2020-04-16 05:37:49 -07:00

937 lines
28 KiB
Rust

//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.
#[allow(unused)]
macro_rules! eprintln {
($($tt:tt)*) => { stdx::eprintln!($($tt)*) };
}
macro_rules! impl_froms {
($e:ident: $($v:ident $(($($sv:ident),*))?),*) => {
$(
impl From<$v> for $e {
fn from(it: $v) -> $e {
$e::$v(it)
}
}
$($(
impl From<$sv> for $e {
fn from(it: $sv) -> $e {
$e::$v($v::$sv(it))
}
}
)*)?
)*
}
}
mod autoderef;
pub mod primitive;
pub mod traits;
pub mod method_resolution;
mod op;
mod lower;
pub(crate) mod infer;
pub mod display;
pub(crate) mod utils;
pub mod db;
pub mod diagnostics;
pub mod expr;
#[cfg(test)]
mod tests;
#[cfg(test)]
mod test_db;
mod marks;
mod _match;
use std::ops::Deref;
use std::sync::Arc;
use std::{iter, mem};
use hir_def::{
expr::ExprId, type_ref::Mutability, AdtId, AssocContainerId, DefWithBodyId, GenericDefId,
HasModule, Lookup, TraitId, TypeAliasId, TypeParamId,
};
use ra_db::{impl_intern_key, salsa, CrateId};
use crate::{
db::HirDatabase,
primitive::{FloatTy, IntTy, Uncertain},
utils::{generics, make_mut_slice, Generics},
};
use display::HirDisplay;
pub use autoderef::autoderef;
pub use infer::{InferTy, InferenceResult};
pub use lower::CallableDef;
pub use lower::{
callable_item_sig, ImplTraitLoweringMode, TyDefId, TyLoweringContext, ValueTyDefId,
};
pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};
pub use chalk_ir::{BoundVar, DebruijnIndex};
/// A type constructor or type name: this might be something like the primitive
/// type `bool`, a struct like `Vec`, or things like function pointers or
/// tuples.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum TypeCtor {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive integer type. For example, `i32`.
Int(Uncertain<IntTy>),
/// A primitive floating-point type. For example, `f64`.
Float(Uncertain<FloatTy>),
/// Structures, enumerations and unions.
Adt(AdtId),
/// The pointee of a string slice. Written as `str`.
Str,
/// The pointee of an array slice. Written as `[T]`.
Slice,
/// An array with the given length. Written as `[T; n]`.
Array,
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// This includes tuple struct / enum variant constructors as well.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef(CallableDef),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr { num_args: u16 },
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple { cardinality: u16 },
/// Represents an associated item like `Iterator::Item`. This is used
/// when we have tried to normalize a projection like `T::Item` but
/// couldn't find a better representation. In that case, we generate
/// an **application type** like `(Iterator::Item)<T>`.
AssociatedType(TypeAliasId),
/// The type of a specific closure.
///
/// The closure signature is stored in a `FnPtr` type in the first type
/// parameter.
Closure { def: DefWithBodyId, expr: ExprId },
}
/// This exists just for Chalk, because Chalk just has a single `StructId` where
/// we have different kinds of ADTs, primitive types and special type
/// constructors like tuples and function pointers.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeCtorId(salsa::InternId);
impl_intern_key!(TypeCtorId);
impl TypeCtor {
pub fn num_ty_params(self, db: &dyn HirDatabase) -> usize {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never => 0,
TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::Closure { .. } // 1 param representing the signature of the closure
=> 1,
TypeCtor::Adt(adt) => {
let generic_params = generics(db.upcast(), adt.into());
generic_params.len()
}
TypeCtor::FnDef(callable) => {
let generic_params = generics(db.upcast(), callable.into());
generic_params.len()
}
TypeCtor::AssociatedType(type_alias) => {
let generic_params = generics(db.upcast(), type_alias.into());
generic_params.len()
}
TypeCtor::FnPtr { num_args } => num_args as usize + 1,
TypeCtor::Tuple { cardinality } => cardinality as usize,
}
}
pub fn krate(self, db: &dyn HirDatabase) -> Option<CrateId> {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never
| TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::FnPtr { .. }
| TypeCtor::Tuple { .. } => None,
// Closure's krate is irrelevant for coherence I would think?
