5174 lines
164 KiB
Rust
5174 lines
164 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#[allow(non_camel_case_types)];
|
|
|
|
use back::svh::Svh;
|
|
use driver::session;
|
|
use metadata::csearch;
|
|
use metadata;
|
|
use middle::const_eval;
|
|
use middle::lang_items::{ExchangeHeapLangItem, OpaqueStructLangItem};
|
|
use middle::lang_items::{TyDescStructLangItem, TyVisitorTraitLangItem};
|
|
use middle::freevars;
|
|
use middle::resolve;
|
|
use middle::resolve_lifetime;
|
|
use middle::ty;
|
|
use middle::subst::Subst;
|
|
use middle::typeck;
|
|
use middle::ty_fold;
|
|
use middle::ty_fold::TypeFolder;
|
|
use middle;
|
|
use util::ppaux::{note_and_explain_region, bound_region_ptr_to_str};
|
|
use util::ppaux::{trait_store_to_str, ty_to_str, vstore_to_str};
|
|
use util::ppaux::{Repr, UserString};
|
|
use util::common::{indenter};
|
|
use util::nodemap::{NodeMap, NodeSet, DefIdMap, DefIdSet};
|
|
|
|
use std::cast;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::cmp;
|
|
use std::fmt::Show;
|
|
use std::fmt;
|
|
use std::hash::{Hash, sip};
|
|
use std::ops;
|
|
use std::rc::Rc;
|
|
use std::vec_ng::Vec;
|
|
use std::vec_ng;
|
|
use collections::{HashMap, HashSet};
|
|
use syntax::ast::*;
|
|
use syntax::ast_util::{is_local, lit_is_str};
|
|
use syntax::ast_util;
|
|
use syntax::attr;
|
|
use syntax::attr::AttrMetaMethods;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token;
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::{ast, ast_map};
|
|
use syntax::opt_vec::OptVec;
|
|
use syntax::opt_vec;
|
|
use syntax::abi::AbiSet;
|
|
use syntax;
|
|
use collections::enum_set::{EnumSet, CLike};
|
|
|
|
pub type Disr = u64;
|
|
|
|
pub static INITIAL_DISCRIMINANT_VALUE: Disr = 0;
|
|
|
|
// Data types
|
|
|
|
#[deriving(Eq, Hash)]
|
|
pub struct field {
|
|
ident: ast::Ident,
|
|
mt: mt
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum MethodContainer {
|
|
TraitContainer(ast::DefId),
|
|
ImplContainer(ast::DefId),
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub struct Method {
|
|
ident: ast::Ident,
|
|
generics: ty::Generics,
|
|
fty: BareFnTy,
|
|
explicit_self: ast::ExplicitSelf_,
|
|
vis: ast::Visibility,
|
|
def_id: ast::DefId,
|
|
container: MethodContainer,
|
|
|
|
// If this method is provided, we need to know where it came from
|
|
provided_source: Option<ast::DefId>
|
|
}
|
|
|
|
impl Method {
|
|
pub fn new(ident: ast::Ident,
|
|
generics: ty::Generics,
|
|
fty: BareFnTy,
|
|
explicit_self: ast::ExplicitSelf_,
|
|
vis: ast::Visibility,
|
|
def_id: ast::DefId,
|
|
container: MethodContainer,
|
|
provided_source: Option<ast::DefId>)
|
|
-> Method {
|
|
Method {
|
|
ident: ident,
|
|
generics: generics,
|
|
fty: fty,
|
|
explicit_self: explicit_self,
|
|
vis: vis,
|
|
def_id: def_id,
|
|
container: container,
|
|
provided_source: provided_source
|
|
}
|
|
}
|
|
|
|
pub fn container_id(&self) -> ast::DefId {
|
|
match self.container {
|
|
TraitContainer(id) => id,
|
|
ImplContainer(id) => id,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct Impl {
|
|
did: DefId,
|
|
ident: Ident,
|
|
methods: Vec<@Method> }
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct mt {
|
|
ty: t,
|
|
mutbl: ast::Mutability,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)]
|
|
pub enum vstore {
|
|
vstore_fixed(uint),
|
|
vstore_uniq,
|
|
vstore_slice(Region)
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
|
|
pub enum TraitStore {
|
|
UniqTraitStore, // ~Trait
|
|
RegionTraitStore(Region), // &Trait
|
|
}
|
|
|
|
pub struct field_ty {
|
|
name: Name,
|
|
id: DefId,
|
|
vis: ast::Visibility,
|
|
}
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
#[deriving(Eq, Hash)]
|
|
pub struct creader_cache_key {
|
|
cnum: CrateNum,
|
|
pos: uint,
|
|
len: uint
|
|
}
|
|
|
|
pub type creader_cache = RefCell<HashMap<creader_cache_key, t>>;
|
|
|
|
pub struct intern_key {
|
|
sty: *sty,
|
|
}
|
|
|
|
// NB: Do not replace this with #[deriving(Eq)]. The automatically-derived
|
|
// implementation will not recurse through sty and you will get stack
|
|
// exhaustion.
|
|
impl cmp::Eq for intern_key {
|
|
fn eq(&self, other: &intern_key) -> bool {
|
|
unsafe {
|
|
*self.sty == *other.sty
|
|
}
|
|
}
|
|
fn ne(&self, other: &intern_key) -> bool {
|
|
!self.eq(other)
|
|
}
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl Hash for intern_key {
|
|
fn hash(&self, s: &mut sip::SipState) {
|
|
unsafe { (*self.sty).hash(s) }
|
|
}
|
|
}
|
|
#[cfg(not(stage0))]
|
|
impl<W:Writer> Hash<W> for intern_key {
|
|
fn hash(&self, s: &mut W) {
|
|
unsafe { (*self.sty).hash(s) }
|
|
}
|
|
}
|
|
|
|
pub enum ast_ty_to_ty_cache_entry {
|
|
atttce_unresolved, /* not resolved yet */
|
|
atttce_resolved(t) /* resolved to a type, irrespective of region */
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Decodable, Encodable)]
|
|
pub struct ItemVariances {
|
|
self_param: Option<Variance>,
|
|
type_params: OptVec<Variance>,
|
|
region_params: OptVec<Variance>
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Decodable, Encodable, Show)]
|
|
pub enum Variance {
|
|
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
|
|
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
|
|
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
|
|
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
|
|
}
|
|
|
|
pub enum AutoAdjustment {
|
|
AutoAddEnv(ty::Region, ast::Sigil),
|
|
AutoDerefRef(AutoDerefRef),
|
|
AutoObject(ast::Sigil, Option<ty::Region>,
|
|
ast::Mutability,
|
|
ty::BuiltinBounds,
|
|
ast::DefId, /* Trait ID */
|
|
ty::substs /* Trait substitutions */)
|
|
}
|
|
|
|
#[deriving(Decodable, Encodable)]
|
|
pub struct AutoDerefRef {
|
|
autoderefs: uint,
|
|
autoref: Option<AutoRef>
|
|
}
|
|
|
|
#[deriving(Decodable, Encodable)]
|
|
pub enum AutoRef {
|
|
/// Convert from T to &T
|
|
AutoPtr(Region, ast::Mutability),
|
|
|
|
/// Convert from ~[]/&[] to &[] (or str)
|
|
AutoBorrowVec(Region, ast::Mutability),
|
|
|
|
/// Convert from ~[]/&[] to &&[] (or str)
|
|
AutoBorrowVecRef(Region, ast::Mutability),
|
|
|
|
/// Convert from @fn()/~fn()/|| to ||
|
|
AutoBorrowFn(Region),
|
|
|
|
/// Convert from T to *T
|
|
AutoUnsafe(ast::Mutability),
|
|
|
|
/// Convert from ~Trait/&Trait to &Trait
|
|
AutoBorrowObj(Region, ast::Mutability),
|
|
}
|
|
|
|
pub type ctxt = @ctxt_;
|
|
|
|
/// The data structure to keep track of all the information that typechecker
|
|
/// generates so that so that it can be reused and doesn't have to be redone
|
|
/// later on.
|
|
pub struct ctxt_ {
|
|
diag: @syntax::diagnostic::SpanHandler,
|
|
// Specifically use a speedy hash algorithm for this hash map, it's used
|
|
// quite often.
|
|
#[cfg(stage0)]
|
|
interner: RefCell<HashMap<intern_key, ~t_box_>>,
|
|
#[cfg(not(stage0))]
|
|
interner: RefCell<HashMap<intern_key, ~t_box_, ::util::nodemap::FnvHasher>>,
|
|
next_id: Cell<uint>,
|
|
cstore: @metadata::cstore::CStore,
|
|
sess: session::Session,
|
|
def_map: resolve::DefMap,
|
|
|
|
named_region_map: @RefCell<resolve_lifetime::NamedRegionMap>,
|
|
|
|
region_maps: middle::region::RegionMaps,
|
|
|
|
// Stores the types for various nodes in the AST. Note that this table
|
|
// is not guaranteed to be populated until after typeck. See
|
|
// typeck::check::fn_ctxt for details.
|
|
node_types: node_type_table,
|
|
|
|
// Stores the type parameters which were substituted to obtain the type
|
|
// of this node. This only applies to nodes that refer to entities
|
|
// parameterized by type parameters, such as generic fns, types, or
|
|
// other items.
|
|
node_type_substs: RefCell<NodeMap<Vec<t>>>,
|
|
|
|
// Maps from a method to the method "descriptor"
|
|
methods: RefCell<DefIdMap<@Method>>,
|
|
|
|
// Maps from a trait def-id to a list of the def-ids of its methods
|
|
trait_method_def_ids: RefCell<DefIdMap<@Vec<DefId> >>,
|
|
|
|
// A cache for the trait_methods() routine
|
|
trait_methods_cache: RefCell<DefIdMap<@Vec<@Method> >>,
|
|
|
|
impl_trait_cache: RefCell<DefIdMap<Option<@ty::TraitRef>>>,
|
|
|
|
trait_refs: RefCell<NodeMap<@TraitRef>>,
|
|
trait_defs: RefCell<DefIdMap<@TraitDef>>,
|
|
|
|
map: ast_map::Map,
|
|
intrinsic_defs: RefCell<DefIdMap<t>>,
|
|
freevars: RefCell<freevars::freevar_map>,
|
|
tcache: type_cache,
|
|
rcache: creader_cache,
|
|
short_names_cache: RefCell<HashMap<t, ~str>>,
|
|
needs_unwind_cleanup_cache: RefCell<HashMap<t, bool>>,
|
|
tc_cache: RefCell<HashMap<uint, TypeContents>>,
|
|
ast_ty_to_ty_cache: RefCell<NodeMap<ast_ty_to_ty_cache_entry>>,
|
|
enum_var_cache: RefCell<DefIdMap<@Vec<@VariantInfo> >>,
|
|
ty_param_defs: RefCell<NodeMap<TypeParameterDef>>,
|
|
adjustments: RefCell<NodeMap<@AutoAdjustment>>,
|
|
normalized_cache: RefCell<HashMap<t, t>>,
|
|
lang_items: @middle::lang_items::LanguageItems,
|
|
// A mapping of fake provided method def_ids to the default implementation
|
|
provided_method_sources: RefCell<DefIdMap<ast::DefId>>,
|
|
supertraits: RefCell<DefIdMap<@Vec<@TraitRef> >>,
|
|
|
|
// Maps from def-id of a type or region parameter to its
|
|
// (inferred) variance.
|
|
item_variance_map: RefCell<DefIdMap<@ItemVariances>>,
|
|
|
|
// A mapping from the def ID of an enum or struct type to the def ID
|
|
// of the method that implements its destructor. If the type is not
|
|
// present in this map, it does not have a destructor. This map is
|
|
// populated during the coherence phase of typechecking.
|
|
destructor_for_type: RefCell<DefIdMap<ast::DefId>>,
|
|
|
|
// A method will be in this list if and only if it is a destructor.
|
|
destructors: RefCell<DefIdSet>,
|
|
|
|
// Maps a trait onto a list of impls of that trait.
|
|
trait_impls: RefCell<DefIdMap<@RefCell<Vec<@Impl> >>>,
|
|
|
|
// Maps a def_id of a type to a list of its inherent impls.
|
|
// Contains implementations of methods that are inherent to a type.
|
|
// Methods in these implementations don't need to be exported.
|
|
inherent_impls: RefCell<DefIdMap<@RefCell<Vec<@Impl> >>>,
|
|
|
|
// Maps a def_id of an impl to an Impl structure.
|
|
// Note that this contains all of the impls that we know about,
|
|
// including ones in other crates. It's not clear that this is the best
|
|
// way to do it.
|
|
impls: RefCell<DefIdMap<@Impl>>,
|
|
|
|
// Set of used unsafe nodes (functions or blocks). Unsafe nodes not
|
|
// present in this set can be warned about.
|
|
used_unsafe: RefCell<NodeSet>,
|
|
|
|
// Set of nodes which mark locals as mutable which end up getting used at
|
|
// some point. Local variable definitions not in this set can be warned
|
|
// about.
|
|
used_mut_nodes: RefCell<NodeSet>,
|
|
|
|
// vtable resolution information for impl declarations
|
|
impl_vtables: typeck::impl_vtable_map,
|
|
|
|
// The set of external nominal types whose implementations have been read.
|
|
// This is used for lazy resolution of methods.
|
|
populated_external_types: RefCell<DefIdSet>,
|
|
|
|
// The set of external traits whose implementations have been read. This
|
|
// is used for lazy resolution of traits.
|
|
populated_external_traits: RefCell<DefIdSet>,
|
|
|
|
// Borrows
|
|
upvar_borrow_map: RefCell<UpvarBorrowMap>,
|
|
|
|
// These two caches are used by const_eval when decoding external statics
|
|
// and variants that are found.
|
|
extern_const_statics: RefCell<DefIdMap<Option<@ast::Expr>>>,
|
|
extern_const_variants: RefCell<DefIdMap<Option<@ast::Expr>>>,
|
|
}
|
|
|
|
pub enum tbox_flag {
|
|
has_params = 1,
|
|
has_self = 2,
|
|
needs_infer = 4,
|
|
has_regions = 8,
|
|
has_ty_err = 16,
|
|
has_ty_bot = 32,
|
|
|
|
// a meta-flag: subst may be required if the type has parameters, a self
|
|
// type, or references bound regions
|
|
needs_subst = 1 | 2 | 8
|
|
}
|
|
|
|
pub type t_box = &'static t_box_;
|
|
|
|
pub struct t_box_ {
|
|
sty: sty,
|
|
id: uint,
|
|
flags: uint,
|
|
}
|
|
|
|
// To reduce refcounting cost, we're representing types as unsafe pointers
|
|
// throughout the compiler. These are simply casted t_box values. Use ty::get
|
|
// to cast them back to a box. (Without the cast, compiler performance suffers
|
|
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
|
|
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
|
|
enum t_opaque {}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct t { priv inner: *t_opaque }
|
|
|
|
impl fmt::Show for t {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
f.buf.write_str("*t_opaque")
|
|
}
|
|
}
|
|
|
|
pub fn get(t: t) -> t_box {
|
|
unsafe {
|
|
let t2: t_box = cast::transmute(t);
|
|
t2
|
|
}
|
|
}
|
|
|
|
pub fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
|
|
(tb.flags & (flag as uint)) != 0u
|
|
}
|
|
pub fn type_has_params(t: t) -> bool {
|
|
tbox_has_flag(get(t), has_params)
|
|
}
|
|
pub fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
|
|
pub fn type_needs_infer(t: t) -> bool {
|
|
tbox_has_flag(get(t), needs_infer)
|
|
}
|
|
pub fn type_has_regions(t: t) -> bool {
|
|
tbox_has_flag(get(t), has_regions)
|
|
}
|
|
pub fn type_id(t: t) -> uint { get(t).id }
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct BareFnTy {
|
|
purity: ast::Purity,
|
|
abis: AbiSet,
|
|
sig: FnSig
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct ClosureTy {
|
|
purity: ast::Purity,
|
|
sigil: ast::Sigil,
|
|
onceness: ast::Onceness,
|
|
region: Region,
|
|
bounds: BuiltinBounds,
|
|
sig: FnSig,
|
|
}
|
|
|
|
/**
|
|
* Signature of a function type, which I have arbitrarily
|
|
* decided to use to refer to the input/output types.
|
|
*
|
|
* - `binder_id` is the node id where this fn type appeared;
|
|
* it is used to identify all the bound regions appearing
|
|
* in the input/output types that are bound by this fn type
|
|
* (vs some enclosing or enclosed fn type)
|
|
* - `inputs` is the list of arguments and their modes.
|
|
* - `output` is the return type.
|
|
* - `variadic` indicates whether this is a varidic function. (only true for foreign fns)
|
|
*/
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct FnSig {
|
|
binder_id: ast::NodeId,
|
|
inputs: Vec<t>,
|
|
output: t,
|
|
variadic: bool
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct param_ty {
|
|
idx: uint,
|
|
def_id: DefId
|
|
}
|
|
|
|
/// Representation of regions:
|
|
#[deriving(Clone, Eq, Hash, Encodable, Decodable, Show)]
|
|
pub enum Region {
|
|
// Region bound in a type or fn declaration which will be
|
|
// substituted 'early' -- that is, at the same time when type
|
|
// parameters are substituted.
|
|
ReEarlyBound(/* param id */ ast::NodeId, /*index*/ uint, ast::Name),
|
|
|
|
// Region bound in a function scope, which will be substituted when the
|
|
// function is called. The first argument must be the `binder_id` of
|
|
// some enclosing function signature.
|
|
ReLateBound(/* binder_id */ ast::NodeId, BoundRegion),
|
|
|
|
/// When checking a function body, the types of all arguments and so forth
|
|
/// that refer to bound region parameters are modified to refer to free
|
|
/// region parameters.
|
|
ReFree(FreeRegion),
|
|
|
|
/// A concrete region naming some expression within the current function.
|
|
ReScope(NodeId),
|
|
|
|
/// Static data that has an "infinite" lifetime. Top in the region lattice.
|
|
ReStatic,
|
|
|
|
/// A region variable. Should not exist after typeck.
|
|
ReInfer(InferRegion),
|
|
|
|
/// Empty lifetime is for data that is never accessed.
|
|
/// Bottom in the region lattice. We treat ReEmpty somewhat
|
|
/// specially; at least right now, we do not generate instances of
|
|
/// it during the GLB computations, but rather
|
|
/// generate an error instead. This is to improve error messages.
|
|
/// The only way to get an instance of ReEmpty is to have a region
|
|
/// variable with no constraints.
|
|
ReEmpty,
|
|
}
|
|
|
|
/**
|
|
* Upvars do not get their own node-id. Instead, we use the pair of
|
|
* the original var id (that is, the root variable that is referenced
|
|
* by the upvar) and the id of the closure expression.
|
|
*/
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct UpvarId {
|
|
var_id: ast::NodeId,
|
|
closure_expr_id: ast::NodeId,
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub enum BorrowKind {
|
|
/// Data must be immutable and is aliasable.
|
|
ImmBorrow,
|
|
|
|
/// Data must be immutable but not aliasable. This kind of borrow
|
|
/// cannot currently be expressed by the user and is used only in
|
|
/// implicit closure bindings. It is needed when you the closure
|
|
/// is borrowing or mutating a mutable referent, e.g.:
|
|
///
|
|
/// let x: &mut int = ...;
|
|
/// let y = || *x += 5;
|
|
///
|
|
/// If we were to try to translate this closure into a more explicit
|
|
/// form, we'd encounter an error with the code as written:
|
|
///
|
|
/// struct Env { x: & &mut int }
|
|
/// let x: &mut int = ...;
|
|
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
|
|
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
|
|
///
|
|
/// This is then illegal because you cannot mutate a `&mut` found
|
|
/// in an aliasable location. To solve, you'd have to translate with
|
|
/// an `&mut` borrow:
|
|
///
|
|
/// struct Env { x: & &mut int }
|
|
/// let x: &mut int = ...;
|
|
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
|
|
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
|
|
///
|
|
/// Now the assignment to `**env.x` is legal, but creating a
|
|
/// mutable pointer to `x` is not because `x` is not mutable. We
|
|
/// could fix this by declaring `x` as `let mut x`. This is ok in
|
|
/// user code, if awkward, but extra weird for closures, since the
|
|
/// borrow is hidden.
