573 lines
21 KiB
Rust
573 lines
21 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Trait Resolution. See the Book for more.
|
|
|
|
pub use self::SelectionError::*;
|
|
pub use self::FulfillmentErrorCode::*;
|
|
pub use self::Vtable::*;
|
|
pub use self::ObligationCauseCode::*;
|
|
|
|
use middle::free_region::FreeRegionMap;
|
|
use middle::subst;
|
|
use middle::ty::{self, HasTypeFlags, Ty};
|
|
use middle::ty_fold::TypeFoldable;
|
|
use middle::infer::{self, fixup_err_to_string, InferCtxt};
|
|
use std::rc::Rc;
|
|
use syntax::ast;
|
|
use syntax::codemap::{Span, DUMMY_SP};
|
|
|
|
pub use self::error_reporting::report_fulfillment_errors;
|
|
pub use self::error_reporting::report_overflow_error;
|
|
pub use self::error_reporting::report_selection_error;
|
|
pub use self::error_reporting::suggest_new_overflow_limit;
|
|
pub use self::coherence::orphan_check;
|
|
pub use self::coherence::overlapping_impls;
|
|
pub use self::coherence::OrphanCheckErr;
|
|
pub use self::fulfill::{FulfillmentContext, FulfilledPredicates, RegionObligation};
|
|
pub use self::project::MismatchedProjectionTypes;
|
|
pub use self::project::normalize;
|
|
pub use self::project::Normalized;
|
|
pub use self::object_safety::is_object_safe;
|
|
pub use self::object_safety::object_safety_violations;
|
|
pub use self::object_safety::ObjectSafetyViolation;
|
|
pub use self::object_safety::MethodViolationCode;
|
|
pub use self::object_safety::is_vtable_safe_method;
|
|
pub use self::select::SelectionContext;
|
|
pub use self::select::SelectionCache;
|
|
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
|
|
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
|
|
pub use self::util::elaborate_predicates;
|
|
pub use self::util::get_vtable_index_of_object_method;
|
|
pub use self::util::trait_ref_for_builtin_bound;
|
|
pub use self::util::predicate_for_trait_def;
|
|
pub use self::util::supertraits;
|
|
pub use self::util::Supertraits;
|
|
pub use self::util::supertrait_def_ids;
|
|
pub use self::util::SupertraitDefIds;
|
|
pub use self::util::transitive_bounds;
|
|
pub use self::util::upcast;
|
|
|
|
mod coherence;
|
|
mod error_reporting;
|
|
mod fulfill;
|
|
mod project;
|
|
mod object_safety;
|
|
mod select;
|
|
mod util;
|
|
|
|
/// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
|
|
/// which the vtable must be found. The process of finding a vtable is
|
|
/// called "resolving" the `Obligation`. This process consists of
|
|
/// either identifying an `impl` (e.g., `impl Eq for int`) that
|
|
/// provides the required vtable, or else finding a bound that is in
|
|
/// scope. The eventual result is usually a `Selection` (defined below).
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct Obligation<'tcx, T> {
|
|
pub cause: ObligationCause<'tcx>,
|
|
pub recursion_depth: usize,
|
|
pub predicate: T,
|
|
}
|
|
|
|
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
|
|
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
|
|
|
|
/// Why did we incur this obligation? Used for error reporting.
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct ObligationCause<'tcx> {
|
|
pub span: Span,
|
|
|
|
// The id of the fn body that triggered this obligation. This is
|
|
// used for region obligations to determine the precise
|
|
// environment in which the region obligation should be evaluated
|
|
// (in particular, closures can add new assumptions). See the
|
|
// field `region_obligations` of the `FulfillmentContext` for more
|
|
// information.
|
|
pub body_id: ast::NodeId,
|
|
|
|
pub code: ObligationCauseCode<'tcx>
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub enum ObligationCauseCode<'tcx> {
|
|
/// Not well classified or should be obvious from span.
|
|
MiscObligation,
|
|
|
|
/// In an impl of trait X for type Y, type Y must
|
|
/// also implement all supertraits of X.
|
|
ItemObligation(ast::DefId),
|
|
|
|
/// Obligation incurred due to an object cast.