TypeCtor::Closure { .. } => None,
TypeCtor::Adt(adt) => Some(adt.module(db.upcast()).krate),
TypeCtor::FnDef(callable) => Some(callable.krate(db)),
TypeCtor::AssociatedType(type_alias) => {
Some(type_alias.lookup(db.upcast()).module(db.upcast()).krate)
}
}
}
pub fn as_generic_def(self) -> Option<GenericDefId> {
match self {
TypeCtor::Bool
| TypeCtor::Char
| TypeCtor::Int(_)
| TypeCtor::Float(_)
| TypeCtor::Str
| TypeCtor::Never
| TypeCtor::Slice
| TypeCtor::Array
| TypeCtor::RawPtr(_)
| TypeCtor::Ref(_)
| TypeCtor::FnPtr { .. }
| TypeCtor::Tuple { .. }
| TypeCtor::Closure { .. } => None,
TypeCtor::Adt(adt) => Some(adt.into()),
TypeCtor::FnDef(callable) => Some(callable.into()),
TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
}
}
}
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ApplicationTy {
pub ctor: TypeCtor,
pub parameters: Substs,
}
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ProjectionTy {
pub associated_ty: TypeAliasId,
pub parameters: Substs,
}
impl ProjectionTy {
pub fn trait_ref(&self, db: &dyn HirDatabase) -> TraitRef {
TraitRef { trait_: self.trait_(db), substs: self.parameters.clone() }
}
fn trait_(&self, db: &dyn HirDatabase) -> TraitId {
match self.associated_ty.lookup(db.upcast()).container {
AssocContainerId::TraitId(it) => it,
_ => panic!("projection ty without parent trait"),
}
}
}
impl TypeWalk for ProjectionTy {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.parameters.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.parameters.walk_mut_binders(f, binders);
}
}
/// A type.
///
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
/// the same thing (but in a different way).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Ty {
/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
Apply(ApplicationTy),
/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
Projection(ProjectionTy),
/// A placeholder for a type parameter; for example, `T` in `fn f<T>(x: T)
/// {}` when we're type-checking the body of that function. In this
/// situation, we know this stands for *some* type, but don't know the exact
/// type.
Placeholder(TypeParamId),
/// A bound type variable. This is used in various places: when representing
/// some polymorphic type like the type of function `fn f<T>`, the type
/// parameters get turned into variables; during trait resolution, inference
/// variables get turned into bound variables and back; and in `Dyn` the
/// `Self` type is represented with a bound variable as well.
Bound(BoundVar),
/// A type variable used during type checking.
Infer(InferTy),
/// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
///
/// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
/// represents the `Self` type inside the bounds. This is currently
/// implicit; Chalk has the `Binders` struct to make it explicit, but it
/// didn't seem worth the overhead yet.
Dyn(Arc<[GenericPredicate]>),
/// An opaque type (`impl Trait`).
///
/// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
/// more.
Opaque(Arc<[GenericPredicate]>),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Substs(Arc<[Ty]>);
impl TypeWalk for Substs {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.0.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in make_mut_slice(&mut self.0) {
t.walk_mut_binders(f, binders);
}
}
}
impl Substs {
pub fn empty() -> Substs {
Substs(Arc::new([]))
}
pub fn single(ty: Ty) -> Substs {
Substs(Arc::new([ty]))
}
pub fn prefix(&self, n: usize) -> Substs {
Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
}
pub fn suffix(&self, n: usize) -> Substs {
Substs(self.0[self.0.len() - std::cmp::min(self.0.len(), n)..].into())
}
pub fn as_single(&self) -> &Ty {
if self.0.len() != 1 {
panic!("expected substs of len 1, got {:?}", self);
}
&self.0[0]
}
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
pub(crate) fn type_params_for_generics(generic_params: &Generics) -> Substs {
Substs(generic_params.iter().map(|(id, _)| Ty::Placeholder(id)).collect())
}
/// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
pub fn type_params(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> Substs {
let params = generics(db.upcast(), def.into());
Substs::type_params_for_generics(&params)
}
/// Return Substs that replace each parameter by a bound variable.
pub(crate) fn bound_vars(generic_params: &Generics) -> Substs {
Substs(
generic_params
.iter()
.enumerate()
.map(|(idx, _)| Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, idx)))
.collect(),
)
}
pub fn build_for_def(db: &dyn HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
let def = def.into();
let params = generics(db.upcast(), def);
let param_count = params.len();
Substs::builder(param_count)
}
pub(crate) fn build_for_generics(generic_params: &Generics) -> SubstsBuilder {
Substs::builder(generic_params.len())
}
pub fn build_for_type_ctor(db: &dyn HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
Substs::builder(type_ctor.num_ty_params(db))
}
fn builder(param_count: usize) -> SubstsBuilder {
SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
}
}
#[derive(Debug, Clone)]
pub struct SubstsBuilder {
vec: Vec<Ty>,
param_count: usize,
}
impl SubstsBuilder {
pub fn build(self) -> Substs {
assert_eq!(self.vec.len(), self.param_count);
Substs(self.vec.into())
}
pub fn push(mut self, ty: Ty) -> Self {
self.vec.push(ty);
self
}
fn remaining(&self) -> usize {
self.param_count - self.vec.len()
}
pub fn fill_with_bound_vars(self, debruijn: DebruijnIndex, starting_from: usize) -> Self {
self.fill((starting_from..).map(|idx| Ty::Bound(BoundVar::new(debruijn, idx))))
}
pub fn fill_with_unknown(self) -> Self {
self.fill(iter::repeat(Ty::Unknown))
}
pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
self.vec.extend(filler.take(self.remaining()));
assert_eq!(self.remaining(), 0);
self
}
pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
assert!(self.vec.is_empty());
assert!(parent_substs.len() <= self.param_count);
self.vec.extend(parent_substs.iter().cloned());
self
}
}
impl Deref for Substs {
type Target = [Ty];
fn deref(&self) -> &[Ty] {
&self.0
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Binders<T> {
pub num_binders: usize,
pub value: T,
}
impl<T> Binders<T> {
pub fn new(num_binders: usize, value: T) -> Self {
Self { num_binders, value }
}
}
impl<T: Clone> Binders<&T> {
pub fn cloned(&self) -> Binders<T> {
Binders { num_binders: self.num_binders, value: self.value.clone() }
}
}
impl<T: TypeWalk> Binders<T> {
/// Substitutes all variables.