|
|
///
|
|
/// So we introduce a "unique imm" borrow -- the referent is
|
|
/// immutable, but not aliasable. This solves the problem. For
|
|
/// simplicity, we don't give users the way to express this
|
|
/// borrow, it's just used when translating closures.
|
|
UniqueImmBorrow,
|
|
|
|
/// Data is mutable and not aliasable.
|
|
MutBorrow
|
|
}
|
|
|
|
/**
|
|
* Information describing the borrowing of an upvar. This is computed
|
|
* during `typeck`, specifically by `regionck`. The general idea is
|
|
* that the compiler analyses treat closures like:
|
|
*
|
|
* let closure: &'e fn() = || {
|
|
* x = 1; // upvar x is assigned to
|
|
* use(y); // upvar y is read
|
|
* foo(&z); // upvar z is borrowed immutably
|
|
* };
|
|
*
|
|
* as if they were "desugared" to something loosely like:
|
|
*
|
|
* struct Vars<'x,'y,'z> { x: &'x mut int,
|
|
* y: &'y const int,
|
|
* z: &'z int }
|
|
* let closure: &'e fn() = {
|
|
* fn f(env: &Vars) {
|
|
* *env.x = 1;
|
|
* use(*env.y);
|
|
* foo(env.z);
|
|
* }
|
|
* let env: &'e mut Vars<'x,'y,'z> = &mut Vars { x: &'x mut x,
|
|
* y: &'y const y,
|
|
* z: &'z z };
|
|
* (env, f)
|
|
* };
|
|
*
|
|
* This is basically what happens at runtime. The closure is basically
|
|
* an existentially quantified version of the `(env, f)` pair.
|
|
*
|
|
* This data structure indicates the region and mutability of a single
|
|
* one of the `x...z` borrows.
|
|
*
|
|
* It may not be obvious why each borrowed variable gets its own
|
|
* lifetime (in the desugared version of the example, these are indicated
|
|
* by the lifetime parameters `'x`, `'y`, and `'z` in the `Vars` definition).
|
|
* Each such lifetime must encompass the lifetime `'e` of the closure itself,
|
|
* but need not be identical to it. The reason that this makes sense:
|
|
*
|
|
* - Callers are only permitted to invoke the closure, and hence to
|
|
* use the pointers, within the lifetime `'e`, so clearly `'e` must
|
|
* be a sublifetime of `'x...'z`.
|
|
* - The closure creator knows which upvars were borrowed by the closure
|
|
* and thus `x...z` will be reserved for `'x...'z` respectively.
|
|
* - Through mutation, the borrowed upvars can actually escape
|
|
* the closure, so sometimes it is necessary for them to be larger
|
|
* than the closure lifetime itself.
|
|
*/
|
|
#[deriving(Eq, Clone)]
|
|
pub struct UpvarBorrow {
|
|
kind: BorrowKind,
|
|
region: ty::Region,
|
|
}
|
|
|
|
pub type UpvarBorrowMap = HashMap<UpvarId, UpvarBorrow>;
|
|
|
|
impl Region {
|
|
pub fn is_bound(&self) -> bool {
|
|
match self {
|
|
&ty::ReEarlyBound(..) => true,
|
|
&ty::ReLateBound(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd, Hash, Encodable, Decodable, Show)]
|
|
pub struct FreeRegion {
|
|
scope_id: NodeId,
|
|
bound_region: BoundRegion
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd, Hash, Encodable, Decodable, Show)]
|
|
pub enum BoundRegion {
|
|
/// An anonymous region parameter for a given fn (&T)
|
|
BrAnon(uint),
|
|
|
|
/// Named region parameters for functions (a in &'a T)
|
|
///
|
|
/// The def-id is needed to distinguish free regions in
|
|
/// the event of shadowing.
|
|
BrNamed(ast::DefId, ast::Name),
|
|
|
|
/// Fresh bound identifiers created during GLB computations.
|
|
BrFresh(uint),
|
|
}
|
|
|
|
/**
|
|
* Represents the values to use when substituting lifetime parameters.
|
|
* If the value is `ErasedRegions`, then this subst is occurring during
|
|
* trans, and all region parameters will be replaced with `ty::ReStatic`. */
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub enum RegionSubsts {
|
|
ErasedRegions,
|
|
NonerasedRegions(OptVec<ty::Region>)
|
|
}
|
|
|
|
/**
|
|
* The type substs represents the kinds of things that can be substituted to
|
|
* convert a polytype into a monotype. Note however that substituting bound
|
|
* regions other than `self` is done through a different mechanism:
|
|
*
|
|
* - `tps` represents the type parameters in scope. They are indexed
|
|
* according to the order in which they were declared.
|
|
*
|
|
* - `self_r` indicates the region parameter `self` that is present on nominal
|
|
* types (enums, structs) declared as having a region parameter. `self_r`
|
|
* should always be none for types that are not region-parameterized and
|
|
* Some(_) for types that are. The only bound region parameter that should
|
|
* appear within a region-parameterized type is `self`.
|
|
*
|
|
* - `self_ty` is the type to which `self` should be remapped, if any. The
|
|
* `self` type is rather funny in that it can only appear on traits and is
|
|
* always substituted away to the implementing type for a trait. */
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct substs {
|
|
self_ty: Option<ty::t>,
|
|
tps: Vec<t>,
|
|
regions: RegionSubsts,
|
|
}
|
|
|
|
mod primitives {
|
|
use super::t_box_;
|
|
|
|
use syntax::ast;
|
|
|
|
macro_rules! def_prim_ty(
|
|
($name:ident, $sty:expr, $id:expr) => (
|
|
pub static $name: t_box_ = t_box_ {
|
|
sty: $sty,
|
|
id: $id,
|
|
flags: 0,
|
|
};
|
|
)
|
|
)
|
|
|
|
def_prim_ty!(TY_NIL, super::ty_nil, 0)
|
|
def_prim_ty!(TY_BOOL, super::ty_bool, 1)
|
|
def_prim_ty!(TY_CHAR, super::ty_char, 2)
|
|
def_prim_ty!(TY_INT, super::ty_int(ast::TyI), 3)
|
|
def_prim_ty!(TY_I8, super::ty_int(ast::TyI8), 4)
|
|
def_prim_ty!(TY_I16, super::ty_int(ast::TyI16), 5)
|
|
def_prim_ty!(TY_I32, super::ty_int(ast::TyI32), 6)
|
|
def_prim_ty!(TY_I64, super::ty_int(ast::TyI64), 7)
|
|
def_prim_ty!(TY_UINT, super::ty_uint(ast::TyU), 8)
|
|
def_prim_ty!(TY_U8, super::ty_uint(ast::TyU8), 9)
|
|
def_prim_ty!(TY_U16, super::ty_uint(ast::TyU16), 10)
|
|
def_prim_ty!(TY_U32, super::ty_uint(ast::TyU32), 11)
|
|
def_prim_ty!(TY_U64, super::ty_uint(ast::TyU64), 12)
|
|
def_prim_ty!(TY_F32, super::ty_float(ast::TyF32), 14)
|
|
def_prim_ty!(TY_F64, super::ty_float(ast::TyF64), 15)
|
|
|
|
pub static TY_BOT: t_box_ = t_box_ {
|
|
sty: super::ty_bot,
|
|
id: 16,
|
|
flags: super::has_ty_bot as uint,
|
|
};
|
|
|
|
pub static TY_ERR: t_box_ = t_box_ {
|
|
sty: super::ty_err,
|
|
id: 17,
|
|
flags: super::has_ty_err as uint,
|
|
};
|
|
|
|
pub static LAST_PRIMITIVE_ID: uint = 18;
|
|
}
|
|
|
|
// NB: If you change this, you'll probably want to change the corresponding
|
|
// AST structure in libsyntax/ast.rs as well.
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub enum sty {
|
|
ty_nil,
|
|
ty_bot,
|
|
ty_bool,
|
|
ty_char,
|
|
ty_int(ast::IntTy),
|
|
ty_uint(ast::UintTy),
|
|
ty_float(ast::FloatTy),
|
|
ty_str(vstore),
|
|
ty_enum(DefId, substs),
|
|
ty_box(t),
|
|
ty_uniq(t),
|
|
ty_vec(mt, vstore),
|
|
ty_ptr(mt),
|
|
ty_rptr(Region, mt),
|
|
ty_bare_fn(BareFnTy),
|
|
ty_closure(ClosureTy),
|
|
ty_trait(DefId, substs, TraitStore, ast::Mutability, BuiltinBounds),
|
|
ty_struct(DefId, substs),
|
|
ty_tup(Vec<t>),
|
|
|
|
ty_param(param_ty), // type parameter
|
|
ty_self(DefId), /* special, implicit `self` type parameter;
|
|
* def_id is the id of the trait */
|
|
|
|
ty_infer(InferTy), // something used only during inference/typeck
|
|
ty_err, // Also only used during inference/typeck, to represent
|
|
// the type of an erroneous expression (helps cut down
|
|
// on non-useful type error messages)
|
|
|
|
// "Fake" types, used for trans purposes
|
|
ty_unboxed_vec(mt),
|
|
}
|
|
|
|
#[deriving(Eq, Hash)]
|
|
pub struct TraitRef {
|
|
def_id: DefId,
|
|
substs: substs
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub enum IntVarValue {
|
|
IntType(ast::IntTy),
|
|
UintType(ast::UintTy),
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub enum terr_vstore_kind {
|
|
terr_vec,
|
|
terr_str,
|
|
terr_fn,
|
|
terr_trait
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub struct expected_found<T> {
|
|
expected: T,
|
|
found: T
|
|
}
|
|
|
|
// Data structures used in type unification
|
|
#[deriving(Clone, Show)]
|
|
pub enum type_err {
|
|
terr_mismatch,
|
|
terr_purity_mismatch(expected_found<Purity>),
|
|
terr_onceness_mismatch(expected_found<Onceness>),
|
|
terr_abi_mismatch(expected_found<AbiSet>),
|
|
terr_mutability,
|
|
terr_sigil_mismatch(expected_found<ast::Sigil>),
|
|
terr_box_mutability,
|
|
terr_ptr_mutability,
|
|
terr_ref_mutability,
|
|
terr_vec_mutability,
|
|
terr_tuple_size(expected_found<uint>),
|
|
terr_ty_param_size(expected_found<uint>),
|
|
terr_record_size(expected_found<uint>),
|
|
terr_record_mutability,
|
|
terr_record_fields(expected_found<Ident>),
|
|
terr_arg_count,
|
|
terr_regions_does_not_outlive(Region, Region),
|
|
terr_regions_not_same(Region, Region),
|
|
terr_regions_no_overlap(Region, Region),
|
|
terr_regions_insufficiently_polymorphic(BoundRegion, Region),
|
|
terr_regions_overly_polymorphic(BoundRegion, Region),
|
|
terr_vstores_differ(terr_vstore_kind, expected_found<vstore>),
|
|
terr_trait_stores_differ(terr_vstore_kind, expected_found<TraitStore>),
|
|
terr_in_field(@type_err, ast::Ident),
|
|
terr_sorts(expected_found<t>),
|
|
terr_integer_as_char,
|
|
terr_int_mismatch(expected_found<IntVarValue>),
|
|
terr_float_mismatch(expected_found<ast::FloatTy>),
|
|
terr_traits(expected_found<ast::DefId>),
|
|
terr_builtin_bounds(expected_found<BuiltinBounds>),
|
|
terr_variadic_mismatch(expected_found<bool>)
|
|
}
|
|
|
|
#[deriving(Eq, Hash)]
|
|
pub struct ParamBounds {
|
|
builtin_bounds: BuiltinBounds,
|
|
trait_bounds: Vec<@TraitRef> }
|
|
|
|
pub type BuiltinBounds = EnumSet<BuiltinBound>;
|
|
|
|
#[deriving(Clone, Encodable, Eq, Decodable, Hash, Show)]
|
|
#[repr(uint)]
|
|
pub enum BuiltinBound {
|
|
BoundStatic,
|
|
BoundSend,
|
|
BoundFreeze,
|
|
BoundSized,
|
|
BoundPod,
|
|
}
|
|
|
|
pub fn EmptyBuiltinBounds() -> BuiltinBounds {
|
|
EnumSet::empty()
|
|
}
|
|
|
|
pub fn AllBuiltinBounds() -> BuiltinBounds {
|
|
let mut set = EnumSet::empty();
|
|
set.add(BoundStatic);
|
|
set.add(BoundSend);
|
|
set.add(BoundFreeze);
|
|
set.add(BoundSized);
|
|
set
|
|
}
|
|
|
|
impl CLike for BuiltinBound {
|
|
fn to_uint(&self) -> uint {
|
|
*self as uint
|
|
}
|
|
fn from_uint(v: uint) -> BuiltinBound {
|
|
unsafe { cast::transmute(v) }
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct TyVid(uint);
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct IntVid(uint);
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub struct FloatVid(uint);
|
|
|
|
#[deriving(Clone, Eq, Encodable, Decodable, Hash)]
|
|
pub struct RegionVid {
|
|
id: uint
|
|
}
|
|
|
|
#[deriving(Clone, Eq, Hash)]
|
|
pub enum InferTy {
|
|
TyVar(TyVid),
|
|
IntVar(IntVid),
|
|
FloatVar(FloatVid)
|
|
}
|
|
|
|
#[deriving(Clone, Encodable, Decodable, Hash, Show)]
|
|
pub enum InferRegion {
|
|
ReVar(RegionVid),
|
|
ReSkolemized(uint, BoundRegion)
|
|
}
|
|
|
|
impl cmp::Eq for InferRegion {
|
|
fn eq(&self, other: &InferRegion) -> bool {
|
|
match ((*self), *other) {
|
|
(ReVar(rva), ReVar(rvb)) => {
|
|
rva == rvb
|
|
}
|
|
(ReSkolemized(rva, _), ReSkolemized(rvb, _)) => {
|
|
rva == rvb
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
fn ne(&self, other: &InferRegion) -> bool {
|
|
!((*self) == (*other))
|
|
}
|
|
}
|
|
|
|
pub trait Vid {
|
|
fn to_uint(&self) -> uint;
|
|
}
|
|
|
|
impl Vid for TyVid {
|
|
fn to_uint(&self) -> uint { let TyVid(v) = *self; v }
|
|
}
|
|
|
|
impl fmt::Show for TyVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result{
|
|
write!(f.buf, "<generic \\#{}>", self.to_uint())
|
|
}
|
|
}
|
|
|
|
impl Vid for IntVid {
|
|
fn to_uint(&self) -> uint { let IntVid(v) = *self; v }
|
|
}
|
|
|
|
impl fmt::Show for IntVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "<generic integer \\#{}>", self.to_uint())
|
|
}
|
|
}
|
|
|
|
impl Vid for FloatVid {
|
|
fn to_uint(&self) -> uint { let FloatVid(v) = *self; v }
|
|
}
|
|
|
|
impl fmt::Show for FloatVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "<generic float \\#{}>", self.to_uint())
|
|
}
|
|
}
|
|
|
|
impl Vid for RegionVid {
|
|
fn to_uint(&self) -> uint { self.id }
|
|
}
|
|
|
|
impl fmt::Show for RegionVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
self.id.fmt(f)
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for FnSig {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
// grr, without tcx not much we can do.
|
|
write!(f.buf, "(...)")
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for InferTy {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
TyVar(ref v) => v.fmt(f),
|
|
IntVar(ref v) => v.fmt(f),
|
|
FloatVar(ref v) => v.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for IntVarValue {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
IntType(ref v) => v.fmt(f),
|
|
UintType(ref v) => v.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub struct TypeParameterDef {
|
|
ident: ast::Ident,
|
|
def_id: ast::DefId,
|
|
bounds: @ParamBounds,
|
|
default: Option<ty::t>
|
|
}
|
|
|
|
#[deriving(Encodable, Decodable, Clone)]
|
|
pub struct RegionParameterDef {
|
|
ident: ast::Name,
|
|
def_id: ast::DefId,
|
|
}
|
|
|
|
/// Information about the type/lifetime parameters associated with an item.
|
|
/// Analogous to ast::Generics.
|
|
#[deriving(Clone)]
|
|
pub struct Generics {
|
|
/// List of type parameters declared on the item.
|
|
type_param_defs: Rc<Vec<TypeParameterDef> >,
|
|
|
|
/// List of region parameters declared on the item.
|
|
region_param_defs: Rc<Vec<RegionParameterDef> >,
|
|
}
|
|
|
|
impl Generics {
|
|
pub fn has_type_params(&self) -> bool {
|
|
!self.type_param_defs.borrow().is_empty()
|
|
}
|
|
pub fn type_param_defs<'a>(&'a self) -> &'a [TypeParameterDef] {
|
|
self.type_param_defs.borrow().as_slice()
|
|
}
|
|
pub fn region_param_defs<'a>(&'a self) -> &'a [RegionParameterDef] {
|
|
self.region_param_defs.borrow().as_slice()
|
|
}
|
|
}
|
|
|
|
/// When type checking, we use the `ParameterEnvironment` to track
|
|
/// details about the type/lifetime parameters that are in scope.
|
|
/// It primarily stores the bounds information.
|
|
///
|
|
/// Note: This information might seem to be redundant with the data in
|
|
/// `tcx.ty_param_defs`, but it is not. That table contains the
|
|
/// parameter definitions from an "outside" perspective, but this
|
|
/// struct will contain the bounds for a parameter as seen from inside
|
|
/// the function body. Currently the only real distinction is that
|
|
/// bound lifetime parameters are replaced with free ones, but in the
|
|
/// future I hope to refine the representation of types so as to make
|
|
/// more distinctions clearer.
|
|
pub struct ParameterEnvironment {
|
|
/// A substitution that can be applied to move from
|
|
/// the "outer" view of a type or method to the "inner" view.
|
|
/// In general, this means converting from bound parameters to
|
|
/// free parameters. Since we currently represent bound/free type
|
|
/// parameters in the same way, this only has an affect on regions.
|
|
free_substs: ty::substs,
|
|
|
|
/// Bound on the Self parameter
|
|
self_param_bound: Option<@TraitRef>,
|
|
|
|
/// Bounds on each numbered type parameter
|
|
type_param_bounds: Vec<ParamBounds> ,
|
|
}
|
|
|
|
/// A polytype.
|
|
///
|
|
/// - `bounds`: The list of bounds for each type parameter. The length of the
|
|
/// list also tells you how many type parameters there are.
|
|
///
|
|
/// - `rp`: true if the type is region-parameterized. Types can have at
|
|
/// most one region parameter, always called `&self`.
|
|
///
|
|
/// - `ty`: the base type. May have reference to the (unsubstituted) bound
|
|
/// region `&self` or to (unsubstituted) ty_param types
|
|
#[deriving(Clone)]
|
|
pub struct ty_param_bounds_and_ty {
|
|
generics: Generics,
|
|
ty: t
|
|
}
|
|
|
|
/// As `ty_param_bounds_and_ty` but for a trait ref.