|
|
ObjectCastObligation(/* Object type */ Ty<'tcx>),
|
|
|
|
/// Various cases where expressions must be sized/copy/etc:
|
|
AssignmentLhsSized, // L = X implies that L is Sized
|
|
StructInitializerSized, // S { ... } must be Sized
|
|
VariableType(ast::NodeId), // Type of each variable must be Sized
|
|
ReturnType, // Return type must be Sized
|
|
RepeatVec, // [T,..n] --> T must be Copy
|
|
|
|
// Captures of variable the given id by a closure (span is the
|
|
// span of the closure)
|
|
ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),
|
|
|
|
// Types of fields (other than the last) in a struct must be sized.
|
|
FieldSized,
|
|
|
|
// static items must have `Sync` type
|
|
SharedStatic,
|
|
|
|
|
|
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
|
|
|
|
ImplDerivedObligation(DerivedObligationCause<'tcx>),
|
|
|
|
CompareImplMethodObligation,
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct DerivedObligationCause<'tcx> {
|
|
/// The trait reference of the parent obligation that led to the
|
|
/// current obligation. Note that only trait obligations lead to
|
|
/// derived obligations, so we just store the trait reference here
|
|
/// directly.
|
|
parent_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
|
|
/// The parent trait had this cause
|
|
parent_code: Rc<ObligationCauseCode<'tcx>>
|
|
}
|
|
|
|
pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
|
|
pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
|
|
pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
|
|
|
|
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
|
|
|
|
#[derive(Clone,Debug)]
|
|
pub enum SelectionError<'tcx> {
|
|
Unimplemented,
|
|
OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
|
|
ty::PolyTraitRef<'tcx>,
|
|
ty::TypeError<'tcx>),
|
|
TraitNotObjectSafe(ast::DefId),
|
|
}
|
|
|
|
pub struct FulfillmentError<'tcx> {
|
|
pub obligation: PredicateObligation<'tcx>,
|
|
pub code: FulfillmentErrorCode<'tcx>
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub enum FulfillmentErrorCode<'tcx> {
|
|
CodeSelectionError(SelectionError<'tcx>),
|
|
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
|
|
CodeAmbiguity,
|
|
}
|
|
|
|
/// When performing resolution, it is typically the case that there
|
|
/// can be one of three outcomes:
|
|
///
|
|
/// - `Ok(Some(r))`: success occurred with result `r`
|
|
/// - `Ok(None)`: could not definitely determine anything, usually due
|
|
/// to inconclusive type inference.
|
|
/// - `Err(e)`: error `e` occurred
|
|
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
|
|
|
|
/// Given the successful resolution of an obligation, the `Vtable`
|
|
/// indicates where the vtable comes from. Note that while we call this
|
|
/// a "vtable", it does not necessarily indicate dynamic dispatch at
|
|
/// runtime. `Vtable` instances just tell the compiler where to find
|
|
/// methods, but in generic code those methods are typically statically
|
|
/// dispatched -- only when an object is constructed is a `Vtable`
|
|
/// instance reified into an actual vtable.
|
|
///
|
|
/// For example, the vtable may be tied to a specific impl (case A),
|
|
/// or it may be relative to some bound that is in scope (case B).
|
|
///
|
|
///
|
|
/// ```
|
|
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
|
|
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
|
|
/// impl Clone for int { ... } // Impl_3
|
|
///
|
|
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
|
|
/// param: T,
|
|
/// mixed: Option<T>) {
|
|
///
|
|
/// // Case A: Vtable points at a specific impl. Only possible when
|
|
/// // type is concretely known. If the impl itself has bounded
|
|
/// // type parameters, Vtable will carry resolutions for those as well:
|
|
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
|
|
///
|
|
/// // Case B: Vtable must be provided by caller. This applies when
|
|
/// // type is a type parameter.
|
|
/// param.clone(); // VtableParam
|
|
///
|
|
/// // Case C: A mix of cases A and B.
|
|
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// ### The type parameter `N`
|
|
///
|
|
/// See explanation on `VtableImplData`.
|
|
#[derive(Clone)]
|
|
pub enum Vtable<'tcx, N> {
|
|
/// Vtable identifying a particular impl.
|
|
VtableImpl(VtableImplData<'tcx, N>),
|
|
|
|
/// Vtable for default trait implementations
|
|
/// This carries the information and nested obligations with regards
|
|
/// to a default implementation for a trait `Trait`. The nested obligations
|
|
/// ensure the trait implementation holds for all the constituent types.
|
|
VtableDefaultImpl(VtableDefaultImplData<N>),
|
|
|
|
/// Successful resolution to an obligation provided by the caller
|
|
/// for some type parameter. The `Vec<N>` represents the
|
|
/// obligations incurred from normalizing the where-clause (if
|
|
/// any).