pub fn subst(self, subst: &Substs) -> T {
assert_eq!(subst.len(), self.num_binders);
self.value.subst_bound_vars(subst)
}
/// Substitutes just a prefix of the variables (shifting the rest).
pub fn subst_prefix(self, subst: &Substs) -> Binders<T> {
assert!(subst.len() < self.num_binders);
Binders::new(self.num_binders - subst.len(), self.value.subst_bound_vars(subst))
}
}
/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
/// Name to be bikeshedded: TraitBound? TraitImplements?
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
/// FIXME name?
pub trait_: TraitId,
pub substs: Substs,
}
impl TraitRef {
pub fn self_ty(&self) -> &Ty {
&self.substs[0]
}
}
impl TypeWalk for TraitRef {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
self.substs.walk(f);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
self.substs.walk_mut_binders(f, binders);
}
}
/// Like `generics::WherePredicate`, but with resolved types: A condition on the
/// parameters of a generic item.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum GenericPredicate {
/// The given trait needs to be implemented for its type parameters.
Implemented(TraitRef),
/// An associated type bindings like in `Iterator<Item = T>`.
Projection(ProjectionPredicate),
/// We couldn't resolve the trait reference. (If some type parameters can't
/// be resolved, they will just be Unknown).
Error,
}
impl GenericPredicate {
pub fn is_error(&self) -> bool {
match self {
GenericPredicate::Error => true,
_ => false,
}
}
pub fn is_implemented(&self) -> bool {
match self {
GenericPredicate::Implemented(_) => true,
_ => false,
}
}
pub fn trait_ref(&self, db: &dyn HirDatabase) -> Option<TraitRef> {
match self {
GenericPredicate::Implemented(tr) => Some(tr.clone()),
GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
GenericPredicate::Error => None,
}
}
}
impl TypeWalk for GenericPredicate {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
GenericPredicate::Error => {}
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
GenericPredicate::Projection(projection_pred) => {
projection_pred.walk_mut_binders(f, binders)
}
GenericPredicate::Error => {}
}
}
}
/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `num_vars` tells us how
/// many there are. This is used to erase irrelevant differences between types
/// before using them in queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Canonical<T> {
pub value: T,
pub num_vars: usize,
}
/// A function signature as seen by type inference: Several parameter types and
/// one return type.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
params_and_return: Arc<[Ty]>,
}
/// A polymorphic function signature.
pub type PolyFnSig = Binders<FnSig>;
impl FnSig {
pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
params.push(ret);
FnSig { params_and_return: params.into() }
}
pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
FnSig { params_and_return: Arc::clone(&substs.0) }
}
pub fn params(&self) -> &[Ty] {
&self.params_and_return[0..self.params_and_return.len() - 1]
}
pub fn ret(&self) -> &Ty {
&self.params_and_return[self.params_and_return.len() - 1]
}
}
impl TypeWalk for FnSig {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
for t in self.params_and_return.iter() {
t.walk(f);
}
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
for t in make_mut_slice(&mut self.params_and_return) {
t.walk_mut_binders(f, binders);
}
}
}
impl Ty {
pub fn simple(ctor: TypeCtor) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
}
pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
}
pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
Ty::Apply(ApplicationTy { ctor, parameters })
}
pub fn unit() -> Self {
Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
}
pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
Some((parameters.as_single(), *mutability))
}
_ => None,
}
}
pub fn strip_references(&self) -> &Ty {
let mut t: &Ty = self;
while let Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(_mutability), parameters }) = t {
t = parameters.as_single();
}
t
}
pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
Some((*adt_def, parameters))
}
_ => None,
}
}
pub fn as_tuple(&self) -> Option<&Substs> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
Some(parameters)
}
_ => None,
}
}
pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
match self {
Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
Some((*callable_def, parameters))
}
_ => None,
}
}
/// If this is a `dyn Trait` type, this returns the `Trait` part.