|
|
pub struct TraitDef {
|
|
generics: Generics,
|
|
bounds: BuiltinBounds,
|
|
trait_ref: @ty::TraitRef,
|
|
}
|
|
|
|
pub struct ty_param_substs_and_ty {
|
|
substs: ty::substs,
|
|
ty: ty::t
|
|
}
|
|
|
|
pub type type_cache = RefCell<DefIdMap<ty_param_bounds_and_ty>>;
|
|
|
|
pub type node_type_table = RefCell<HashMap<uint,t>>;
|
|
|
|
pub fn mk_ctxt(s: session::Session,
|
|
dm: resolve::DefMap,
|
|
named_region_map: @RefCell<resolve_lifetime::NamedRegionMap>,
|
|
map: ast_map::Map,
|
|
freevars: freevars::freevar_map,
|
|
region_maps: middle::region::RegionMaps,
|
|
lang_items: @middle::lang_items::LanguageItems)
|
|
-> ctxt {
|
|
#[cfg(stage0)]
|
|
fn hasher() -> HashMap<intern_key, ~t_box_> {
|
|
HashMap::new()
|
|
}
|
|
#[cfg(not(stage0))]
|
|
fn hasher() -> HashMap<intern_key, ~t_box_, ::util::nodemap::FnvHasher> {
|
|
HashMap::with_hasher(::util::nodemap::FnvHasher)
|
|
}
|
|
@ctxt_ {
|
|
named_region_map: named_region_map,
|
|
item_variance_map: RefCell::new(DefIdMap::new()),
|
|
diag: s.diagnostic(),
|
|
interner: RefCell::new(hasher()),
|
|
next_id: Cell::new(primitives::LAST_PRIMITIVE_ID),
|
|
cstore: s.cstore,
|
|
sess: s,
|
|
def_map: dm,
|
|
region_maps: region_maps,
|
|
node_types: RefCell::new(HashMap::new()),
|
|
node_type_substs: RefCell::new(NodeMap::new()),
|
|
trait_refs: RefCell::new(NodeMap::new()),
|
|
trait_defs: RefCell::new(DefIdMap::new()),
|
|
map: map,
|
|
intrinsic_defs: RefCell::new(DefIdMap::new()),
|
|
freevars: RefCell::new(freevars),
|
|
tcache: RefCell::new(DefIdMap::new()),
|
|
rcache: RefCell::new(HashMap::new()),
|
|
short_names_cache: RefCell::new(HashMap::new()),
|
|
needs_unwind_cleanup_cache: RefCell::new(HashMap::new()),
|
|
tc_cache: RefCell::new(HashMap::new()),
|
|
ast_ty_to_ty_cache: RefCell::new(NodeMap::new()),
|
|
enum_var_cache: RefCell::new(DefIdMap::new()),
|
|
methods: RefCell::new(DefIdMap::new()),
|
|
trait_method_def_ids: RefCell::new(DefIdMap::new()),
|
|
trait_methods_cache: RefCell::new(DefIdMap::new()),
|
|
impl_trait_cache: RefCell::new(DefIdMap::new()),
|
|
ty_param_defs: RefCell::new(NodeMap::new()),
|
|
adjustments: RefCell::new(NodeMap::new()),
|
|
normalized_cache: RefCell::new(HashMap::new()),
|
|
lang_items: lang_items,
|
|
provided_method_sources: RefCell::new(DefIdMap::new()),
|
|
supertraits: RefCell::new(DefIdMap::new()),
|
|
destructor_for_type: RefCell::new(DefIdMap::new()),
|
|
destructors: RefCell::new(DefIdSet::new()),
|
|
trait_impls: RefCell::new(DefIdMap::new()),
|
|
inherent_impls: RefCell::new(DefIdMap::new()),
|
|
impls: RefCell::new(DefIdMap::new()),
|
|
used_unsafe: RefCell::new(NodeSet::new()),
|
|
used_mut_nodes: RefCell::new(NodeSet::new()),
|
|
impl_vtables: RefCell::new(DefIdMap::new()),
|
|
populated_external_types: RefCell::new(DefIdSet::new()),
|
|
populated_external_traits: RefCell::new(DefIdSet::new()),
|
|
upvar_borrow_map: RefCell::new(HashMap::new()),
|
|
extern_const_statics: RefCell::new(DefIdMap::new()),
|
|
extern_const_variants: RefCell::new(DefIdMap::new()),
|
|
}
|
|
}
|
|
|
|
// Type constructors
|
|
|
|
// Interns a type/name combination, stores the resulting box in cx.interner,
|
|
// and returns the box as cast to an unsafe ptr (see comments for t above).
|
|
pub fn mk_t(cx: ctxt, st: sty) -> t {
|
|
// Check for primitive types.
|
|
match st {
|
|
ty_nil => return mk_nil(),
|
|
ty_err => return mk_err(),
|
|
ty_bool => return mk_bool(),
|
|
ty_int(i) => return mk_mach_int(i),
|
|
ty_uint(u) => return mk_mach_uint(u),
|
|
ty_float(f) => return mk_mach_float(f),
|
|
ty_char => return mk_char(),
|
|
ty_bot => return mk_bot(),
|
|
_ => {}
|
|
};
|
|
|
|
let key = intern_key { sty: &st };
|
|
|
|
{
|
|
let mut interner = cx.interner.borrow_mut();
|
|
match interner.get().find(&key) {
|
|
Some(t) => unsafe { return cast::transmute(&t.sty); },
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
let mut flags = 0u;
|
|
fn rflags(r: Region) -> uint {
|
|
(has_regions as uint) | {
|
|
match r {
|
|
ty::ReInfer(_) => needs_infer as uint,
|
|
_ => 0u
|
|
}
|
|
}
|
|
}
|
|
fn sflags(substs: &substs) -> uint {
|
|
let mut f = 0u;
|
|
for tt in substs.tps.iter() { f |= get(*tt).flags; }
|
|
match substs.regions {
|
|
ErasedRegions => {}
|
|
NonerasedRegions(ref regions) => {
|
|
for r in regions.iter() {
|
|
f |= rflags(*r)
|
|
}
|
|
}
|
|
}
|
|
return f;
|
|
}
|
|
match &st {
|
|
&ty_str(vstore_slice(r)) => {
|
|
flags |= rflags(r);
|
|
}
|
|
&ty_vec(ref mt, vstore_slice(r)) => {
|
|
flags |= rflags(r);
|
|
flags |= get(mt.ty).flags;
|
|
}
|
|
&ty_nil | &ty_bool | &ty_char | &ty_int(_) | &ty_float(_) | &ty_uint(_) |
|
|
&ty_str(_) => {}
|
|
// You might think that we could just return ty_err for
|
|
// any type containing ty_err as a component, and get
|
|
// rid of the has_ty_err flag -- likewise for ty_bot (with
|
|
// the exception of function types that return bot).
|
|
// But doing so caused sporadic memory corruption, and
|
|
// neither I (tjc) nor nmatsakis could figure out why,
|
|
// so we're doing it this way.
|
|
&ty_bot => flags |= has_ty_bot as uint,
|
|
&ty_err => flags |= has_ty_err as uint,
|
|
&ty_param(_) => flags |= has_params as uint,
|
|
&ty_infer(_) => flags |= needs_infer as uint,
|
|
&ty_self(_) => flags |= has_self as uint,
|
|
&ty_enum(_, ref substs) | &ty_struct(_, ref substs) |
|
|
&ty_trait(_, ref substs, _, _, _) => {
|
|
flags |= sflags(substs);
|
|
match st {
|
|
ty_trait(_, _, RegionTraitStore(r), _, _) => {
|
|
flags |= rflags(r);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
&ty_box(tt) | &ty_uniq(tt) => {
|
|
flags |= get(tt).flags
|
|
}
|
|
&ty_vec(ref m, _) | &ty_ptr(ref m) |
|
|
&ty_unboxed_vec(ref m) => {
|
|
flags |= get(m.ty).flags;
|
|
}
|
|
&ty_rptr(r, ref m) => {
|
|
flags |= rflags(r);
|
|
flags |= get(m.ty).flags;
|
|
}
|
|
&ty_tup(ref ts) => for tt in ts.iter() { flags |= get(*tt).flags; },
|
|
&ty_bare_fn(ref f) => {
|
|
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
|
|
flags |= get(f.sig.output).flags;
|
|
// T -> _|_ is *not* _|_ !
|
|
flags &= !(has_ty_bot as uint);
|
|
}
|
|
&ty_closure(ref f) => {
|
|
flags |= rflags(f.region);
|
|
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
|
|
flags |= get(f.sig.output).flags;
|
|
// T -> _|_ is *not* _|_ !
|
|
flags &= !(has_ty_bot as uint);
|
|
}
|
|
}
|
|
|
|
let t = ~t_box_ {
|
|
sty: st,
|
|
id: cx.next_id.get(),
|
|
flags: flags,
|
|
};
|
|
|
|
let sty_ptr = &t.sty as *sty;
|
|
|
|
let key = intern_key {
|
|
sty: sty_ptr,
|
|
};
|
|
|
|
let mut interner = cx.interner.borrow_mut();
|
|
interner.get().insert(key, t);
|
|
|
|
cx.next_id.set(cx.next_id.get() + 1);
|
|
|
|
unsafe {
|
|
cast::transmute::<*sty, t>(sty_ptr)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_prim_t(primitive: &'static t_box_) -> t {
|
|
unsafe {
|
|
cast::transmute::<&'static t_box_, t>(primitive)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_nil() -> t { mk_prim_t(&primitives::TY_NIL) }
|
|
|
|
#[inline]
|
|
pub fn mk_err() -> t { mk_prim_t(&primitives::TY_ERR) }
|
|
|
|
#[inline]
|
|
pub fn mk_bot() -> t { mk_prim_t(&primitives::TY_BOT) }
|
|
|
|
#[inline]
|
|
pub fn mk_bool() -> t { mk_prim_t(&primitives::TY_BOOL) }
|
|
|
|
#[inline]
|
|
pub fn mk_int() -> t { mk_prim_t(&primitives::TY_INT) }
|
|
|
|
#[inline]
|
|
pub fn mk_i8() -> t { mk_prim_t(&primitives::TY_I8) }
|
|
|
|
#[inline]
|
|
pub fn mk_i16() -> t { mk_prim_t(&primitives::TY_I16) }
|
|
|
|
#[inline]
|
|
pub fn mk_i32() -> t { mk_prim_t(&primitives::TY_I32) }
|
|
|
|
#[inline]
|
|
pub fn mk_i64() -> t { mk_prim_t(&primitives::TY_I64) }
|
|
|
|
#[inline]
|
|
pub fn mk_f32() -> t { mk_prim_t(&primitives::TY_F32) }
|
|
|
|
#[inline]
|
|
pub fn mk_f64() -> t { mk_prim_t(&primitives::TY_F64) }
|
|
|
|
#[inline]
|
|
pub fn mk_uint() -> t { mk_prim_t(&primitives::TY_UINT) }
|
|
|
|
#[inline]
|
|
pub fn mk_u8() -> t { mk_prim_t(&primitives::TY_U8) }
|
|
|
|
#[inline]
|
|
pub fn mk_u16() -> t { mk_prim_t(&primitives::TY_U16) }
|
|
|
|
#[inline]
|
|
pub fn mk_u32() -> t { mk_prim_t(&primitives::TY_U32) }
|
|
|
|
#[inline]
|
|
pub fn mk_u64() -> t { mk_prim_t(&primitives::TY_U64) }
|
|
|
|
pub fn mk_mach_int(tm: ast::IntTy) -> t {
|
|
match tm {
|
|
ast::TyI => mk_int(),
|
|
ast::TyI8 => mk_i8(),
|
|
ast::TyI16 => mk_i16(),
|
|
ast::TyI32 => mk_i32(),
|
|
ast::TyI64 => mk_i64(),
|
|
}
|
|
}
|
|
|
|
pub fn mk_mach_uint(tm: ast::UintTy) -> t {
|
|
match tm {
|
|
ast::TyU => mk_uint(),
|
|
ast::TyU8 => mk_u8(),
|
|
ast::TyU16 => mk_u16(),
|
|
ast::TyU32 => mk_u32(),
|
|
ast::TyU64 => mk_u64(),
|
|
}
|
|
}
|
|
|
|
pub fn mk_mach_float(tm: ast::FloatTy) -> t {
|
|
match tm {
|
|
ast::TyF32 => mk_f32(),
|
|
ast::TyF64 => mk_f64(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_char() -> t { mk_prim_t(&primitives::TY_CHAR) }
|
|
|
|
pub fn mk_str(cx: ctxt, t: vstore) -> t {
|
|
mk_t(cx, ty_str(t))
|
|
}
|
|
|
|
pub fn mk_enum(cx: ctxt, did: ast::DefId, substs: substs) -> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
mk_t(cx, ty_enum(did, substs))
|
|
}
|
|
|
|
pub fn mk_box(cx: ctxt, ty: t) -> t { mk_t(cx, ty_box(ty)) }
|
|
|
|
pub fn mk_uniq(cx: ctxt, ty: t) -> t { mk_t(cx, ty_uniq(ty)) }
|
|
|
|
pub fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
|
|
|
|
pub fn mk_rptr(cx: ctxt, r: Region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
|
|
|
|
pub fn mk_mut_rptr(cx: ctxt, r: Region, ty: t) -> t {
|
|
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutMutable})
|
|
}
|
|
pub fn mk_imm_rptr(cx: ctxt, r: Region, ty: t) -> t {
|
|
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_mut_ptr(cx: ctxt, ty: t) -> t {
|
|
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutMutable})
|
|
}
|
|
|
|
pub fn mk_imm_ptr(cx: ctxt, ty: t) -> t {
|
|
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_nil_ptr(cx: ctxt) -> t {
|
|
mk_ptr(cx, mt {ty: mk_nil(), mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_vec(cx: ctxt, tm: mt, t: vstore) -> t {
|
|
mk_t(cx, ty_vec(tm, t))
|
|
}
|
|
|
|
pub fn mk_unboxed_vec(cx: ctxt, tm: mt) -> t {
|
|
mk_t(cx, ty_unboxed_vec(tm))
|
|
}
|
|
pub fn mk_mut_unboxed_vec(cx: ctxt, ty: t) -> t {
|
|
mk_t(cx, ty_unboxed_vec(mt {ty: ty, mutbl: ast::MutImmutable}))
|
|
}
|
|
|
|
pub fn mk_tup(cx: ctxt, ts: Vec<t>) -> t { mk_t(cx, ty_tup(ts)) }
|
|
|
|
pub fn mk_closure(cx: ctxt, fty: ClosureTy) -> t {
|
|
mk_t(cx, ty_closure(fty))
|
|
}
|
|
|
|
pub fn mk_bare_fn(cx: ctxt, fty: BareFnTy) -> t {
|
|
mk_t(cx, ty_bare_fn(fty))
|
|
}
|
|
|
|
pub fn mk_ctor_fn(cx: ctxt,
|
|
binder_id: ast::NodeId,
|
|
input_tys: &[ty::t],
|
|
output: ty::t) -> t {
|
|
let input_args = input_tys.map(|t| *t);
|
|
mk_bare_fn(cx,
|
|
BareFnTy {
|
|
purity: ast::ImpureFn,
|
|
abis: AbiSet::Rust(),
|
|
sig: FnSig {
|
|
binder_id: binder_id,
|
|
inputs: Vec::from_slice(input_args),
|
|
output: output,
|
|
variadic: false
|
|
}
|
|
})
|
|
}
|
|
|
|
|
|
pub fn mk_trait(cx: ctxt,
|
|
did: ast::DefId,
|
|
substs: substs,
|
|
store: TraitStore,
|
|
mutability: ast::Mutability,
|
|
bounds: BuiltinBounds)
|
|
-> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
mk_t(cx, ty_trait(did, substs, store, mutability, bounds))
|
|
}
|
|
|
|
pub fn mk_struct(cx: ctxt, struct_id: ast::DefId, substs: substs) -> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
mk_t(cx, ty_struct(struct_id, substs))
|
|
}
|
|
|
|
pub fn mk_var(cx: ctxt, v: TyVid) -> t { mk_infer(cx, TyVar(v)) }
|
|
|
|
pub fn mk_int_var(cx: ctxt, v: IntVid) -> t { mk_infer(cx, IntVar(v)) }
|
|
|
|
pub fn mk_float_var(cx: ctxt, v: FloatVid) -> t { mk_infer(cx, FloatVar(v)) }
|
|
|
|
pub fn mk_infer(cx: ctxt, it: InferTy) -> t { mk_t(cx, ty_infer(it)) }
|
|
|
|
pub fn mk_self(cx: ctxt, did: ast::DefId) -> t { mk_t(cx, ty_self(did)) }
|
|
|
|
pub fn mk_param(cx: ctxt, n: uint, k: DefId) -> t {
|
|
mk_t(cx, ty_param(param_ty { idx: n, def_id: k }))
|
|
}
|
|
|
|
pub fn walk_ty(ty: t, f: |t|) {
|
|
maybe_walk_ty(ty, |t| { f(t); true });
|
|
}
|
|
|
|
pub fn maybe_walk_ty(ty: t, f: |t| -> bool) {
|
|
if !f(ty) {
|
|
return;
|
|
}
|
|
match get(ty).sty {
|
|
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_str(_) | ty_self(_) |
|
|
ty_infer(_) | ty_param(_) | ty_err => {}
|
|
ty_box(ty) | ty_uniq(ty) => maybe_walk_ty(ty, f),
|
|
ty_vec(ref tm, _) | ty_unboxed_vec(ref tm) | ty_ptr(ref tm) |
|
|
ty_rptr(_, ref tm) => {
|
|
maybe_walk_ty(tm.ty, f);
|
|
}
|
|
ty_enum(_, ref substs) | ty_struct(_, ref substs) |
|
|
ty_trait(_, ref substs, _, _, _) => {
|
|
for subty in (*substs).tps.iter() { maybe_walk_ty(*subty, |x| f(x)); }
|
|
}
|
|
ty_tup(ref ts) => { for tt in ts.iter() { maybe_walk_ty(*tt, |x| f(x)); } }
|
|
ty_bare_fn(ref ft) => {
|
|
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
|
|
maybe_walk_ty(ft.sig.output, f);
|
|
}
|
|
ty_closure(ref ft) => {
|
|
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
|
|
maybe_walk_ty(ft.sig.output, f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Folds types from the bottom up.
|
|
pub fn fold_ty(cx: ctxt, t0: t, fldop: |t| -> t) -> t {
|
|
let mut f = ty_fold::BottomUpFolder {tcx: cx, fldop: fldop};
|
|
f.fold_ty(t0)
|
|
}
|
|
|
|
pub fn walk_regions_and_ty(cx: ctxt, ty: t, fldr: |r: Region|, fldt: |t: t|)
|
|
-> t {
|
|
ty_fold::RegionFolder::general(cx,
|
|
|r| { fldr(r); r },
|
|
|t| { fldt(t); t }).fold_ty(ty)
|
|
}
|
|
|
|
pub fn fold_regions(cx: ctxt, ty: t, fldr: |r: Region| -> Region) -> t {
|
|
ty_fold::RegionFolder::regions(cx, fldr).fold_ty(ty)
|
|
}
|
|
|
|
// Substitute *only* type parameters. Used in trans where regions are erased.
