llmod, link_meta);
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//