|
|
VtableParam(Vec<N>),
|
|
|
|
/// Virtual calls through an object
|
|
VtableObject(VtableObjectData<'tcx>),
|
|
|
|
/// Successful resolution for a builtin trait.
|
|
VtableBuiltin(VtableBuiltinData<N>),
|
|
|
|
/// Vtable automatically generated for a closure. The def ID is the ID
|
|
/// of the closure expression. This is a `VtableImpl` in spirit, but the
|
|
/// impl is generated by the compiler and does not appear in the source.
|
|
VtableClosure(VtableClosureData<'tcx, N>),
|
|
|
|
/// Same as above, but for a fn pointer type with the given signature.
|
|
VtableFnPointer(ty::Ty<'tcx>),
|
|
}
|
|
|
|
/// Identifies a particular impl in the source, along with a set of
|
|
/// substitutions from the impl's type/lifetime parameters. The
|
|
/// `nested` vector corresponds to the nested obligations attached to
|
|
/// the impl's type parameters.
|
|
///
|
|
/// The type parameter `N` indicates the type used for "nested
|
|
/// obligations" that are required by the impl. During type check, this
|
|
/// is `Obligation`, as one might expect. During trans, however, this
|
|
/// is `()`, because trans only requires a shallow resolution of an
|
|
/// impl, and nested obligations are satisfied later.
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct VtableImplData<'tcx, N> {
|
|
pub impl_def_id: ast::DefId,
|
|
pub substs: subst::Substs<'tcx>,
|
|
pub nested: Vec<N>
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct VtableClosureData<'tcx, N> {
|
|
pub closure_def_id: ast::DefId,
|
|
pub substs: subst::Substs<'tcx>,
|
|
pub upvar_tys: Vec<Ty<'tcx>>,
|
|
/// Nested obligations. This can be non-empty if the closure
|
|
/// signature contains associated types.
|
|
pub nested: Vec<N>
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct VtableDefaultImplData<N> {
|
|
pub trait_def_id: ast::DefId,
|
|
pub nested: Vec<N>
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct VtableBuiltinData<N> {
|
|
pub nested: Vec<N>
|
|
}
|
|
|
|
/// A vtable for some object-safe trait `Foo` automatically derived
|
|
/// for the object type `Foo`.
|
|
#[derive(PartialEq,Eq,Clone)]
|
|
pub struct VtableObjectData<'tcx> {
|
|
/// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
|
|
pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
|
|
/// The vtable is formed by concatenating together the method lists of
|
|
/// the base object trait and all supertraits; this is the start of
|
|
/// `upcast_trait_ref`'s methods in that vtable.
|
|
pub vtable_base: usize
|
|
}
|
|
|
|
/// Creates predicate obligations from the generic bounds.
|
|
pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
|
|
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
|
|
-> PredicateObligations<'tcx>
|
|
{
|
|
util::predicates_for_generics(cause, 0, generic_bounds)
|
|
}
|
|
|
|
/// Determines whether the type `ty` is known to meet `bound` and
|
|
/// returns true if so. Returns false if `ty` either does not meet
|
|
/// `bound` or is not known to meet bound (note that this is
|
|
/// conservative towards *no impl*, which is the opposite of the
|
|
/// `evaluate` methods).
|
|
pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
|
|
ty: Ty<'tcx>,
|
|
bound: ty::BuiltinBound,
|
|
span: Span)
|
|
-> bool
|
|
{
|
|
debug!("type_known_to_meet_builtin_bound(ty={:?}, bound={:?})",
|
|
ty,
|
|
bound);
|
|
|
|
let mut fulfill_cx = FulfillmentContext::new(false);
|
|
|
|
// We can use a dummy node-id here because we won't pay any mind
|
|
// to region obligations that arise (there shouldn't really be any
|
|
// anyhow).
|
|
let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
|
|
|
|
fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);
|
|
|
|
// Note: we only assume something is `Copy` if we can
|
|
// *definitively* show that it implements `Copy`. Otherwise,
|
|
// assume it is move; linear is always ok.
|
|
match fulfill_cx.select_all_or_error(infcx) {
|
|
Ok(()) => {
|
|
debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} success",
|
|
ty,
|
|
bound);
|
|
true
|
|
}
|
|
Err(e) => {
|
|
debug!("type_known_to_meet_builtin_bound: ty={:?} bound={:?} errors={:?}",
|
|
ty,
|
|
bound,
|
|
e);
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: this is gonna need to be removed ...