|
|
pub fn subst_tps(tcx: ctxt, tps: &[t], self_ty_opt: Option<t>, typ: t) -> t {
|
|
let mut subst = TpsSubst { tcx: tcx, self_ty_opt: self_ty_opt, tps: tps };
|
|
return subst.fold_ty(typ);
|
|
|
|
struct TpsSubst<'a> {
|
|
tcx: ctxt,
|
|
self_ty_opt: Option<t>,
|
|
tps: &'a [t],
|
|
}
|
|
|
|
impl<'a> TypeFolder for TpsSubst<'a> {
|
|
fn tcx(&self) -> ty::ctxt { self.tcx }
|
|
|
|
fn fold_ty(&mut self, t: ty::t) -> ty::t {
|
|
if self.tps.len() == 0u && self.self_ty_opt.is_none() {
|
|
return t;
|
|
}
|
|
|
|
let tb = ty::get(t);
|
|
if self.self_ty_opt.is_none() && !tbox_has_flag(tb, has_params) {
|
|
return t;
|
|
}
|
|
|
|
match ty::get(t).sty {
|
|
ty_param(p) => {
|
|
self.tps[p.idx]
|
|
}
|
|
|
|
ty_self(_) => {
|
|
match self.self_ty_opt {
|
|
None => self.tcx.sess.bug("ty_self unexpected here"),
|
|
Some(self_ty) => self_ty
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
ty_fold::super_fold_ty(self, t)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn substs_is_noop(substs: &substs) -> bool {
|
|
let regions_is_noop = match substs.regions {
|
|
ErasedRegions => false, // may be used to canonicalize
|
|
NonerasedRegions(ref regions) => regions.is_empty()
|
|
};
|
|
|
|
substs.tps.len() == 0u &&
|
|
regions_is_noop &&
|
|
substs.self_ty.is_none()
|
|
}
|
|
|
|
pub fn substs_to_str(cx: ctxt, substs: &substs) -> ~str {
|
|
substs.repr(cx)
|
|
}
|
|
|
|
pub fn subst(cx: ctxt,
|
|
substs: &substs,
|
|
typ: t)
|
|
-> t {
|
|
typ.subst(cx, substs)
|
|
}
|
|
|
|
// Type utilities
|
|
|
|
pub fn type_is_nil(ty: t) -> bool { get(ty).sty == ty_nil }
|
|
|
|
pub fn type_is_bot(ty: t) -> bool {
|
|
(get(ty).flags & (has_ty_bot as uint)) != 0
|
|
}
|
|
|
|
pub fn type_is_error(ty: t) -> bool {
|
|
(get(ty).flags & (has_ty_err as uint)) != 0
|
|
}
|
|
|
|
pub fn type_needs_subst(ty: t) -> bool {
|
|
tbox_has_flag(get(ty), needs_subst)
|
|
}
|
|
|
|
pub fn trait_ref_contains_error(tref: &ty::TraitRef) -> bool {
|
|
tref.substs.self_ty.iter().any(|&t| type_is_error(t)) ||
|
|
tref.substs.tps.iter().any(|&t| type_is_error(t))
|
|
}
|
|
|
|
pub fn type_is_ty_var(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(TyVar(_)) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_bool(ty: t) -> bool { get(ty).sty == ty_bool }
|
|
|
|
pub fn type_is_self(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_self(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_structural(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_struct(..) | ty_tup(_) | ty_enum(..) | ty_closure(_) | ty_trait(..) |
|
|
ty_vec(_, vstore_fixed(_)) | ty_str(vstore_fixed(_)) |
|
|
ty_vec(_, vstore_slice(_)) | ty_str(vstore_slice(_))
|
|
=> true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_sequence(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_str(_) | ty_vec(_, _) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_simd(cx: ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_struct(did, _) => lookup_simd(cx, did),
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_str(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_str(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn sequence_element_type(cx: ctxt, ty: t) -> t {
|
|
match get(ty).sty {
|
|
ty_str(_) => return mk_mach_uint(ast::TyU8),
|
|
ty_vec(mt, _) | ty_unboxed_vec(mt) => return mt.ty,
|
|
_ => cx.sess.bug("sequence_element_type called on non-sequence value"),
|
|
}
|
|
}
|
|
|
|
pub fn simd_type(cx: ctxt, ty: t) -> t {
|
|
match get(ty).sty {
|
|
ty_struct(did, ref substs) => {
|
|
let fields = lookup_struct_fields(cx, did);
|
|
lookup_field_type(cx, did, fields.get(0).id, substs)
|
|
}
|
|
_ => fail!("simd_type called on invalid type")
|
|
}
|
|
}
|
|
|
|
pub fn simd_size(cx: ctxt, ty: t) -> uint {
|
|
match get(ty).sty {
|
|
ty_struct(did, _) => {
|
|
let fields = lookup_struct_fields(cx, did);
|
|
fields.len()
|
|
}
|
|
_ => fail!("simd_size called on invalid type")
|
|
}
|
|
}
|
|
|
|
pub fn get_element_type(ty: t, i: uint) -> t {
|
|
match get(ty).sty {
|
|
ty_tup(ref ts) => return *ts.get(i),
|
|
_ => fail!("get_element_type called on invalid type")
|
|
}
|
|
}
|
|
|
|
pub fn type_is_box(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_box(_) => return true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_boxed(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_box(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_region_ptr(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_rptr(_, _) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_slice(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_vec(_, vstore_slice(_)) | ty_str(vstore_slice(_)) => true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_unique_box(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_uniq(_) => return true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_unsafe_ptr(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_ptr(_) => return true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_vec(ty: t) -> bool {
|
|
return match get(ty).sty {
|
|
ty_vec(_, _) | ty_unboxed_vec(_) => true,
|
|
ty_str(_) => true,
|
|
_ => false
|
|
};
|
|
}
|
|
|
|
pub fn type_is_unique(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_uniq(_) | ty_vec(_, vstore_uniq) | ty_str(vstore_uniq) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
/*
|
|
A scalar type is one that denotes an atomic datum, with no sub-components.
|
|
(A ty_ptr is scalar because it represents a non-managed pointer, so its
|
|
contents are abstract to rustc.)
|
|
*/
|
|
pub fn type_is_scalar(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_nil | ty_bool | ty_char | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_infer(IntVar(_)) | ty_infer(FloatVar(_)) |
|
|
ty_bare_fn(..) | ty_ptr(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_needs_drop(cx: ctxt, ty: t) -> bool {
|
|
type_contents(cx, ty).needs_drop(cx)
|
|
}
|
|
|
|
// Some things don't need cleanups during unwinding because the
|
|
// task can free them all at once later. Currently only things
|
|
// that only contain scalars and shared boxes can avoid unwind
|
|
// cleanups.
|
|
pub fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool {
|
|
{
|
|
let needs_unwind_cleanup_cache = cx.needs_unwind_cleanup_cache
|
|
.borrow();
|
|
match needs_unwind_cleanup_cache.get().find(&ty) {
|
|
Some(&result) => return result,
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
let mut tycache = HashSet::new();
|
|
let needs_unwind_cleanup =
|
|
type_needs_unwind_cleanup_(cx, ty, &mut tycache, false);
|
|
let mut needs_unwind_cleanup_cache = cx.needs_unwind_cleanup_cache
|
|
.borrow_mut();
|
|
needs_unwind_cleanup_cache.get().insert(ty, needs_unwind_cleanup);
|
|
return needs_unwind_cleanup;
|
|
}
|
|
|
|
fn type_needs_unwind_cleanup_(cx: ctxt, ty: t,
|
|
tycache: &mut HashSet<t>,
|
|
encountered_box: bool) -> bool {
|
|
|
|
// Prevent infinite recursion
|
|
if !tycache.insert(ty) {
|
|
return false;
|
|
}
|
|
|
|
let mut encountered_box = encountered_box;
|
|
let mut needs_unwind_cleanup = false;
|
|
maybe_walk_ty(ty, |ty| {
|
|
let old_encountered_box = encountered_box;
|
|
let result = match get(ty).sty {
|
|
ty_box(_) => {
|
|
encountered_box = true;
|
|
true
|
|
}
|
|
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_tup(_) | ty_ptr(_) => {
|
|
true
|
|
}
|
|
ty_enum(did, ref substs) => {
|
|
for v in (*enum_variants(cx, did)).iter() {
|
|
for aty in v.args.iter() {
|
|
let t = subst(cx, substs, *aty);
|
|
needs_unwind_cleanup |=
|
|
type_needs_unwind_cleanup_(cx, t, tycache,
|
|
encountered_box);
|
|
}
|
|
}
|
|
!needs_unwind_cleanup
|
|
}
|
|
ty_uniq(_) |
|
|
ty_str(vstore_uniq) |
|
|
ty_vec(_, vstore_uniq) => {
|
|
// Once we're inside a box, the annihilator will find
|
|
// it and destroy it.
|
|
if !encountered_box {
|
|
needs_unwind_cleanup = true;
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
}
|
|
_ => {
|
|
needs_unwind_cleanup = true;
|
|
false
|
|
}
|
|
};
|
|
|
|
encountered_box = old_encountered_box;
|
|
result
|
|
});
|
|
|
|
return needs_unwind_cleanup;
|
|
}
|
|
|
|
/**
|
|
* Type contents is how the type checker reasons about kinds.
|
|
* They track what kinds of things are found within a type. You can
|
|
* think of them as kind of an "anti-kind". They track the kinds of values
|
|
* and thinks that are contained in types. Having a larger contents for
|
|
* a type tends to rule that type *out* from various kinds. For example,
|
|
* a type that contains a reference is not sendable.
|
|
*
|
|
* The reason we compute type contents and not kinds is that it is
|
|
* easier for me (nmatsakis) to think about what is contained within
|
|
* a type than to think about what is *not* contained within a type.
|
|
*/
|
|
pub struct TypeContents {
|
|
bits: u64
|
|
}
|
|
|
|
macro_rules! def_type_content_sets(
|
|
(mod $mname:ident { $($name:ident = $bits:expr),+ }) => {
|
|
mod $mname {
|
|
use middle::ty::TypeContents;
|
|
$(pub static $name: TypeContents = TypeContents { bits: $bits };)+
|
|
}
|
|
}
|
|
)
|
|
|
|
def_type_content_sets!(
|
|
mod TC {
|
|
None = 0b0000__00000000__0000,
|
|
|
|
// Things that are interior to the value (first nibble):
|
|
InteriorUnsized = 0b0000__00000000__0001,
|
|
// InteriorAll = 0b0000__00000000__1111,
|
|
|
|
// Things that are owned by the value (second and third nibbles):
|
|
OwnsOwned = 0b0000__00000001__0000,
|
|
OwnsDtor = 0b0000__00000010__0000,
|
|
OwnsManaged /* see [1] below */ = 0b0000__00000100__0000,
|
|
OwnsAffine = 0b0000__00001000__0000,
|
|
OwnsAll = 0b0000__11111111__0000,
|
|
|
|
// Things that are reachable by the value in any way (fourth nibble):
|
|
ReachesNonsendAnnot = 0b0001__00000000__0000,
|
|
ReachesBorrowed = 0b0010__00000000__0000,
|
|
// ReachesManaged /* see [1] below */ = 0b0100__00000000__0000,
|
|
ReachesMutable = 0b1000__00000000__0000,
|
|
ReachesAll = 0b1111__00000000__0000,
|
|
|
|
// Things that cause values to *move* rather than *copy*
|
|
Moves = 0b0000__00001011__0000,
|
|
|
|
// Things that mean drop glue is necessary
|
|
NeedsDrop = 0b0000__00000111__0000,
|
|
|
|
// Things that prevent values from being sent
|
|
//
|
|
// Note: For checking whether something is sendable, it'd
|
|
// be sufficient to have ReachesManaged. However, we include
|
|
// both ReachesManaged and OwnsManaged so that when
|
|
// a parameter has a bound T:Send, we are able to deduce
|
|
// that it neither reaches nor owns a managed pointer.
|
|
Nonsendable = 0b0111__00000100__0000,
|
|
|
|
// Things that prevent values from being considered freezable
|
|
Nonfreezable = 0b1000__00000000__0000,
|
|
|
|
// Things that prevent values from being considered 'static
|
|
Nonstatic = 0b0010__00000000__0000,
|
|
|
|
// Things that prevent values from being considered sized
|
|
Nonsized = 0b0000__00000000__0001,
|
|
|
|
// Things that make values considered not POD (would be same
|
|
// as `Moves`, but for the fact that managed data `@` is
|
|
// not considered POD)
|
|
Nonpod = 0b0000__00001111__0000,
|
|
|
|
// Bits to set when a managed value is encountered
|
|
//
|
|
// [1] Do not set the bits TC::OwnsManaged or
|
|
// TC::ReachesManaged directly, instead reference
|
|
// TC::Managed to set them both at once.
|
|
Managed = 0b0100__00000100__0000,
|
|
|
|
// All bits
|
|
All = 0b1111__11111111__1111
|
|
}
|
|
)
|
|
|
|
impl TypeContents {
|
|
pub fn meets_bounds(&self, cx: ctxt, bbs: BuiltinBounds) -> bool {
|
|
bbs.iter().all(|bb| self.meets_bound(cx, bb))
|
|
}
|
|
|
|
pub fn meets_bound(&self, cx: ctxt, bb: BuiltinBound) -> bool {
|
|
match bb {
|
|
BoundStatic => self.is_static(cx),
|
|
BoundFreeze => self.is_freezable(cx),
|
|
BoundSend => self.is_sendable(cx),
|
|
BoundSized => self.is_sized(cx),
|
|
BoundPod => self.is_pod(cx),
|
|
}
|
|
}
|
|
|
|
pub fn when(&self, cond: bool) -> TypeContents {
|
|
if cond {*self} else {TC::None}
|
|
}
|
|
|
|
pub fn intersects(&self, tc: TypeContents) -> bool {
|
|
(self.bits & tc.bits) != 0
|
|
}
|
|
|
|
pub fn is_static(&self, _: ctxt) -> bool {
|
|
!self.intersects(TC::Nonstatic)
|
|
}
|
|
|
|
pub fn is_sendable(&self, _: ctxt) -> bool {
|
|
!self.intersects(TC::Nonsendable)
|
|
}
|
|
|
|
pub fn owns_managed(&self) -> bool {
|
|
self.intersects(TC::OwnsManaged)
|
|
}
|
|
|
|
pub fn owns_owned(&self) -> bool {
|
|
self.intersects(TC::OwnsOwned)
|
|
}
|
|
|
|
pub fn is_freezable(&self, _: ctxt) -> bool {
|
|
!self.intersects(TC::Nonfreezable)
|
|
}
|
|
|
|
pub fn is_sized(&self, _: ctxt) -> bool {
|
|
!self.intersects(TC::Nonsized)
|
|
}
|
|
|
|
pub fn is_pod(&self, _: ctxt) -> bool {
|
|
!self.intersects(TC::Nonpod)
|
|
}
|
|
|
|
pub fn moves_by_default(&self, _: ctxt) -> bool {
|
|
self.intersects(TC::Moves)
|
|
}
|
|
|
|
pub fn needs_drop(&self, _: ctxt) -> bool {
|
|
self.intersects(TC::NeedsDrop)
|
|
}
|
|
|
|
pub fn owned_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a `~` pointer
|
|
*/
|
|
TC::OwnsOwned | (
|
|
*self & (TC::OwnsAll | TC::ReachesAll))
|
|
}
|
|
|
|
pub fn reference(&self, bits: TypeContents) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a reference (`&`)
|
|
*/
|
|
bits | (
|
|
*self & TC::ReachesAll)
|
|
}
|
|
|
|
pub fn managed_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a managed pointer (`@`)
|
|
*/
|
|
TC::Managed | (
|
|
*self & TC::ReachesAll)
|
|
}
|
|
|
|
pub fn unsafe_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through an unsafe pointer (`*`)
|
|
*/
|
|
*self & TC::ReachesAll
|
|
}
|
|
|
|
pub fn union<T>(v: &[T], f: |&T| -> TypeContents) -> TypeContents {
|
|
v.iter().fold(TC::None, |tc, t| tc | f(t))
|
|
}
|
|
|
|
pub fn inverse(&self) -> TypeContents {
|
|
TypeContents { bits: !self.bits }
|
|
}
|
|
|
|
pub fn has_dtor(&self) -> bool {
|
|
self.intersects(TC::OwnsDtor)
|
|
}
|
|
}
|
|
|
|
impl ops::BitOr<TypeContents,TypeContents> for TypeContents {
|
|
fn bitor(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits | other.bits}
|
|
}
|
|
}
|
|
|
|
impl ops::BitAnd<TypeContents,TypeContents> for TypeContents {
|
|
fn bitand(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits & other.bits}
|
|
}
|
|
}
|
|
|
|
impl ops::Sub<TypeContents,TypeContents> for TypeContents {
|
|
fn sub(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits & !other.bits}
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for TypeContents {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f.buf, "TypeContents({:t})", self.bits)
|
|
}
|
|
}
|
|
|
|
pub fn type_has_dtor(cx: ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).has_dtor()
|
|
}
|
|
|
|
pub fn type_is_static(cx: ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).is_static(cx)
|
|
}
|
|
|
|
pub fn type_is_sendable(cx: ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).is_sendable(cx)
|
|
}
|
|
|
|
pub fn type_is_freezable(cx: ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).is_freezable(cx)
|
|
}
|
|
|
|
pub fn type_contents(cx: ctxt, ty: t) -> TypeContents {
|
|
let ty_id = type_id(ty);
|
|
|
|
{
|
|
let tc_cache = cx.tc_cache.borrow();
|
|
match tc_cache.get().find(&ty_id) {
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
let mut cache = HashMap::new();
|
|
let result = tc_ty(cx, ty, &mut cache);
|
|
|
|
let mut tc_cache = cx.tc_cache.borrow_mut();
|
|
tc_cache.get().insert(ty_id, result);
|
|
return result;
|
|
|
|
fn tc_ty(cx: ctxt,
|
|
ty: t,
|
|
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
|
|
{
|
|
// Subtle: Note that we are *not* using cx.tc_cache here but rather a
|
|
// private cache for this walk. This is needed in the case of cyclic
|
|
// types like:
|
|
//
|
|
// struct List { next: ~Option<List>, ... }
|
|
//
|
|
// When computing the type contents of such a type, we wind up deeply
|
|
// recursing as we go. So when we encounter the recursive reference
|
|
// to List, we temporarily use TC::None as its contents. Later we'll
|
|
// patch up the cache with the correct value, once we've computed it
|
|
// (this is basically a co-inductive process, if that helps). So in
|
|
// the end we'll compute TC::OwnsOwned, in this case.
|
|
//
|
|
// The problem is, as we are doing the computation, we will also
|
|
// compute an *intermediate* contents for, e.g., Option<List> of
|
|
// TC::None. This is ok during the computation of List itself, but if
|
|
// we stored this intermediate value into cx.tc_cache, then later
|
|
// requests for the contents of Option<List> would also yield TC::None
|
|
// which is incorrect. This value was computed based on the crutch
|
|
// value for the type contents of list. The correct value is
|
|
// TC::OwnsOwned. This manifested as issue #4821.
|
|
let ty_id = type_id(ty);
|
|
match cache.find(&ty_id) {
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
{
|
|
let tc_cache = cx.tc_cache.borrow();
|
|
match tc_cache.get().find(&ty_id) { // Must check both caches!