pub fn dyn_trait_ref(&self) -> Option<&TraitRef> {
match self {
Ty::Dyn(bounds) => bounds.get(0).and_then(|b| match b {
GenericPredicate::Implemented(trait_ref) => Some(trait_ref),
_ => None,
}),
_ => None,
}
}
fn builtin_deref(&self) -> Option<Ty> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
_ => None,
},
_ => None,
}
}
fn callable_sig(&self, db: &dyn HirDatabase) -> Option<FnSig> {
match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
TypeCtor::FnDef(def) => {
let sig = db.callable_item_signature(def);
Some(sig.subst(&a_ty.parameters))
}
TypeCtor::Closure { .. } => {
let sig_param = &a_ty.parameters[0];
sig_param.callable_sig(db)
}
_ => None,
},
_ => None,
}
}
/// If this is a type with type parameters (an ADT or function), replaces
/// the `Substs` for these type parameters with the given ones. (So e.g. if
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
/// `Option<u32>` afterwards.)
pub fn apply_substs(self, substs: Substs) -> Ty {
match self {
Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
assert_eq!(previous_substs.len(), substs.len());
Ty::Apply(ApplicationTy { ctor, parameters: substs })
}
_ => self,
}
}
/// Returns the type parameters of this type if it has some (i.e. is an ADT
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
pub fn substs(&self) -> Option<Substs> {
match self {
Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
_ => None,
}
}
/// If this is an `impl Trait` or `dyn Trait`, returns that trait.
pub fn inherent_trait(&self) -> Option<TraitId> {
match self {
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
predicates.iter().find_map(|pred| match pred {
GenericPredicate::Implemented(tr) => Some(tr.trait_),
_ => None,
})
}
_ => None,
}
}
}
/// This allows walking structures that contain types to do something with those
/// types, similar to Chalk's `Fold` trait.
pub trait TypeWalk {
fn walk(&self, f: &mut impl FnMut(&Ty));
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
self.walk_mut_binders(&mut |ty, _binders| f(ty), DebruijnIndex::INNERMOST);
}
/// Walk the type, counting entered binders.
///
/// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
/// to the innermost binder, 1 to the next, etc.. So when we want to
/// substitute a certain bound variable, we can't just walk the whole type
/// and blindly replace each instance of a certain index; when we 'enter'
/// things that introduce new bound variables, we have to keep track of
/// that. Currently, the only thing that introduces bound variables on our
/// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
/// variable for the self type.
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
);
fn fold_binders(
mut self,
f: &mut impl FnMut(Ty, DebruijnIndex) -> Ty,
binders: DebruijnIndex,
) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty_mut, binders| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty, binders);
},
binders,
);
self
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
where
Self: Sized,
{
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty);
});
self
}
/// Substitutes `Ty::Bound` vars with the given substitution.
fn subst_bound_vars(self, substs: &Substs) -> Self
where
Self: Sized,
{
self.subst_bound_vars_at_depth(substs, DebruijnIndex::INNERMOST)
}
/// Substitutes `Ty::Bound` vars with the given substitution.
fn subst_bound_vars_at_depth(mut self, substs: &Substs, depth: DebruijnIndex) -> Self
where
Self: Sized,
{
self.walk_mut_binders(
&mut |ty, binders| {
if let &mut Ty::Bound(bound) = ty {
if bound.debruijn >= binders {
*ty = substs.0[bound.index].clone();
}
}
},
depth,
);
self
}
/// Shifts up debruijn indices of `Ty::Bound` vars by `n`.
fn shift_bound_vars(self, n: DebruijnIndex) -> Self
where
Self: Sized,
{
self.fold_binders(
&mut |ty, binders| match ty {
Ty::Bound(bound) if bound.debruijn >= binders => {
Ty::Bound(bound.shifted_in_from(n))
}
ty => ty,
},
DebruijnIndex::INNERMOST,
)
}
}
impl TypeWalk for Ty {
fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
Ty::Apply(a_ty) => {
for t in a_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Projection(p_ty) => {
for t in p_ty.parameters.iter() {
t.walk(f);
}
}
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
for p in predicates.iter() {
p.walk(f);
}
}
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self);
}
fn walk_mut_binders(
&mut self,
f: &mut impl FnMut(&mut Ty, DebruijnIndex),
binders: DebruijnIndex,
) {
match self {
Ty::Apply(a_ty) => {
a_ty.parameters.walk_mut_binders(f, binders);
}
Ty::Projection(p_ty) => {
p_ty.parameters.walk_mut_binders(f, binders);
}
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
for p in make_mut_slice(predicates) {
p.walk_mut_binders(f, binders.shifted_in());
}
}
Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
}
f(self, binders);
}
}