|
|
/// Normalizes the parameter environment, reporting errors if they occur.
|
|
pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>,
|
|
cause: ObligationCause<'tcx>)
|
|
-> ty::ParameterEnvironment<'a,'tcx>
|
|
{
|
|
// I'm not wild about reporting errors here; I'd prefer to
|
|
// have the errors get reported at a defined place (e.g.,
|
|
// during typeck). Instead I have all parameter
|
|
// environments, in effect, going through this function
|
|
// and hence potentially reporting errors. This ensurse of
|
|
// course that we never forget to normalize (the
|
|
// alternative seemed like it would involve a lot of
|
|
// manual invocations of this fn -- and then we'd have to
|
|
// deal with the errors at each of those sites).
|
|
//
|
|
// In any case, in practice, typeck constructs all the
|
|
// parameter environments once for every fn as it goes,
|
|
// and errors will get reported then; so after typeck we
|
|
// can be sure that no errors should occur.
|
|
|
|
let tcx = unnormalized_env.tcx;
|
|
let span = cause.span;
|
|
let body_id = cause.body_id;
|
|
|
|
debug!("normalize_param_env_or_error(unnormalized_env={:?})",
|
|
unnormalized_env);
|
|
|
|
let predicates: Vec<_> =
|
|
util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.clone())
|
|
.filter(|p| !p.is_global()) // (*)
|
|
.collect();
|
|
|
|
// (*) Any predicate like `i32: Trait<u32>` or whatever doesn't
|
|
// need to be in the *environment* to be proven, so screen those
|
|
// out. This is important for the soundness of inter-fn
|
|
// caching. Note though that we should probably check that these
|
|
// predicates hold at the point where the environment is
|
|
// constructed, but I am not currently doing so out of laziness.
|
|
// -nmatsakis
|
|
|
|
debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
|
|
predicates);
|
|
|
|
let elaborated_env = unnormalized_env.with_caller_bounds(predicates);
|
|
|
|
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(elaborated_env), false);
|
|
let predicates = match fully_normalize(&infcx, cause,
|
|
&infcx.parameter_environment.caller_bounds) {
|
|
Ok(predicates) => predicates,
|
|
Err(errors) => {
|
|
report_fulfillment_errors(&infcx, &errors);
|
|
return infcx.parameter_environment; // an unnormalized env is better than nothing
|
|
}
|
|
};
|
|
|
|
let free_regions = FreeRegionMap::new();
|
|
infcx.resolve_regions_and_report_errors(&free_regions, body_id);
|
|
let predicates = match infcx.fully_resolve(&predicates) {
|
|
Ok(predicates) => predicates,
|
|
Err(fixup_err) => {
|
|
// If we encounter a fixup error, it means that some type
|
|
// variable wound up unconstrained. I actually don't know
|
|
// if this can happen, and I certainly don't expect it to
|
|
// happen often, but if it did happen it probably
|
|
// represents a legitimate failure due to some kind of
|
|
// unconstrained variable, and it seems better not to ICE,
|
|
// all things considered.
|
|
let err_msg = fixup_err_to_string(fixup_err);
|
|
tcx.sess.span_err(span, &err_msg);
|
|
return infcx.parameter_environment; // an unnormalized env is better than nothing
|
|
}
|
|
};
|
|
|
|
infcx.parameter_environment.with_caller_bounds(predicates)
|
|
}
|
|
|
|
pub fn fully_normalize<'a,'tcx,T>(infcx: &InferCtxt<'a,'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
value: &T)
|
|
-> Result<T, Vec<FulfillmentError<'tcx>>>
|
|
where T : TypeFoldable<'tcx> + HasTypeFlags
|
|
{
|
|
debug!("normalize_param_env(value={:?})", value);
|
|
|
|
let mut selcx = &mut SelectionContext::new(infcx);
|
|
// FIXME (@jroesch) ISSUE 26721
|
|
// I'm not sure if this is a bug or not, needs further investigation.
|
|
// It appears that by reusing the fulfillment_cx here we incur more
|
|
// obligations and later trip an asssertion on regionck.rs line 337.