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
}
|
|
cache.insert(ty_id, TC::None);
|
|
|
|
let result = match get(ty).sty {
|
|
// Scalar and unique types are sendable, freezable, and durable
|
|
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_bare_fn(_) | ty::ty_char => {
|
|
TC::None
|
|
}
|
|
|
|
ty_str(vstore_uniq) => {
|
|
TC::OwnsOwned
|
|
}
|
|
|
|
ty_closure(ref c) => {
|
|
closure_contents(cx, c)
|
|
}
|
|
|
|
ty_box(typ) => {
|
|
tc_ty(cx, typ, cache).managed_pointer()
|
|
}
|
|
|
|
ty_uniq(typ) => {
|
|
tc_ty(cx, typ, cache).owned_pointer()
|
|
}
|
|
|
|
ty_trait(_, _, store, mutbl, bounds) => {
|
|
object_contents(cx, store, mutbl, bounds)
|
|
}
|
|
|
|
ty_ptr(ref mt) => {
|
|
tc_ty(cx, mt.ty, cache).unsafe_pointer()
|
|
}
|
|
|
|
ty_rptr(r, ref mt) => {
|
|
tc_ty(cx, mt.ty, cache).reference(
|
|
borrowed_contents(r, mt.mutbl))
|
|
}
|
|
|
|
ty_vec(mt, vstore_uniq) => {
|
|
tc_mt(cx, mt, cache).owned_pointer()
|
|
}
|
|
|
|
ty_vec(ref mt, vstore_slice(r)) => {
|
|
tc_ty(cx, mt.ty, cache).reference(
|
|
borrowed_contents(r, mt.mutbl))
|
|
}
|
|
|
|
ty_vec(mt, vstore_fixed(_)) => {
|
|
tc_mt(cx, mt, cache)
|
|
}
|
|
|
|
ty_str(vstore_slice(r)) => {
|
|
borrowed_contents(r, ast::MutImmutable)
|
|
}
|
|
|
|
ty_str(vstore_fixed(_)) => {
|
|
TC::None
|
|
}
|
|
|
|
ty_struct(did, ref substs) => {
|
|
let flds = struct_fields(cx, did, substs);
|
|
let mut res =
|
|
TypeContents::union(flds.as_slice(),
|
|
|f| tc_mt(cx, f.mt, cache));
|
|
if ty::has_dtor(cx, did) {
|
|
res = res | TC::OwnsDtor;
|
|
}
|
|
apply_lang_items(cx, did, res)
|
|
}
|
|
|
|
ty_tup(ref tys) => {
|
|
TypeContents::union(tys.as_slice(),
|
|
|ty| tc_ty(cx, *ty, cache))
|
|
}
|
|
|
|
ty_enum(did, ref substs) => {
|
|
let variants = substd_enum_variants(cx, did, substs);
|
|
let res =
|
|
TypeContents::union(variants.as_slice(), |variant| {
|
|
TypeContents::union(variant.args.as_slice(),
|
|
|arg_ty| {
|
|
tc_ty(cx, *arg_ty, cache)
|
|
})
|
|
});
|
|
apply_lang_items(cx, did, res)
|
|
}
|
|
|
|
ty_param(p) => {
|
|
// We only ever ask for the kind of types that are defined in
|
|
// the current crate; therefore, the only type parameters that
|
|
// could be in scope are those defined in the current crate.
|
|
// If this assertion failures, it is likely because of a
|
|
// failure in the cross-crate inlining code to translate a
|
|
// def-id.
|
|
assert_eq!(p.def_id.krate, ast::LOCAL_CRATE);
|
|
|
|
let ty_param_defs = cx.ty_param_defs.borrow();
|
|
let tp_def = ty_param_defs.get().get(&p.def_id.node);
|
|
kind_bounds_to_contents(cx,
|
|
tp_def.bounds.builtin_bounds,
|
|
tp_def.bounds.trait_bounds.as_slice())
|
|
}
|
|
|
|
ty_self(def_id) => {
|
|
// FIXME(#4678)---self should just be a ty param
|
|
|
|
// Self may be bounded if the associated trait has builtin kinds
|
|
// for supertraits. If so we can use those bounds.
|
|
let trait_def = lookup_trait_def(cx, def_id);
|
|
let traits = [trait_def.trait_ref];
|
|
kind_bounds_to_contents(cx, trait_def.bounds, traits)
|
|
}
|
|
|
|
ty_infer(_) => {
|
|
// This occurs during coherence, but shouldn't occur at other
|
|
// times.
|
|
TC::All
|
|
}
|
|
ty_unboxed_vec(mt) => TC::InteriorUnsized | tc_mt(cx, mt, cache),
|
|
|
|
ty_err => {
|
|
cx.sess.bug("asked to compute contents of error type");
|
|
}
|
|
};
|
|
|
|
cache.insert(ty_id, result);
|
|
return result;
|
|
}
|
|
|
|
fn tc_mt(cx: ctxt,
|
|
mt: mt,
|
|
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
|
|
{
|
|
let mc = TC::ReachesMutable.when(mt.mutbl == MutMutable);
|
|
mc | tc_ty(cx, mt.ty, cache)
|
|
}
|
|
|
|
fn apply_lang_items(cx: ctxt,
|
|
did: ast::DefId,
|
|
tc: TypeContents)
|
|
-> TypeContents {
|
|
if Some(did) == cx.lang_items.no_freeze_bound() {
|
|
tc | TC::ReachesMutable
|
|
} else if Some(did) == cx.lang_items.no_send_bound() {
|
|
tc | TC::ReachesNonsendAnnot
|
|
} else if Some(did) == cx.lang_items.managed_bound() {
|
|
tc | TC::Managed
|
|
} else if Some(did) == cx.lang_items.no_pod_bound() {
|
|
tc | TC::OwnsAffine
|
|
} else {
|
|
tc
|
|
}
|
|
}
|
|
|
|
fn borrowed_contents(region: ty::Region,
|
|
mutbl: ast::Mutability)
|
|
-> TypeContents {
|
|
/*!
|
|
* Type contents due to containing a reference
|
|
* with the region `region` and borrow kind `bk`
|
|
*/
|
|
|
|
let b = match mutbl {
|
|
ast::MutMutable => TC::ReachesMutable | TC::OwnsAffine,
|
|
ast::MutImmutable => TC::None,
|
|
};
|
|
b | (TC::ReachesBorrowed).when(region != ty::ReStatic)
|
|
}
|
|
|
|
fn closure_contents(cx: ctxt, cty: &ClosureTy) -> TypeContents {
|
|
// Closure contents are just like trait contents, but with potentially
|
|
// even more stuff.
|
|
let st = match cty.sigil {
|
|
ast::BorrowedSigil =>
|
|
object_contents(cx, RegionTraitStore(cty.region), MutMutable, cty.bounds),
|
|
ast::OwnedSigil =>
|
|
object_contents(cx, UniqTraitStore, MutImmutable, cty.bounds),
|
|
ast::ManagedSigil => unreachable!()
|
|
};
|
|
|
|
// FIXME(#3569): This borrowed_contents call should be taken care of in
|
|
// object_contents, after ~Traits and @Traits can have region bounds too.
|
|
// This one here is redundant for &fns but important for ~fns and @fns.
|
|
let rt = borrowed_contents(cty.region, ast::MutImmutable);
|
|
|
|
// This also prohibits "@once fn" from being copied, which allows it to
|
|
// be called. Neither way really makes much sense.
|
|
let ot = match cty.onceness {
|
|
ast::Once => TC::OwnsAffine,
|
|
ast::Many => TC::None,
|
|
};
|
|
|
|
st | rt | ot
|
|
}
|
|
|
|
fn object_contents(cx: ctxt,
|
|
store: TraitStore,
|
|
mutbl: ast::Mutability,
|
|
bounds: BuiltinBounds)
|
|
-> TypeContents {
|
|
// These are the type contents of the (opaque) interior
|
|
let contents = TC::ReachesMutable.when(mutbl == ast::MutMutable) |
|
|
kind_bounds_to_contents(cx, bounds, []);
|
|
|
|
match store {
|
|
UniqTraitStore => {
|
|
contents.owned_pointer()
|
|
}
|
|
RegionTraitStore(r) => {
|
|
contents.reference(borrowed_contents(r, mutbl))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn kind_bounds_to_contents(cx: ctxt,
|
|
bounds: BuiltinBounds,
|
|
traits: &[@TraitRef])
|
|
-> TypeContents {
|
|
let _i = indenter();
|
|
let mut tc = TC::All;
|
|
each_inherited_builtin_bound(cx, bounds, traits, |bound| {
|
|
tc = tc - match bound {
|
|
BoundStatic => TC::Nonstatic,
|
|
BoundSend => TC::Nonsendable,
|
|
BoundFreeze => TC::Nonfreezable,
|
|
BoundSized => TC::Nonsized,
|
|
BoundPod => TC::Nonpod,
|
|
};
|
|
});
|
|
return tc;
|
|
|
|
// Iterates over all builtin bounds on the type parameter def, including
|
|
// those inherited from traits with builtin-kind-supertraits.
|
|
fn each_inherited_builtin_bound(cx: ctxt,
|
|
bounds: BuiltinBounds,
|
|
traits: &[@TraitRef],
|
|
f: |BuiltinBound|) {
|
|
for bound in bounds.iter() {
|
|
f(bound);
|
|
}
|
|
|
|
each_bound_trait_and_supertraits(cx, traits, |trait_ref| {
|
|
let trait_def = lookup_trait_def(cx, trait_ref.def_id);
|
|
for bound in trait_def.bounds.iter() {
|
|
f(bound);
|
|
}
|
|
true
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn type_moves_by_default(cx: ctxt, ty: t) -> bool {
|
|
type_contents(cx, ty).moves_by_default(cx)
|
|
}
|
|
|
|
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
|
|
pub fn is_instantiable(cx: ctxt, r_ty: t) -> bool {
|
|
fn type_requires(cx: ctxt, seen: &mut Vec<DefId> ,
|
|
r_ty: t, ty: t) -> bool {
|
|
debug!("type_requires({}, {})?",
|
|
::util::ppaux::ty_to_str(cx, r_ty),
|
|
::util::ppaux::ty_to_str(cx, ty));
|
|
|
|
let r = {
|
|
get(r_ty).sty == get(ty).sty ||
|
|
subtypes_require(cx, seen, r_ty, ty)
|
|
};
|
|
|
|
debug!("type_requires({}, {})? {}",
|
|
::util::ppaux::ty_to_str(cx, r_ty),
|
|
::util::ppaux::ty_to_str(cx, ty),
|
|
r);
|
|
return r;
|
|
}
|
|
|
|
fn subtypes_require(cx: ctxt, seen: &mut Vec<DefId> ,
|
|
r_ty: t, ty: t) -> bool {
|
|
debug!("subtypes_require({}, {})?",
|
|
::util::ppaux::ty_to_str(cx, r_ty),
|
|
::util::ppaux::ty_to_str(cx, ty));
|
|
|
|
let r = match get(ty).sty {
|
|
// fixed length vectors need special treatment compared to
|
|
// normal vectors, since they don't necessarily have the
|
|
// possibilty to have length zero.
|
|
ty_vec(_, vstore_fixed(0)) => false, // don't need no contents
|
|
ty_vec(mt, vstore_fixed(_)) => type_requires(cx, seen, r_ty, mt.ty),
|
|
|
|
ty_nil |
|
|
ty_bot |
|
|
ty_bool |
|
|
ty_char |
|
|
ty_int(_) |
|
|
ty_uint(_) |
|
|
ty_float(_) |
|
|
ty_str(_) |
|
|
ty_bare_fn(_) |
|
|
ty_closure(_) |
|
|
ty_infer(_) |
|
|
ty_err |
|
|
ty_param(_) |
|
|
ty_self(_) |
|
|
ty_vec(_, _) |
|
|
ty_unboxed_vec(_) => {
|
|
false
|
|
}
|
|
ty_box(typ) | ty_uniq(typ) => {
|
|
type_requires(cx, seen, r_ty, typ)
|
|
}
|
|
ty_rptr(_, ref mt) => {
|
|
type_requires(cx, seen, r_ty, mt.ty)
|
|
}
|
|
|
|
ty_ptr(..) => {
|
|
false // unsafe ptrs can always be NULL
|
|
}
|
|
|
|
ty_trait(_, _, _, _, _) => {
|
|
false
|
|
}
|
|
|
|
ty_struct(ref did, _) if seen.contains(did) => {
|
|
false
|
|
}
|
|
|
|
ty_struct(did, ref substs) => {
|
|
seen.push(did);
|
|
let fields = struct_fields(cx, did, substs);
|
|
let r = fields.iter().any(|f| type_requires(cx, seen, r_ty, f.mt.ty));
|
|
seen.pop().unwrap();
|
|
r
|
|
}
|
|
|
|
ty_tup(ref ts) => {
|
|
ts.iter().any(|t| type_requires(cx, seen, r_ty, *t))
|
|
}
|
|
|
|
ty_enum(ref did, _) if seen.contains(did) => {
|
|
false
|
|
}
|
|
|
|
ty_enum(did, ref substs) => {
|
|
seen.push(did);
|
|
let vs = enum_variants(cx, did);
|
|
let r = !vs.is_empty() && vs.iter().all(|variant| {
|
|
variant.args.iter().any(|aty| {
|
|
let sty = subst(cx, substs, *aty);
|
|
type_requires(cx, seen, r_ty, sty)
|
|
})
|
|
});
|
|
seen.pop().unwrap();
|
|
r
|
|
}
|
|
};
|
|
|
|
debug!("subtypes_require({}, {})? {}",
|
|
::util::ppaux::ty_to_str(cx, r_ty),
|
|
::util::ppaux::ty_to_str(cx, ty),
|
|
r);
|
|
|
|
return r;
|
|
}
|
|
|
|
let mut seen = Vec::new();
|
|
!subtypes_require(cx, &mut seen, r_ty, r_ty)
|
|
}
|
|
|
|
/// Describes whether a type is representable. For types that are not
|
|
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
|
|
/// distinguish between types that are recursive with themselves and types that
|
|
/// contain a different recursive type. These cases can therefore be treated
|
|
/// differently when reporting errors.
|
|
#[deriving(Eq)]
|
|
pub enum Representability {
|
|
Representable,
|
|
SelfRecursive,
|
|
ContainsRecursive,
|
|
}
|
|
|
|
/// Check whether a type is representable. This means it cannot contain unboxed
|
|
/// structural recursion. This check is needed for structs and enums.
|
|
pub fn is_type_representable(cx: ctxt, ty: t) -> Representability {
|
|
|
|
// Iterate until something non-representable is found
|
|
fn find_nonrepresentable<It: Iterator<t>>(cx: ctxt, seen: &mut Vec<DefId> ,
|
|
mut iter: It) -> Representability {
|
|
for ty in iter {
|
|
let r = type_structurally_recursive(cx, seen, ty);
|
|
if r != Representable {
|
|
return r
|
|
}
|
|
}
|
|
Representable
|
|
}
|
|
|
|
// Does the type `ty` directly (without indirection through a pointer)
|
|
// contain any types on stack `seen`?
|
|
fn type_structurally_recursive(cx: ctxt, seen: &mut Vec<DefId> ,
|
|
ty: t) -> Representability {
|
|
debug!("type_structurally_recursive: {}",
|
|
::util::ppaux::ty_to_str(cx, ty));
|
|
|
|
// Compare current type to previously seen types
|
|
match get(ty).sty {
|
|
ty_struct(did, _) |
|
|
ty_enum(did, _) => {
|
|
for (i, &seen_did) in seen.iter().enumerate() {
|
|
if did == seen_did {
|
|
return if i == 0 { SelfRecursive }
|
|
else { ContainsRecursive }
|
|
}
|
|
}
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
// Check inner types
|
|
match get(ty).sty {
|
|
// Tuples
|
|
ty_tup(ref ts) => {
|
|
find_nonrepresentable(cx, seen, ts.iter().map(|t| *t))
|
|
}
|
|
// Fixed-length vectors.
|
|
// FIXME(#11924) Behavior undecided for zero-length vectors.
|
|
ty_vec(mt, vstore_fixed(_)) => {
|
|
type_structurally_recursive(cx, seen, mt.ty)
|
|
}
|
|
|
|
// Push struct and enum def-ids onto `seen` before recursing.
|
|
ty_struct(did, ref substs) => {
|
|
seen.push(did);
|
|
let fields = struct_fields(cx, did, substs);
|
|
let r = find_nonrepresentable(cx, seen,
|
|
fields.iter().map(|f| f.mt.ty));
|
|
seen.pop();
|
|
r
|
|
}
|
|
ty_enum(did, ref substs) => {
|
|
seen.push(did);
|
|
let vs = enum_variants(cx, did);
|
|
|
|
let mut r = Representable;
|
|
for variant in vs.iter() {
|
|
let iter = variant.args.iter().map(|aty| subst(cx, substs, *aty));
|
|
r = find_nonrepresentable(cx, seen, iter);
|
|
|
|
if r != Representable { break }
|
|
}
|
|
|
|
seen.pop();
|
|
r
|
|
}
|
|
|
|
_ => Representable,
|
|
}
|
|
}
|
|
|
|
debug!("is_type_representable: {}",
|
|
::util::ppaux::ty_to_str(cx, ty));
|
|
|
|
// To avoid a stack overflow when checking an enum variant or struct that
|
|
// contains a different, structurally recursive type, maintain a stack
|
|
// of seen types and check recursion for each of them (issues #3008, #3779).
|
|
let mut seen: Vec<DefId> = Vec::new();
|
|
type_structurally_recursive(cx, &mut seen, ty)
|
|
}
|
|
|
|
pub fn type_is_trait(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_trait(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_integral(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(IntVar(_)) | ty_int(_) | ty_uint(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_char(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_char => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_bare_fn(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_bare_fn(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_fp(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(FloatVar(_)) | ty_float(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_numeric(ty: t) -> bool {
|
|
return type_is_integral(ty) || type_is_fp(ty);
|
|
}
|
|
|
|
pub fn type_is_signed(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_int(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_machine(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_int(ast::TyI) | ty_uint(ast::TyU) => false,
|
|
ty_int(..) | ty_uint(..) | ty_float(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_enum(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_enum(_, _) => return true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
// Is the type's representation size known at compile time?
|
|
pub fn type_is_sized(cx: ctxt, ty: ty::t) -> bool {
|
|
match get(ty).sty {
|
|
// FIXME(#6308) add trait, vec, str, etc here.
|
|
ty_param(p) => {
|
|
let ty_param_defs = cx.ty_param_defs.borrow();
|
|
let param_def = ty_param_defs.get().get(&p.def_id.node);
|
|
if param_def.bounds.builtin_bounds.contains_elem(BoundSized) {
|
|
return true;
|
|
}
|
|
return false;
|
|
},
|
|
_ => return true,
|
|
}
|
|
}
|
|
|
|
// Whether a type is enum like, that is an enum type with only nullary
|
|
// constructors
|
|
pub fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_enum(did, _) => {
|
|
let variants = enum_variants(cx, did);
|
|
if variants.len() == 0 {
|
|
false
|
|
} else {
|
|
variants.iter().all(|v| v.args.len() == 0)
|
|
}
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_param(ty: t) -> Option<uint> {
|
|
match get(ty).sty {
|
|
ty_param(p) => return Some(p.idx),
|
|
_ => {/* fall through */ }
|
|
}
|
|
return None;
|
|
}
|
|
|
|
// Returns the type and mutability of *t.
|
|
//
|
|
// The parameter `explicit` indicates if this is an *explicit* dereference.
|
|
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
|
|
pub fn deref(t: t, explicit: bool) -> Option<mt> {
|
|
deref_sty(&get(t).sty, explicit)
|
|
}
|
|
|
|
pub fn deref_sty(sty: &sty, explicit: bool) -> Option<mt> {
|
|
match *sty {
|
|
ty_box(typ) | ty_uniq(typ) => {
|
|
Some(mt {
|
|
ty: typ,
|
|
mutbl: ast::MutImmutable,
|
|
})
|
|
}
|
|
|
|
ty_rptr(_, mt) => {
|
|
Some(mt)
|
|
}
|
|
|
|
ty_ptr(mt) if explicit => {
|
|
Some(mt)
|
|
}
|
|
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
pub fn type_autoderef(t: t) -> t {
|
|
let mut t = t;
|
|
loop {
|
|
match deref(t, false) {
|
|
None => return t,
|
|
Some(mt) => t = mt.ty
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the type and mutability of t[i]
|
|
pub fn index(t: t) -> Option<mt> {
|
|
index_sty(&get(t).sty)
|
|
}
|
|
|
|
pub fn index_sty(sty: &sty) -> Option<mt> {
|
|
match *sty {
|
|
ty_vec(mt, _) => Some(mt),
|
|
ty_str(_) => Some(mt {ty: mk_u8(), mutbl: ast::MutImmutable}),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
pub fn node_id_to_trait_ref(cx: ctxt, id: ast::NodeId) -> @ty::TraitRef {
|
|
let trait_refs = cx.trait_refs.borrow();
|
|
match trait_refs.get().find(&id) {
|
|
Some(&t) => t,
|
|
None => cx.sess.bug(
|
|
format!("node_id_to_trait_ref: no trait ref for node `{}`",
|
|
cx.map.node_to_str(id)))
|
|
}
|
|
}
|
|
|
|
pub fn try_node_id_to_type(cx: ctxt, id: ast::NodeId) -> Option<t> {
|
|
let node_types = cx.node_types.borrow();
|
|
node_types.get().find_copy(&(id as uint))
|
|
}
|
|
|
|
pub fn node_id_to_type(cx: ctxt, id: ast::NodeId) -> t {
|
|
match try_node_id_to_type(cx, id) {
|
|
Some(t) => t,
|
|
None => cx.sess.bug(
|
|
format!("node_id_to_type: no type for node `{}`",
|
|
cx.map.node_to_str(id)))
|
|
}
|
|
}
|
|
|
|
pub fn node_id_to_type_opt(cx: ctxt, id: ast::NodeId) -> Option<t> {
|
|
let node_types = cx.node_types.borrow();
|
|
debug!("id: {:?}, node_types: {:?}", id, node_types);
|
|
match node_types.get().find(&(id as uint)) {
|
|
Some(&t) => Some(t),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
// FIXME(pcwalton): Makes a copy, bleh. Probably better to not do that.
|
|
pub fn node_id_to_type_params(cx: ctxt, id: ast::NodeId) -> Vec<t> {
|
|
let node_type_substs = cx.node_type_substs.borrow();
|
|
match node_type_substs.get().find(&id) {
|
|
None => return Vec::new(),
|
|
Some(ts) => return (*ts).clone(),
|
|
}
|
|
}
|
|
|
|
fn node_id_has_type_params(cx: ctxt, id: ast::NodeId) -> bool {
|
|
let node_type_substs = cx.node_type_substs.borrow();
|
|
node_type_substs.get().contains_key(&id)
|
|
}
|
|
|
|
pub fn fn_is_variadic(fty: t) -> bool {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.variadic,
|
|
ty_closure(ref f) => f.sig.variadic,
|
|
ref s => {
|
|
fail!("fn_is_variadic() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_fn_sig(fty: t) -> FnSig {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.clone(),
|
|
ty_closure(ref f) => f.sig.clone(),
|
|
ref s => {
|
|
fail!("ty_fn_sig() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Type accessors for substructures of types
|
|
pub fn ty_fn_args(fty: t) -> Vec<t> {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.inputs.clone(),
|
|
ty_closure(ref f) => f.sig.inputs.clone(),
|
|
ref s => {
|
|
fail!("ty_fn_args() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_closure_sigil(fty: t) -> Sigil {
|
|
match get(fty).sty {
|
|
ty_closure(ref f) => f.sigil,
|
|
ref s => {
|
|
fail!("ty_closure_sigil() called on non-closure type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_fn_purity(fty: t) -> ast::Purity {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.purity,
|
|
ty_closure(ref f) => f.purity,
|
|
ref s => {
|
|
fail!("ty_fn_purity() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_fn_ret(fty: t) -> t {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.output,
|
|
ty_closure(ref f) => f.sig.output,
|
|
ref s => {
|
|
fail!("ty_fn_ret() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_fn_ty(fty: t) -> bool {
|
|
match get(fty).sty {
|
|
ty_bare_fn(_) => true,
|
|
ty_closure(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn ty_vstore(ty: t) -> vstore {
|
|
match get(ty).sty {
|
|
ty_vec(_, vstore) => vstore,
|
|
ty_str(vstore) => vstore,
|
|
ref s => fail!("ty_vstore() called on invalid sty: {:?}", s)
|
|
}
|
|
}
|
|
|
|
pub fn ty_region(tcx: ctxt,
|
|
span: Span,
|
|
ty: t) -> Region {
|
|
match get(ty).sty {
|
|
ty_rptr(r, _) => r,
|
|
ty_vec(_, vstore_slice(r)) => r,
|
|
ty_str(vstore_slice(r)) => r,
|
|
ref s => {
|
|
tcx.sess.span_bug(
|
|
span,
|
|
format!("ty_region() invoked on in appropriate ty: {:?}", s));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn replace_fn_sig(cx: ctxt, fsty: &sty, new_sig: FnSig) -> t {
|
|
match *fsty {
|
|
ty_bare_fn(ref f) => mk_bare_fn(cx, BareFnTy {sig: new_sig, ..*f}),
|
|
ty_closure(ref f) => mk_closure(cx, ClosureTy {sig: new_sig, ..*f}),
|
|
ref s => {
|
|
cx.sess.bug(
|
|
format!("ty_fn_sig() called on non-fn type: {:?}", s));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn replace_closure_return_type(tcx: ctxt, fn_type: t, ret_type: t) -> t {
|
|
/*!
|
|
*
|
|
* Returns a new function type based on `fn_type` but returning a value of
|
|
* type `ret_type` instead. */
|
|
|
|
match ty::get(fn_type).sty {
|
|
ty::ty_closure(ref fty) => {
|
|
ty::mk_closure(tcx, ClosureTy {
|
|
sig: FnSig {output: ret_type, ..fty.sig.clone()},
|
|
..(*fty).clone()
|
|
})
|
|
}
|
|
_ => {
|
|
tcx.sess.bug(format!(
|
|
"replace_fn_ret() invoked with non-fn-type: {}",
|
|
ty_to_str(tcx, fn_type)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a vec of all the input and output types of fty.
|
|
pub fn tys_in_fn_sig(sig: &FnSig) -> Vec<t> {
|
|
vec_ng::append_one(sig.inputs.map(|a| *a), sig.output)
|
|
}
|
|
|
|
// Type accessors for AST nodes
|
|
pub fn block_ty(cx: ctxt, b: &ast::Block) -> t {
|
|
return node_id_to_type(cx, b.id);
|
|
}
|
|
|
|
|
|
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
|
|
// doesn't provide type parameter substitutions.
|
|
pub fn pat_ty(cx: ctxt, pat: &ast::Pat) -> t {
|
|
return node_id_to_type(cx, pat.id);
|
|
}
|
|
|
|
|
|
// Returns the type of an expression as a monotype.
|
|
//
|
|
// NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in
|
|
// some cases, we insert `AutoAdjustment` annotations such as auto-deref or
|
|
// auto-ref. The type returned by this function does not consider such
|
|
// adjustments. See `expr_ty_adjusted()` instead.
|
|
//
|
|
// NB (2): This type doesn't provide type parameter substitutions; e.g. if you
|
|
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
|
|
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
|
|
// expr_ty_params_and_ty() below.
|
|
pub fn expr_ty(cx: ctxt, expr: &ast::Expr) -> t {
|
|
return node_id_to_type(cx, expr.id);
|
|
}
|
|
|
|
pub fn expr_ty_opt(cx: ctxt, expr: &ast::Expr) -> Option<t> {
|
|
return node_id_to_type_opt(cx, expr.id);
|
|
}
|
|
|
|
pub fn expr_ty_adjusted(cx: ctxt, expr: &ast::Expr) -> t {
|
|
/*!
|
|
*
|
|
* Returns the type of `expr`, considering any `AutoAdjustment`
|
|
* entry recorded for that expression.
|
|
*
|
|
* It would almost certainly be better to store the adjusted ty in with
|
|
* the `AutoAdjustment`, but I opted not to do this because it would
|
|
* require serializing and deserializing the type and, although that's not
|
|
* hard to do, I just hate that code so much I didn't want to touch it
|
|
* unless it was to fix it properly, which seemed a distraction from the
|
|
* task at hand! -nmatsakis
|
|
*/
|
|
|
|
let unadjusted_ty = expr_ty(cx, expr);
|
|
let adjustment = {
|
|
let adjustments = cx.adjustments.borrow();
|
|
adjustments.get().find_copy(&expr.id)
|
|
};
|
|
adjust_ty(cx, expr.span, unadjusted_ty, adjustment)
|
|
}
|
|
|
|
pub fn expr_span(cx: ctxt, id: NodeId) -> Span {
|
|
match cx.map.find(id) {
|
|
Some(ast_map::NodeExpr(e)) => {
|
|
e.span
|
|
}
|
|
Some(f) => {
|
|
cx.sess.bug(format!("Node id {} is not an expr: {:?}",
|
|
id, f));
|
|
}
|
|
None => {
|
|
cx.sess.bug(format!("Node id {} is not present \
|
|
in the node map", id));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn local_var_name_str(cx: ctxt, id: NodeId) -> InternedString {
|
|
match cx.map.find(id) {
|
|
Some(ast_map::NodeLocal(pat)) => {
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path, _) => {
|
|
token::get_ident(ast_util::path_to_ident(path))
|
|
}
|
|
_ => {
|
|
cx.sess.bug(
|
|
format!("Variable id {} maps to {:?}, not local",
|
|
id, pat));
|
|
}
|
|
}
|
|
}
|
|
r => {
|
|
cx.sess.bug(
|
|
format!("Variable id {} maps to {:?}, not local",
|
|
id, r));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn adjust_ty(cx: ctxt,
|
|
span: Span,
|
|
unadjusted_ty: ty::t,
|
|
adjustment: Option<@AutoAdjustment>)
|
|
-> ty::t {
|
|
/*! See `expr_ty_adjusted` */
|
|
|
|
return match adjustment {
|
|
None => unadjusted_ty,
|
|
|
|
Some(adjustment) => {
|
|
match *adjustment {
|
|
AutoAddEnv(r, s) => {
|
|
match ty::get(unadjusted_ty).sty {
|
|
ty::ty_bare_fn(ref b) => {
|
|
ty::mk_closure(
|
|
cx,
|
|
ty::ClosureTy {purity: b.purity,
|
|
sigil: s,
|
|
onceness: ast::Many,
|
|
region: r,
|
|
bounds: ty::AllBuiltinBounds(),
|
|
sig: b.sig.clone()})
|
|
}
|
|
ref b => {
|
|
cx.sess.bug(
|
|
format!("add_env adjustment on non-bare-fn: \
|
|
{:?}",
|
|
b));
|
|
}
|
|
}
|
|
}
|
|
|
|
AutoDerefRef(ref adj) => {
|
|
let mut adjusted_ty = unadjusted_ty;
|
|
|
|
if !ty::type_is_error(adjusted_ty) {
|
|
for i in range(0, adj.autoderefs) {
|
|
match ty::deref(adjusted_ty, true) {
|
|
Some(mt) => { adjusted_ty = mt.ty; }
|
|
None => {
|
|
cx.sess.span_bug(
|
|
span,
|
|
format!("the {}th autoderef failed: \
|
|
{}",
|
|
i,
|
|
ty_to_str(cx, adjusted_ty)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match adj.autoref {
|
|
None => adjusted_ty,
|
|
Some(ref autoref) => {
|
|
match *autoref {
|
|
AutoPtr(r, m) => {
|
|
mk_rptr(cx, r, mt {
|
|
ty: adjusted_ty,
|
|
mutbl: m
|
|
})
|
|
}
|
|
|
|
AutoBorrowVec(r, m) => {
|
|
borrow_vec(cx, span, r, m, adjusted_ty)
|
|
}
|
|
|
|
AutoBorrowVecRef(r, m) => {
|
|
adjusted_ty = borrow_vec(cx,
|
|
span,
|
|
r,
|
|
m,
|
|
adjusted_ty);
|
|
mk_rptr(cx, r, mt {
|
|
ty: adjusted_ty,
|
|
mutbl: ast::MutImmutable
|
|
})
|
|
}
|
|
|
|
AutoBorrowFn(r) => {
|
|
borrow_fn(cx, span, r, adjusted_ty)
|
|
}
|
|
|
|
AutoUnsafe(m) => {
|
|
mk_ptr(cx, mt {ty: adjusted_ty, mutbl: m})
|
|
}
|
|
|
|
AutoBorrowObj(r, m) => {
|
|
borrow_obj(cx, span, r, m, adjusted_ty)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
AutoObject(ref sigil, ref region, m, b, def_id, ref substs) => {
|
|
trait_adjustment_to_ty(cx,
|
|
sigil,
|
|
region,
|
|
def_id,
|
|
substs,
|
|
m,
|
|
b)
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
fn borrow_vec(cx: ctxt, span: Span,
|
|
r: Region, m: ast::Mutability,
|
|
ty: ty::t) -> ty::t {
|
|
match get(ty).sty {
|
|
ty_vec(mt, _) => {
|
|
ty::mk_vec(cx, mt {ty: mt.ty, mutbl: m}, vstore_slice(r))
|
|
}
|
|
|
|
ty_str(_) => {
|
|
ty::mk_str(cx, vstore_slice(r))
|
|
}
|
|
|
|
ref s => {
|
|
cx.sess.span_bug(
|
|
span,
|
|
format!("borrow-vec associated with bad sty: {:?}",
|
|
s));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn borrow_fn(cx: ctxt, span: Span, r: Region, ty: ty::t) -> ty::t {
|
|
match get(ty).sty {
|
|
ty_closure(ref fty) => {
|
|
ty::mk_closure(cx, ClosureTy {
|
|
sigil: BorrowedSigil,
|
|
region: r,
|
|
..(*fty).clone()
|
|
})
|
|
}
|
|
|
|
ref s => {
|
|
cx.sess.span_bug(
|
|
span,
|
|
format!("borrow-fn associated with bad sty: {:?}",
|
|
s));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn borrow_obj(cx: ctxt, span: Span, r: Region,
|
|
m: ast::Mutability, ty: ty::t) -> ty::t {
|
|
match get(ty).sty {
|
|
ty_trait(trt_did, ref trt_substs, _, _, b) => {
|
|
ty::mk_trait(cx, trt_did, trt_substs.clone(),
|
|
RegionTraitStore(r), m, b)
|
|
}
|
|
ref s => {
|
|
cx.sess.span_bug(
|
|
span,
|
|
format!("borrow-trait-obj associated with bad sty: {:?}",
|
|
s));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn trait_adjustment_to_ty(cx: ctxt, sigil: &ast::Sigil, region: &Option<Region>,
|
|
def_id: ast::DefId, substs: &substs, m: ast::Mutability,
|
|
bounds: BuiltinBounds) -> t {
|
|
|
|
let trait_store = match *sigil {
|
|
BorrowedSigil => RegionTraitStore(region.expect("expected valid region")),
|
|
OwnedSigil => UniqTraitStore,
|
|
ManagedSigil => unreachable!()
|
|
};
|
|
|
|
mk_trait(cx, def_id, substs.clone(), trait_store, m, bounds)
|
|
}
|
|
|
|
impl AutoRef {
|
|
pub fn map_region(&self, f: |Region| -> Region) -> AutoRef {
|
|
match *self {
|
|
ty::AutoPtr(r, m) => ty::AutoPtr(f(r), m),
|
|
ty::AutoBorrowVec(r, m) => ty::AutoBorrowVec(f(r), m),
|
|
ty::AutoBorrowVecRef(r, m) => ty::AutoBorrowVecRef(f(r), m),
|
|
ty::AutoBorrowFn(r) => ty::AutoBorrowFn(f(r)),
|
|
ty::AutoUnsafe(m) => ty::AutoUnsafe(m),
|
|
ty::AutoBorrowObj(r, m) => ty::AutoBorrowObj(f(r), m),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct ParamsTy {
|
|
params: Vec<t>,
|
|
ty: t
|
|
}
|
|
|
|
pub fn expr_ty_params_and_ty(cx: ctxt,
|
|
expr: &ast::Expr)
|
|
-> ParamsTy {
|
|
ParamsTy {
|
|
params: node_id_to_type_params(cx, expr.id),
|
|
ty: node_id_to_type(cx, expr.id)
|
|
}
|
|
}
|
|
|
|
pub fn expr_has_ty_params(cx: ctxt, expr: &ast::Expr) -> bool {
|
|
return node_id_has_type_params(cx, expr.id);
|
|
}
|
|
|
|
pub fn method_call_type_param_defs(tcx: ctxt, origin: typeck::MethodOrigin)
|
|
-> Rc<Vec<TypeParameterDef> > {
|
|
match origin {
|
|
typeck::MethodStatic(did) => {
|
|
// n.b.: When we encode impl methods, the bounds
|
|
// that we encode include both the impl bounds
|
|
// and then the method bounds themselves...
|
|
ty::lookup_item_type(tcx, did).generics.type_param_defs
|
|
}
|
|
typeck::MethodParam(typeck::MethodParam {
|
|
trait_id: trt_id,
|
|
method_num: n_mth, ..}) |
|
|
typeck::MethodObject(typeck::MethodObject {
|
|
trait_id: trt_id,
|
|
method_num: n_mth, ..}) => {
|
|
// ...trait methods bounds, in contrast, include only the
|
|
// method bounds, so we must preprend the tps from the
|
|
// trait itself. This ought to be harmonized.
|
|
let trait_type_param_defs =
|
|
lookup_trait_def(tcx, trt_id).generics.type_param_defs();
|
|
Rc::new(vec_ng::append(
|
|
Vec::from_slice(trait_type_param_defs),
|
|
ty::trait_method(tcx,
|
|
trt_id,
|
|
n_mth).generics.type_param_defs()))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_expr(tcx: ctxt, expr: &ast::Expr) -> ast::Def {
|
|
let def_map = tcx.def_map.borrow();
|
|
match def_map.get().find(&expr.id) {
|
|
Some(&def) => def,
|
|
None => {
|
|
tcx.sess.span_bug(expr.span, format!(
|
|
"no def-map entry for expr {:?}", expr.id));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn expr_is_lval(tcx: ctxt,
|
|
method_map: typeck::MethodMap,
|
|
e: &ast::Expr) -> bool {
|
|
match expr_kind(tcx, method_map, e) {
|
|
LvalueExpr => true,
|
|
RvalueDpsExpr | RvalueDatumExpr | RvalueStmtExpr => false
|
|
}
|
|
}
|
|
|
|
/// We categorize expressions into three kinds. The distinction between
|
|
/// lvalue/rvalue is fundamental to the language. The distinction between the
|
|
/// two kinds of rvalues is an artifact of trans which reflects how we will
|
|
/// generate code for that kind of expression. See trans/expr.rs for more
|
|
/// information.
|
|
pub enum ExprKind {
|
|
LvalueExpr,
|
|
RvalueDpsExpr,
|
|
RvalueDatumExpr,
|
|
RvalueStmtExpr
|
|
}
|
|
|
|
pub fn expr_kind(tcx: ctxt,
|
|
method_map: typeck::MethodMap,
|
|
expr: &ast::Expr) -> ExprKind {
|
|
{
|
|
let method_map = method_map.borrow();
|
|
if method_map.get().contains_key(&expr.id) {
|
|
// Overloaded operations are generally calls, and hence they are
|
|
// generated via DPS. However, assign_op (e.g., `x += y`) is an
|
|
// exception, as its result is always unit.
|
|
return match expr.node {
|
|
ast::ExprAssignOp(..) => RvalueStmtExpr,
|
|
ast::ExprUnary(ast::UnDeref, _) => LvalueExpr,
|
|
_ => RvalueDpsExpr
|
|
};
|
|
}
|
|
}
|
|
|
|
match expr.node {
|
|
ast::ExprPath(..) => {
|
|
match resolve_expr(tcx, expr) {
|
|
ast::DefVariant(tid, vid, _) => {
|
|
let variant_info = enum_variant_with_id(tcx, tid, vid);
|
|
if variant_info.args.len() > 0u {
|
|
// N-ary variant.
|
|
RvalueDatumExpr
|
|
} else {
|
|
// Nullary variant.
|
|
RvalueDpsExpr
|
|
}
|
|
}
|
|
|
|
ast::DefStruct(_) => {
|
|
match get(expr_ty(tcx, expr)).sty {
|
|
ty_bare_fn(..) => RvalueDatumExpr,
|
|
_ => RvalueDpsExpr
|
|
}
|
|
}
|
|
|
|
// Fn pointers are just scalar values.
|
|
ast::DefFn(..) | ast::DefStaticMethod(..) => RvalueDatumExpr,
|
|
|
|
// Note: there is actually a good case to be made that
|
|
// DefArg's, particularly those of immediate type, ought to
|
|
// considered rvalues.
|
|
ast::DefStatic(..) |
|
|
ast::DefBinding(..) |
|
|
ast::DefUpvar(..) |
|
|
ast::DefArg(..) |
|
|
ast::DefLocal(..) => LvalueExpr,
|
|
|
|
def => {
|
|
tcx.sess.span_bug(expr.span, format!(
|
|
"uncategorized def for expr {:?}: {:?}",
|
|
expr.id, def));
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ExprUnary(ast::UnDeref, _) |
|
|
ast::ExprField(..) |
|
|
ast::ExprIndex(..) => {
|
|
LvalueExpr
|
|
}
|
|
|
|
ast::ExprCall(..) |
|
|
ast::ExprMethodCall(..) |
|
|
ast::ExprStruct(..) |
|
|
ast::ExprTup(..) |
|
|
ast::ExprIf(..) |
|
|
ast::ExprMatch(..) |
|
|
ast::ExprFnBlock(..) |
|
|
ast::ExprProc(..) |
|
|
ast::ExprBlock(..) |
|
|
ast::ExprRepeat(..) |
|
|
ast::ExprVstore(_, ast::ExprVstoreSlice) |
|
|
ast::ExprVstore(_, ast::ExprVstoreMutSlice) |
|
|
ast::ExprVec(..) => {
|
|
RvalueDpsExpr
|
|
}
|
|
|
|
ast::ExprLit(lit) if lit_is_str(lit) => {
|
|
RvalueDpsExpr
|
|
}
|
|
|
|
ast::ExprCast(..) => {
|
|
let node_types = tcx.node_types.borrow();
|
|
match node_types.get().find(&(expr.id as uint)) {
|
|
Some(&t) => {
|
|
if type_is_trait(t) {
|
|
RvalueDpsExpr
|
|
} else {
|
|
RvalueDatumExpr
|
|
}
|
|
}
|
|
None => {
|
|
// Technically, it should not happen that the expr is not
|
|
// present within the table. However, it DOES happen
|
|
// during type check, because the final types from the
|
|
// expressions are not yet recorded in the tcx. At that
|
|
// time, though, we are only interested in knowing lvalue
|
|
// vs rvalue. It would be better to base this decision on
|
|
// the AST type in cast node---but (at the time of this
|
|
// writing) it's not easy to distinguish casts to traits
|
|
// from other casts based on the AST. This should be
|
|
// easier in the future, when casts to traits
|
|
// would like @Foo, ~Foo, or &Foo.