|
|
//
|
|
// The two possibilities I see is:
|
|
// - normalization is not actually fully happening and we
|
|
// have a bug else where
|
|
// - we are adding a duplicate bound into the list causing
|
|
// its size to change.
|
|
//
|
|
// I think we should probably land this refactor and then come
|
|
// back to this is a follow-up patch.
|
|
let mut fulfill_cx = FulfillmentContext::new(false);
|
|
|
|
let Normalized { value: normalized_value, obligations } =
|
|
project::normalize(selcx, cause, value);
|
|
debug!("normalize_param_env: normalized_value={:?} obligations={:?}",
|
|
normalized_value,
|
|
obligations);
|
|
for obligation in obligations {
|
|
fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
|
|
}
|
|
|
|
try!(fulfill_cx.select_all_or_error(infcx));
|
|
let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
|
|
debug!("normalize_param_env: resolved_value={:?}", resolved_value);
|
|
Ok(resolved_value)
|
|
}
|
|
|
|
impl<'tcx,O> Obligation<'tcx,O> {
|
|
pub fn new(cause: ObligationCause<'tcx>,
|
|
trait_ref: O)
|
|
-> Obligation<'tcx, O>
|
|
{
|
|
Obligation { cause: cause,
|
|
recursion_depth: 0,
|
|
predicate: trait_ref }
|
|
}
|
|
|
|
fn with_depth(cause: ObligationCause<'tcx>,
|
|
recursion_depth: usize,
|
|
trait_ref: O)
|
|
-> Obligation<'tcx, O>
|
|
{
|
|
Obligation { cause: cause,
|
|
recursion_depth: recursion_depth,
|
|
predicate: trait_ref }
|
|
}
|
|
|
|
pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
|
|
Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
|
|
}
|
|
|
|
pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
|
|
Obligation { cause: self.cause.clone(),
|
|
recursion_depth: self.recursion_depth,
|
|
predicate: value }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ObligationCause<'tcx> {
|
|
pub fn new(span: Span,
|
|
body_id: ast::NodeId,
|
|
code: ObligationCauseCode<'tcx>)
|
|
-> ObligationCause<'tcx> {
|
|
ObligationCause { span: span, body_id: body_id, code: code }
|
|
}
|
|
|
|
pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
|
|
ObligationCause { span: span, body_id: body_id, code: MiscObligation }
|
|
}
|
|
|
|
pub fn dummy() -> ObligationCause<'tcx> {
|
|
ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
|
|
}
|
|
}
|
|
|
|
impl<'tcx, N> Vtable<'tcx, N> {
|
|
pub fn nested_obligations(self) -> Vec<N> {
|
|
match self {
|
|
VtableImpl(i) => i.nested,
|
|
VtableParam(n) => n,
|
|
VtableBuiltin(i) => i.nested,
|
|
VtableDefaultImpl(d) => d.nested,
|
|
VtableClosure(c) => c.nested,
|
|
VtableObject(_) | VtableFnPointer(..) => vec![]
|
|
}
|
|
}
|
|
|
|
pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
|
|
match self {
|
|
VtableImpl(i) => VtableImpl(VtableImplData {
|
|
impl_def_id: i.impl_def_id,
|
|
substs: i.substs,
|
|
nested: i.nested.into_iter().map(f).collect()
|
|
}),
|
|
VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
|
|
VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
|
|
nested: i.nested.into_iter().map(f).collect()
|
|
}),
|
|
VtableObject(o) => VtableObject(o),
|
|
VtableDefaultImpl(d) => VtableDefaultImpl(VtableDefaultImplData {
|
|
trait_def_id: d.trait_def_id,
|
|
nested: d.nested.into_iter().map(f).collect()
|
|
}),
|
|
VtableFnPointer(f) => VtableFnPointer(f),
|
|
VtableClosure(c) => VtableClosure(VtableClosureData {
|
|
closure_def_id: c.closure_def_id,
|
|
substs: c.substs,
|
|
nested: c.nested.into_iter().map(f).collect(),
|
|
upvar_tys: c.upvar_tys,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FulfillmentError<'tcx> {
|
|
fn new(obligation: PredicateObligation<'tcx>,
|
|
code: FulfillmentErrorCode<'tcx>)
|
|
-> FulfillmentError<'tcx>
|
|
{
|
|
FulfillmentError { obligation: obligation, code: code }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TraitObligation<'tcx> {
|
|
fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
|
|
ty::Binder(self.predicate.skip_binder().self_ty())
|
|
}
|
|
}
|