|
|
RvalueDatumExpr
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ExprBreak(..) |
|
|
ast::ExprAgain(..) |
|
|
ast::ExprRet(..) |
|
|
ast::ExprWhile(..) |
|
|
ast::ExprLoop(..) |
|
|
ast::ExprAssign(..) |
|
|
ast::ExprInlineAsm(..) |
|
|
ast::ExprAssignOp(..) => {
|
|
RvalueStmtExpr
|
|
}
|
|
|
|
ast::ExprForLoop(..) => fail!("non-desugared expr_for_loop"),
|
|
|
|
ast::ExprLogLevel |
|
|
ast::ExprLit(_) | // Note: LitStr is carved out above
|
|
ast::ExprUnary(..) |
|
|
ast::ExprAddrOf(..) |
|
|
ast::ExprBinary(..) |
|
|
ast::ExprVstore(_, ast::ExprVstoreUniq) => {
|
|
RvalueDatumExpr
|
|
}
|
|
|
|
ast::ExprBox(place, _) => {
|
|
// Special case `~T` for now:
|
|
let def_map = tcx.def_map.borrow();
|
|
let definition = match def_map.get().find(&place.id) {
|
|
Some(&def) => def,
|
|
None => fail!("no def for place"),
|
|
};
|
|
let def_id = ast_util::def_id_of_def(definition);
|
|
match tcx.lang_items.items.get(ExchangeHeapLangItem as uint) {
|
|
&Some(item_def_id) if def_id == item_def_id => {
|
|
RvalueDatumExpr
|
|
}
|
|
&Some(_) | &None => RvalueDpsExpr,
|
|
}
|
|
}
|
|
|
|
ast::ExprParen(e) => expr_kind(tcx, method_map, e),
|
|
|
|
ast::ExprMac(..) => {
|
|
tcx.sess.span_bug(
|
|
expr.span,
|
|
"macro expression remains after expansion");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn stmt_node_id(s: &ast::Stmt) -> ast::NodeId {
|
|
match s.node {
|
|
ast::StmtDecl(_, id) | StmtExpr(_, id) | StmtSemi(_, id) => {
|
|
return id;
|
|
}
|
|
ast::StmtMac(..) => fail!("unexpanded macro in trans")
|
|
}
|
|
}
|
|
|
|
pub fn field_idx(name: ast::Name, fields: &[field]) -> Option<uint> {
|
|
let mut i = 0u;
|
|
for f in fields.iter() { if f.ident.name == name { return Some(i); } i += 1u; }
|
|
return None;
|
|
}
|
|
|
|
pub fn field_idx_strict(tcx: ty::ctxt, name: ast::Name, fields: &[field])
|
|
-> uint {
|
|
let mut i = 0u;
|
|
for f in fields.iter() { if f.ident.name == name { return i; } i += 1u; }
|
|
tcx.sess.bug(format!(
|
|
"no field named `{}` found in the list of fields `{:?}`",
|
|
token::get_name(name),
|
|
fields.map(|f| token::get_ident(f.ident).get().to_str())));
|
|
}
|
|
|
|
pub fn method_idx(id: ast::Ident, meths: &[@Method]) -> Option<uint> {
|
|
meths.iter().position(|m| m.ident == id)
|
|
}
|
|
|
|
/// Returns a vector containing the indices of all type parameters that appear
|
|
/// in `ty`. The vector may contain duplicates. Probably should be converted
|
|
/// to a bitset or some other representation.
|
|
pub fn param_tys_in_type(ty: t) -> Vec<param_ty> {
|
|
let mut rslt = Vec::new();
|
|
walk_ty(ty, |ty| {
|
|
match get(ty).sty {
|
|
ty_param(p) => {
|
|
rslt.push(p);
|
|
}
|
|
_ => ()
|
|
}
|
|
});
|
|
rslt
|
|
}
|
|
|
|
pub fn occurs_check(tcx: ctxt, sp: Span, vid: TyVid, rt: t) {
|
|
// Returns a vec of all the type variables occurring in `ty`. It may
|
|
// contain duplicates. (Integral type vars aren't counted.)
|
|
fn vars_in_type(ty: t) -> Vec<TyVid> {
|
|
let mut rslt = Vec::new();
|
|
walk_ty(ty, |ty| {
|
|
match get(ty).sty {
|
|
ty_infer(TyVar(v)) => rslt.push(v),
|
|
_ => ()
|
|
}
|
|
});
|
|
rslt
|
|
}
|
|
|
|
// Fast path
|
|
if !type_needs_infer(rt) { return; }
|
|
|
|
// Occurs check!
|
|
if vars_in_type(rt).contains(&vid) {
|
|
// Maybe this should be span_err -- however, there's an
|
|
// assertion later on that the type doesn't contain
|
|
// variables, so in this case we have to be sure to die.
|
|
tcx.sess.span_fatal
|
|
(sp, ~"type inference failed because I \
|
|
could not find a type\n that's both of the form "
|
|
+ ::util::ppaux::ty_to_str(tcx, mk_var(tcx, vid)) +
|
|
" and of the form " + ::util::ppaux::ty_to_str(tcx, rt) +
|
|
" - such a type would have to be infinitely large.");
|
|
}
|
|
}
|
|
|
|
pub fn ty_sort_str(cx: ctxt, t: t) -> ~str {
|
|
match get(t).sty {
|
|
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) |
|
|
ty_uint(_) | ty_float(_) | ty_str(_) => {
|
|
::util::ppaux::ty_to_str(cx, t)
|
|
}
|
|
|
|
ty_enum(id, _) => format!("enum {}", item_path_str(cx, id)),
|
|
ty_box(_) => ~"@-ptr",
|
|
ty_uniq(_) => ~"~-ptr",
|
|
ty_vec(_, _) => ~"vector",
|
|
ty_unboxed_vec(_) => ~"unboxed vector",
|
|
ty_ptr(_) => ~"*-ptr",
|
|
ty_rptr(_, _) => ~"&-ptr",
|
|
ty_bare_fn(_) => ~"extern fn",
|
|
ty_closure(_) => ~"fn",
|
|
ty_trait(id, _, _, _, _) => format!("trait {}", item_path_str(cx, id)),
|
|
ty_struct(id, _) => format!("struct {}", item_path_str(cx, id)),
|
|
ty_tup(_) => ~"tuple",
|
|
ty_infer(TyVar(_)) => ~"inferred type",
|
|
ty_infer(IntVar(_)) => ~"integral variable",
|
|
ty_infer(FloatVar(_)) => ~"floating-point variable",
|
|
ty_param(_) => ~"type parameter",
|
|
ty_self(_) => ~"self",
|
|
ty_err => ~"type error"
|
|
}
|
|
}
|
|
|
|
pub fn type_err_to_str(cx: ctxt, err: &type_err) -> ~str {
|
|
/*!
|
|
*
|
|
* Explains the source of a type err in a short,
|
|
* human readable way. This is meant to be placed in
|
|
* parentheses after some larger message. You should
|
|
* also invoke `note_and_explain_type_err()` afterwards
|
|
* to present additional details, particularly when
|
|
* it comes to lifetime-related errors. */
|
|
|
|
fn terr_vstore_kind_to_str(k: terr_vstore_kind) -> ~str {
|
|
match k {
|
|
terr_vec => ~"[]",
|
|
terr_str => ~"str",
|
|
terr_fn => ~"fn",
|
|
terr_trait => ~"trait"
|
|
}
|
|
}
|
|
|
|
match *err {
|
|
terr_mismatch => ~"types differ",
|
|
terr_purity_mismatch(values) => {
|
|
format!("expected {} fn but found {} fn",
|
|
values.expected.to_str(), values.found.to_str())
|
|
}
|
|
terr_abi_mismatch(values) => {
|
|
format!("expected {} fn but found {} fn",
|
|
values.expected.to_str(), values.found.to_str())
|
|
}
|
|
terr_onceness_mismatch(values) => {
|
|
format!("expected {} fn but found {} fn",
|
|
values.expected.to_str(), values.found.to_str())
|
|
}
|
|
terr_sigil_mismatch(values) => {
|
|
format!("expected {} closure, found {} closure",
|
|
values.expected.to_str(),
|
|
values.found.to_str())
|
|
}
|
|
terr_mutability => ~"values differ in mutability",
|
|
terr_box_mutability => ~"boxed values differ in mutability",
|
|
terr_vec_mutability => ~"vectors differ in mutability",
|
|
terr_ptr_mutability => ~"pointers differ in mutability",
|
|
terr_ref_mutability => ~"references differ in mutability",
|
|
terr_ty_param_size(values) => {
|
|
format!("expected a type with {} type params \
|
|
but found one with {} type params",
|
|
values.expected, values.found)
|
|
}
|
|
terr_tuple_size(values) => {
|
|
format!("expected a tuple with {} elements \
|
|
but found one with {} elements",
|
|
values.expected, values.found)
|
|
}
|
|
terr_record_size(values) => {
|
|
format!("expected a record with {} fields \
|
|
but found one with {} fields",
|
|
values.expected, values.found)
|
|
}
|
|
terr_record_mutability => {
|
|
~"record elements differ in mutability"
|
|
}
|
|
terr_record_fields(values) => {
|
|
format!("expected a record with field `{}` but found one with field \
|
|
`{}`",
|
|
token::get_ident(values.expected),
|
|
token::get_ident(values.found))
|
|
}
|
|
terr_arg_count => ~"incorrect number of function parameters",
|
|
terr_regions_does_not_outlive(..) => {
|
|
format!("lifetime mismatch")
|
|
}
|
|
terr_regions_not_same(..) => {
|
|
format!("lifetimes are not the same")
|
|
}
|
|
terr_regions_no_overlap(..) => {
|
|
format!("lifetimes do not intersect")
|
|
}
|
|
terr_regions_insufficiently_polymorphic(br, _) => {
|
|
format!("expected bound lifetime parameter {}, \
|
|
but found concrete lifetime",
|
|
bound_region_ptr_to_str(cx, br))
|
|
}
|
|
terr_regions_overly_polymorphic(br, _) => {
|
|
format!("expected concrete lifetime, \
|
|
but found bound lifetime parameter {}",
|
|
bound_region_ptr_to_str(cx, br))
|
|
}
|
|
terr_vstores_differ(k, ref values) => {
|
|
format!("{} storage differs: expected `{}` but found `{}`",
|
|
terr_vstore_kind_to_str(k),
|
|
vstore_to_str(cx, (*values).expected),
|
|
vstore_to_str(cx, (*values).found))
|
|
}
|
|
terr_trait_stores_differ(_, ref values) => {
|
|
format!("trait storage differs: expected `{}` but found `{}`",
|
|
trait_store_to_str(cx, (*values).expected),
|
|
trait_store_to_str(cx, (*values).found))
|
|
}
|
|
terr_in_field(err, fname) => {
|
|
format!("in field `{}`, {}", token::get_ident(fname),
|
|
type_err_to_str(cx, err))
|
|
}
|
|
terr_sorts(values) => {
|
|
format!("expected {} but found {}",
|
|
ty_sort_str(cx, values.expected),
|
|
ty_sort_str(cx, values.found))
|
|
}
|
|
terr_traits(values) => {
|
|
format!("expected trait `{}` but found trait `{}`",
|
|
item_path_str(cx, values.expected),
|
|
item_path_str(cx, values.found))
|
|
}
|
|
terr_builtin_bounds(values) => {
|
|
if values.expected.is_empty() {
|
|
format!("expected no bounds but found `{}`",
|
|
values.found.user_string(cx))
|
|
} else if values.found.is_empty() {
|
|
format!("expected bounds `{}` but found no bounds",
|
|
values.expected.user_string(cx))
|
|
} else {
|
|
format!("expected bounds `{}` but found bounds `{}`",
|
|
values.expected.user_string(cx),
|
|
values.found.user_string(cx))
|
|
}
|
|
}
|
|
terr_integer_as_char => {
|
|
format!("expected an integral type but found `char`")
|
|
}
|
|
terr_int_mismatch(ref values) => {
|
|
format!("expected `{}` but found `{}`",
|
|
values.expected.to_str(),
|
|
values.found.to_str())
|
|
}
|
|
terr_float_mismatch(ref values) => {
|
|
format!("expected `{}` but found `{}`",
|
|
values.expected.to_str(),
|
|
values.found.to_str())
|
|
}
|
|
terr_variadic_mismatch(ref values) => {
|
|
format!("expected {} fn but found {} function",
|
|
if values.expected { "variadic" } else { "non-variadic" },
|
|
if values.found { "variadic" } else { "non-variadic" })
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn note_and_explain_type_err(cx: ctxt, err: &type_err) {
|
|
match *err {
|
|
terr_regions_does_not_outlive(subregion, superregion) => {
|
|
note_and_explain_region(cx, "", subregion, "...");
|
|
note_and_explain_region(cx, "...does not necessarily outlive ",
|
|
superregion, "");
|
|
}
|
|
terr_regions_not_same(region1, region2) => {
|
|
note_and_explain_region(cx, "", region1, "...");
|
|
note_and_explain_region(cx, "...is not the same lifetime as ",
|
|
region2, "");
|
|
}
|
|
terr_regions_no_overlap(region1, region2) => {
|
|
note_and_explain_region(cx, "", region1, "...");
|
|
note_and_explain_region(cx, "...does not overlap ",
|
|
region2, "");
|
|
}
|
|
terr_regions_insufficiently_polymorphic(_, conc_region) => {
|
|
note_and_explain_region(cx,
|
|
"concrete lifetime that was found is ",
|
|
conc_region, "");
|
|
}
|
|
terr_regions_overly_polymorphic(_, conc_region) => {
|
|
note_and_explain_region(cx,
|
|
"expected concrete lifetime is ",
|
|
conc_region, "");
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
pub fn def_has_ty_params(def: ast::Def) -> bool {
|
|
match def {
|
|
ast::DefFn(_, _) | ast::DefVariant(_, _, _) | ast::DefStruct(_)
|
|
=> true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn provided_source(cx: ctxt, id: ast::DefId) -> Option<ast::DefId> {
|
|
let provided_method_sources = cx.provided_method_sources.borrow();
|
|
provided_method_sources.get().find(&id).map(|x| *x)
|
|
}
|
|
|
|
pub fn provided_trait_methods(cx: ctxt, id: ast::DefId) -> Vec<@Method> {
|
|
if is_local(id) {
|
|
{
|
|
match cx.map.find(id.node) {
|
|
Some(ast_map::NodeItem(item)) => {
|
|
match item.node {
|
|
ItemTrait(_, _, ref ms) => {
|
|
let (_, p) =
|
|
ast_util::split_trait_methods(ms.as_slice());
|
|
p.iter()
|
|
.map(|m| method(cx, ast_util::local_def(m.id)))
|
|
.collect()
|
|
}
|
|
_ => {
|
|
cx.sess.bug(format!("provided_trait_methods: \
|
|
`{:?}` is not a trait",
|
|
id))
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess.bug(format!("provided_trait_methods: `{:?}` is not \
|
|
a trait",
|
|
id))
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
csearch::get_provided_trait_methods(cx, id)
|
|
}
|
|
}
|
|
|
|
pub fn trait_supertraits(cx: ctxt, id: ast::DefId) -> @Vec<@TraitRef> {
|
|
// Check the cache.
|
|
{
|
|
let supertraits = cx.supertraits.borrow();
|
|
match supertraits.get().find(&id) {
|
|
Some(&trait_refs) => { return trait_refs; }
|
|
None => {} // Continue.
|
|
}
|
|
}
|
|
|
|
// Not in the cache. It had better be in the metadata, which means it
|
|
// shouldn't be local.
|
|
assert!(!is_local(id));
|
|
|
|
// Get the supertraits out of the metadata and create the
|
|
// TraitRef for each.
|
|
let result = @csearch::get_supertraits(cx, id);
|
|
let mut supertraits = cx.supertraits.borrow_mut();
|
|
supertraits.get().insert(id, result);
|
|
return result;
|
|
}
|
|
|
|
pub fn trait_ref_supertraits(cx: ctxt, trait_ref: &ty::TraitRef) -> Vec<@TraitRef> {
|
|
let supertrait_refs = trait_supertraits(cx, trait_ref.def_id);
|
|
supertrait_refs.map(
|
|
|supertrait_ref| supertrait_ref.subst(cx, &trait_ref.substs))
|
|
}
|
|
|
|
fn lookup_locally_or_in_crate_store<V:Clone>(
|
|
descr: &str,
|
|
def_id: ast::DefId,
|
|
map: &mut DefIdMap<V>,
|
|
load_external: || -> V) -> V {
|
|
/*!
|
|
* Helper for looking things up in the various maps
|
|
* that are populated during typeck::collect (e.g.,
|
|
* `cx.methods`, `cx.tcache`, etc). All of these share
|
|
* the pattern that if the id is local, it should have
|
|
* been loaded into the map by the `typeck::collect` phase.
|
|
* If the def-id is external, then we have to go consult
|
|
* the crate loading code (and cache the result for the future).
|
|
*/
|
|
|
|
match map.find_copy(&def_id) {
|
|
Some(v) => { return v; }
|
|
None => { }
|
|
}
|
|
|
|
if def_id.krate == ast::LOCAL_CRATE {
|
|
fail!("No def'n found for {:?} in tcx.{}", def_id, descr);
|
|
}
|
|
let v = load_external();
|
|
map.insert(def_id, v.clone());
|
|
v
|
|
}
|
|
|
|
pub fn trait_method(cx: ctxt, trait_did: ast::DefId, idx: uint) -> @Method {
|
|
let method_def_id = *ty::trait_method_def_ids(cx, trait_did).get(idx);
|
|
ty::method(cx, method_def_id)
|
|
}
|
|
|
|
|
|
pub fn trait_methods(cx: ctxt, trait_did: ast::DefId) -> @Vec<@Method> {
|
|
let mut trait_methods_cache = cx.trait_methods_cache.borrow_mut();
|
|
match trait_methods_cache.get().find(&trait_did) {
|
|
Some(&methods) => methods,
|
|
None => {
|
|
let def_ids = ty::trait_method_def_ids(cx, trait_did);
|
|
let methods = @def_ids.map(|d| ty::method(cx, *d));
|
|
trait_methods_cache.get().insert(trait_did, methods);
|
|
methods
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn method(cx: ctxt, id: ast::DefId) -> @Method {
|
|
let mut methods = cx.methods.borrow_mut();
|
|
lookup_locally_or_in_crate_store("methods", id, methods.get(), || {
|
|
@csearch::get_method(cx, id)
|
|
})
|
|
}
|
|
|
|
pub fn trait_method_def_ids(cx: ctxt, id: ast::DefId) -> @Vec<DefId> {
|
|
let mut trait_method_def_ids = cx.trait_method_def_ids.borrow_mut();
|
|
lookup_locally_or_in_crate_store("trait_method_def_ids",
|
|
id,
|
|
trait_method_def_ids.get(),
|
|
|| {
|
|
@csearch::get_trait_method_def_ids(cx.cstore, id)
|
|
})
|
|
}
|
|
|
|
pub fn impl_trait_ref(cx: ctxt, id: ast::DefId) -> Option<@TraitRef> {
|
|
{
|
|
let mut impl_trait_cache = cx.impl_trait_cache.borrow_mut();
|
|
match impl_trait_cache.get().find(&id) {
|
|
Some(&ret) => { return ret; }
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
let ret = if id.krate == ast::LOCAL_CRATE {
|
|
debug!("(impl_trait_ref) searching for trait impl {:?}", id);
|
|
match cx.map.find(id.node) {
|
|
Some(ast_map::NodeItem(item)) => {
|
|
match item.node {
|
|
ast::ItemImpl(_, ref opt_trait, _, _) => {
|
|
match opt_trait {
|
|
&Some(ref t) => {
|
|
Some(ty::node_id_to_trait_ref(cx, t.ref_id))
|
|
}
|
|
&None => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
} else {
|
|
csearch::get_impl_trait(cx, id)
|
|
};
|
|
|
|
let mut impl_trait_cache = cx.impl_trait_cache.borrow_mut();
|
|
impl_trait_cache.get().insert(id, ret);
|
|
return ret;
|
|
}
|
|
|
|
pub fn trait_ref_to_def_id(tcx: ctxt, tr: &ast::TraitRef) -> ast::DefId {
|
|
let def_map = tcx.def_map.borrow();
|
|
let def = def_map.get()
|
|
.find(&tr.ref_id)
|
|
.expect("no def-map entry for trait");
|
|
ast_util::def_id_of_def(*def)
|
|
}
|
|
|
|
pub fn try_add_builtin_trait(tcx: ctxt,
|
|
trait_def_id: ast::DefId,
|
|
builtin_bounds: &mut BuiltinBounds) -> bool {
|
|
//! Checks whether `trait_ref` refers to one of the builtin
|
|
//! traits, like `Send`, and adds the corresponding
|
|
//! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
|
|
//! is a builtin trait.
|
|
|
|
match tcx.lang_items.to_builtin_kind(trait_def_id) {
|
|
Some(bound) => { builtin_bounds.add(bound); true }
|
|
None => false
|
|
}
|
|
}
|
|
|
|
pub fn ty_to_def_id(ty: t) -> Option<ast::DefId> {
|
|
match get(ty).sty {
|
|
ty_trait(id, _, _, _, _) | ty_struct(id, _) | ty_enum(id, _) => Some(id),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
// Enum information
|
|
#[deriving(Clone)]
|
|
pub struct VariantInfo {
|
|
args: Vec<t>,
|
|
arg_names: Option<Vec<ast::Ident> >,
|
|
ctor_ty: t,
|
|
name: ast::Ident,
|
|
id: ast::DefId,
|
|
disr_val: Disr,
|
|
vis: Visibility
|
|
}
|
|
|
|
impl VariantInfo {
|
|
|
|
/// Creates a new VariantInfo from the corresponding ast representation.
|
|
///
|
|
/// Does not do any caching of the value in the type context.
|
|
pub fn from_ast_variant(cx: ctxt,
|
|
ast_variant: &ast::Variant,
|
|
discriminant: Disr) -> VariantInfo {
|
|
let ctor_ty = node_id_to_type(cx, ast_variant.node.id);
|
|
|
|
match ast_variant.node.kind {
|
|
ast::TupleVariantKind(ref args) => {
|
|
let arg_tys = if args.len() > 0 {
|
|
ty_fn_args(ctor_ty).map(|a| *a)
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
|
|
return VariantInfo {
|
|
args: arg_tys,
|
|
arg_names: None,
|
|
ctor_ty: ctor_ty,
|
|
name: ast_variant.node.name,
|
|
id: ast_util::local_def(ast_variant.node.id),
|
|
disr_val: discriminant,
|
|
vis: ast_variant.node.vis
|
|
};
|
|
},
|
|
ast::StructVariantKind(ref struct_def) => {
|
|
|
|
let fields: &[StructField] = struct_def.fields.as_slice();
|
|
|
|
assert!(fields.len() > 0);
|
|
|
|
let arg_tys = ty_fn_args(ctor_ty).map(|a| *a);
|
|
let arg_names = fields.iter().map(|field| {
|
|
match field.node.kind {
|
|
NamedField(ident, _) => ident,
|
|
UnnamedField => cx.sess.bug(
|
|
"enum_variants: all fields in struct must have a name")
|
|
}
|
|
}).collect();
|
|
|
|
return VariantInfo {
|
|
args: arg_tys,
|
|
arg_names: Some(arg_names),
|
|
ctor_ty: ctor_ty,
|
|
name: ast_variant.node.name,
|
|
id: ast_util::local_def(ast_variant.node.id),
|
|
disr_val: discriminant,
|
|
vis: ast_variant.node.vis
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn substd_enum_variants(cx: ctxt,
|
|
id: ast::DefId,
|
|
substs: &substs)
|
|
-> Vec<@VariantInfo> {
|
|
enum_variants(cx, id).iter().map(|variant_info| {
|
|
let substd_args = variant_info.args.iter()
|
|
.map(|aty| subst(cx, substs, *aty)).collect();
|
|
|
|
let substd_ctor_ty = subst(cx, substs, variant_info.ctor_ty);
|
|
|
|
@VariantInfo {
|
|
args: substd_args,
|
|
ctor_ty: substd_ctor_ty,
|
|
..(**variant_info).clone()
|
|
}
|
|
}).collect()
|
|
}
|
|
|
|
pub fn item_path_str(cx: ctxt, id: ast::DefId) -> ~str {
|
|
with_path(cx, id, |path| ast_map::path_to_str(path))
|
|
}
|
|
|
|
pub enum DtorKind {
|
|
NoDtor,
|
|
TraitDtor(DefId, bool)
|
|
}
|
|
|
|
impl DtorKind {
|
|
pub fn is_not_present(&self) -> bool {
|
|
match *self {
|
|
NoDtor => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn is_present(&self) -> bool {
|
|
!self.is_not_present()
|
|
}
|
|
|
|
pub fn has_drop_flag(&self) -> bool {
|
|
match self {
|
|
&NoDtor => false,
|
|
&TraitDtor(_, flag) => flag
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If struct_id names a struct with a dtor, return Some(the dtor's id).
|
|
Otherwise return none. */
|
|
pub fn ty_dtor(cx: ctxt, struct_id: DefId) -> DtorKind {
|
|
let destructor_for_type = cx.destructor_for_type.borrow();
|
|
match destructor_for_type.get().find(&struct_id) {
|
|
Some(&method_def_id) => {
|
|
let flag = !has_attr(cx, struct_id, "unsafe_no_drop_flag");
|
|
|
|
TraitDtor(method_def_id, flag)
|
|
}
|
|
None => NoDtor,
|
|
}
|
|
}
|
|
|
|
pub fn has_dtor(cx: ctxt, struct_id: DefId) -> bool {
|
|
ty_dtor(cx, struct_id).is_present()
|
|
}
|
|
|
|
pub fn with_path<T>(cx: ctxt, id: ast::DefId, f: |ast_map::PathElems| -> T) -> T {
|
|
if id.krate == ast::LOCAL_CRATE {
|
|
cx.map.with_path(id.node, f)
|
|
} else {
|
|
f(ast_map::Values(csearch::get_item_path(cx, id).iter()).chain(None))
|
|
}
|
|
}
|
|
|
|
pub fn enum_is_univariant(cx: ctxt, id: ast::DefId) -> bool {
|
|
enum_variants(cx, id).len() == 1
|
|
}
|
|
|
|
pub fn type_is_empty(cx: ctxt, t: t) -> bool {
|
|
match ty::get(t).sty {
|
|
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn enum_variants(cx: ctxt, id: ast::DefId) -> @Vec<@VariantInfo> {
|
|
{
|
|
let enum_var_cache = cx.enum_var_cache.borrow();
|
|
match enum_var_cache.get().find(&id) {
|
|
Some(&variants) => return variants,
|
|
_ => { /* fallthrough */ }
|
|
}
|
|
}
|
|
|
|
let result = if ast::LOCAL_CRATE != id.krate {
|
|
@csearch::get_enum_variants(cx, id)
|
|
} else {
|
|
/*
|
|
Although both this code and check_enum_variants in typeck/check
|
|
call eval_const_expr, it should never get called twice for the same
|
|
expr, since check_enum_variants also updates the enum_var_cache
|
|
*/
|
|
{
|
|
match cx.map.get(id.node) {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemEnum(ref enum_definition, _) => {
|
|
let mut last_discriminant: Option<Disr> = None;
|
|
@enum_definition.variants.iter().map(|&variant| {
|
|
|
|
let mut discriminant = match last_discriminant {
|
|
Some(val) => val + 1,
|
|
None => INITIAL_DISCRIMINANT_VALUE
|
|
};
|
|
|
|
match variant.node.disr_expr {
|
|
Some(e) => match const_eval::eval_const_expr_partial(&cx, e) {
|
|
Ok(const_eval::const_int(val)) => {
|
|
discriminant = val as Disr
|
|
}
|
|
Ok(const_eval::const_uint(val)) => {
|
|
discriminant = val as Disr
|
|
}
|
|
Ok(_) => {
|
|
cx.sess
|
|
.span_err(e.span,
|
|
"expected signed integer \
|
|
constant");
|
|
}
|
|
Err(ref err) => {
|
|
cx.sess
|
|
.span_err(e.span,
|
|
format!("expected \
|
|
constant: {}",
|
|
*err));
|
|
}
|
|
},
|
|
None => {}
|
|
};
|
|
|
|
let variant_info =
|
|
@VariantInfo::from_ast_variant(cx,
|
|
variant,
|
|
discriminant);
|
|
last_discriminant = Some(discriminant);
|
|
variant_info
|
|
|
|
}).collect()
|
|
}
|
|
_ => {
|
|
cx.sess.bug("enum_variants: id not bound to an enum")
|
|
}
|
|
}
|
|
}
|
|
_ => cx.sess.bug("enum_variants: id not bound to an enum")
|
|
}
|
|
}
|
|
};
|
|
|
|
{
|
|
let mut enum_var_cache = cx.enum_var_cache.borrow_mut();
|
|
enum_var_cache.get().insert(id, result);
|
|
result
|
|
}
|
|
}
|
|
|
|
|
|
// Returns information about the enum variant with the given ID:
|
|
pub fn enum_variant_with_id(cx: ctxt,
|
|
enum_id: ast::DefId,
|
|
variant_id: ast::DefId)
|
|
-> @VariantInfo {
|
|
let variants = enum_variants(cx, enum_id);
|
|
let mut i = 0;
|
|
while i < variants.len() {
|
|
let variant = *variants.get(i);
|
|
if variant.id == variant_id {
|
|
return variant
|
|
}
|
|
i += 1;
|
|
}
|
|
cx.sess.bug("enum_variant_with_id(): no variant exists with that ID");
|
|
}
|
|
|
|
|
|
// If the given item is in an external crate, looks up its type and adds it to
|
|
// the type cache. Returns the type parameters and type.
|
|
pub fn lookup_item_type(cx: ctxt,
|
|
did: ast::DefId)
|
|
-> ty_param_bounds_and_ty {
|
|
let mut tcache = cx.tcache.borrow_mut();
|
|
lookup_locally_or_in_crate_store(
|
|
"tcache", did, tcache.get(),
|
|
|| csearch::get_type(cx, did))
|
|
}
|
|
|
|
pub fn lookup_impl_vtables(cx: ctxt,
|
|
did: ast::DefId)
|
|
-> typeck::impl_res {
|
|
let mut impl_vtables = cx.impl_vtables.borrow_mut();
|
|
lookup_locally_or_in_crate_store(
|
|
"impl_vtables", did, impl_vtables.get(),
|
|
|| csearch::get_impl_vtables(cx, did) )
|
|
}
|
|
|
|
/// Given the did of a trait, returns its canonical trait ref.
|
|
pub fn lookup_trait_def(cx: ctxt, did: ast::DefId) -> @ty::TraitDef {
|
|
let mut trait_defs = cx.trait_defs.borrow_mut();
|
|
match trait_defs.get().find(&did) {
|
|
Some(&trait_def) => {
|
|
// The item is in this crate. The caller should have added it to the
|
|
// type cache already
|
|
return trait_def;
|
|
}
|
|
None => {
|
|
assert!(did.krate != ast::LOCAL_CRATE);
|
|
let trait_def = @csearch::get_trait_def(cx, did);
|
|
trait_defs.get().insert(did, trait_def);
|
|
return trait_def;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Iterate over meta_items of a definition.
|
|
// (This should really be an iterator, but that would require csearch and
|
|
// decoder to use iterators instead of higher-order functions.)
|
|
pub fn each_attr(tcx: ctxt, did: DefId, f: |@MetaItem| -> bool) -> bool {
|
|
if is_local(did) {
|
|
let item = tcx.map.expect_item(did.node);
|
|
item.attrs.iter().advance(|attr| f(attr.node.value))
|
|
} else {
|
|
let mut cont = true;
|
|
csearch::get_item_attrs(tcx.cstore, did, |meta_items| {
|
|
if cont {
|
|
cont = meta_items.iter().advance(|ptrptr| f(*ptrptr));
|
|
}
|
|
});
|
|
cont
|
|
}
|
|
}
|
|
|
|
/// Determine whether an item is annotated with an attribute
|
|
pub fn has_attr(tcx: ctxt, did: DefId, attr: &str) -> bool {
|
|
let mut found = false;
|
|
each_attr(tcx, did, |item| {
|
|
if item.name().equiv(&attr) {
|
|
found = true;
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
found
|
|
}
|
|
|
|
/// Determine whether an item is annotated with `#[packed]`
|
|
pub fn lookup_packed(tcx: ctxt, did: DefId) -> bool {
|
|
has_attr(tcx, did, "packed")
|
|
}
|
|
|
|
/// Determine whether an item is annotated with `#[simd]`
|
|
pub fn lookup_simd(tcx: ctxt, did: DefId) -> bool {
|
|
has_attr(tcx, did, "simd")
|
|
}
|
|
|
|
// Obtain the representation annotation for a definition.
|
|
pub fn lookup_repr_hint(tcx: ctxt, did: DefId) -> attr::ReprAttr {
|
|
let mut acc = attr::ReprAny;
|
|
ty::each_attr(tcx, did, |meta| {
|
|
acc = attr::find_repr_attr(tcx.sess.diagnostic(), meta, acc);
|
|
true
|
|
});
|
|
return acc;
|
|
}
|
|
|
|
// Look up a field ID, whether or not it's local
|
|
// Takes a list of type substs in case the struct is generic
|
|
pub fn lookup_field_type(tcx: ctxt,
|
|
struct_id: DefId,
|
|
id: DefId,
|
|
substs: &substs)
|
|
-> ty::t {
|
|
let t = if id.krate == ast::LOCAL_CRATE {
|
|
node_id_to_type(tcx, id.node)
|
|
} else {
|
|
{
|
|
let mut tcache = tcx.tcache.borrow_mut();
|
|
match tcache.get().find(&id) {
|
|
Some(&ty_param_bounds_and_ty {ty, ..}) => ty,
|
|
None => {
|
|
let tpt = csearch::get_field_type(tcx, struct_id, id);
|
|
tcache.get().insert(id, tpt.clone());
|
|
tpt.ty
|
|
}
|
|
}
|
|
}
|
|
};
|
|
subst(tcx, substs, t)
|
|
}
|
|
|
|
// Look up the list of field names and IDs for a given struct
|
|
// Fails if the id is not bound to a struct.
|
|
pub fn lookup_struct_fields(cx: ctxt, did: ast::DefId) -> Vec<field_ty> {
|
|
if did.krate == ast::LOCAL_CRATE {
|
|
{
|
|
match cx.map.find(did.node) {
|
|
Some(ast_map::NodeItem(i)) => {
|
|
match i.node {
|
|
ast::ItemStruct(struct_def, _) => {
|
|
struct_field_tys(struct_def.fields.as_slice())
|
|
}
|
|
_ => cx.sess.bug("struct ID bound to non-struct")
|
|
}
|
|
}
|
|
Some(ast_map::NodeVariant(ref variant)) => {
|
|
match (*variant).node.kind {
|
|
ast::StructVariantKind(struct_def) => {
|
|
struct_field_tys(struct_def.fields.as_slice())
|
|
}
|
|
_ => {
|
|
cx.sess.bug("struct ID bound to enum variant that isn't \
|
|
struct-like")
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess.bug(
|
|
format!("struct ID not bound to an item: {}",
|
|
cx.map.node_to_str(did.node)));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
return csearch::get_struct_fields(cx.sess.cstore, did);
|
|
}
|
|
}
|
|
|
|
pub fn lookup_struct_field(cx: ctxt,
|
|
parent: ast::DefId,
|
|
field_id: ast::DefId)
|
|
-> field_ty {
|
|
let r = lookup_struct_fields(cx, parent);
|
|
match r.iter().find(
|
|
|f| f.id.node == field_id.node) {
|
|
Some(t) => *t,
|
|
None => cx.sess.bug("struct ID not found in parent's fields")
|
|
}
|
|
}
|
|
|
|
fn struct_field_tys(fields: &[StructField]) -> Vec<field_ty> {
|
|
fields.iter().map(|field| {
|
|
match field.node.kind {
|
|
NamedField(ident, visibility) => {
|
|
field_ty {
|
|
name: ident.name,
|
|
id: ast_util::local_def(field.node.id),
|
|
vis: visibility,
|
|
}
|
|
}
|
|
UnnamedField => {
|
|
field_ty {
|
|
name: syntax::parse::token::special_idents::unnamed_field.name,
|
|
id: ast_util::local_def(field.node.id),
|
|
vis: ast::Public,
|
|
}
|
|
}
|
|
}
|
|
}).collect()
|
|
}
|
|
|
|
// Returns a list of fields corresponding to the struct's items. trans uses
|
|
// this. Takes a list of substs with which to instantiate field types.
|
|
pub fn struct_fields(cx: ctxt, did: ast::DefId, substs: &substs)
|
|
-> Vec<field> {
|
|
lookup_struct_fields(cx, did).map(|f| {
|
|
field {
|
|
// FIXME #6993: change type of field to Name and get rid of new()
|
|
ident: ast::Ident::new(f.name),
|
|
mt: mt {
|
|
ty: lookup_field_type(cx, did, f.id, substs),
|
|
mutbl: MutImmutable
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn is_binopable(cx: ctxt, ty: t, op: ast::BinOp) -> bool {
|
|
static tycat_other: int = 0;
|
|
static tycat_bool: int = 1;
|
|
static tycat_char: int = 2;
|
|
static tycat_int: int = 3;
|
|
static tycat_float: int = 4;
|
|
static tycat_bot: int = 5;
|
|
static tycat_raw_ptr: int = 6;
|
|
|
|
static opcat_add: int = 0;
|
|
static opcat_sub: int = 1;
|
|
static opcat_mult: int = 2;
|
|
static opcat_shift: int = 3;
|
|
static opcat_rel: int = 4;
|
|
static opcat_eq: int = 5;
|
|
static opcat_bit: int = 6;
|
|
static opcat_logic: int = 7;
|
|
|
|
fn opcat(op: ast::BinOp) -> int {
|
|
match op {
|
|
ast::BiAdd => opcat_add,
|
|
ast::BiSub => opcat_sub,
|
|
ast::BiMul => opcat_mult,
|
|
ast::BiDiv => opcat_mult,
|
|
ast::BiRem => opcat_mult,
|
|
ast::BiAnd => opcat_logic,
|
|
ast::BiOr => opcat_logic,
|
|
ast::BiBitXor => opcat_bit,
|
|
ast::BiBitAnd => opcat_bit,
|
|
ast::BiBitOr => opcat_bit,
|
|
ast::BiShl => opcat_shift,
|
|
ast::BiShr => opcat_shift,
|
|
ast::BiEq => opcat_eq,
|
|
ast::BiNe => opcat_eq,
|
|
ast::BiLt => opcat_rel,
|
|
ast::BiLe => opcat_rel,
|
|
ast::BiGe => opcat_rel,
|
|
ast::BiGt => opcat_rel
|
|
}
|
|
}
|
|
|
|
fn tycat(cx: ctxt, ty: t) -> int {
|
|
if type_is_simd(cx, ty) {
|
|
return tycat(cx, simd_type(cx, ty))
|
|
}
|
|
match get(ty).sty {
|
|
ty_char => tycat_char,
|
|
ty_bool => tycat_bool,
|
|
ty_int(_) | ty_uint(_) | ty_infer(IntVar(_)) => tycat_int,
|
|
ty_float(_) | ty_infer(FloatVar(_)) => tycat_float,
|
|
ty_bot => tycat_bot,
|
|
ty_ptr(_) => tycat_raw_ptr,
|
|
_ => tycat_other
|
|
}
|
|
}
|
|
|
|
static t: bool = true;
|
|
static f: bool = false;
|
|
|
|
let tbl = [
|
|
// +, -, *, shift, rel, ==, bit, logic
|
|
/*other*/ [f, f, f, f, f, f, f, f],
|
|
/*bool*/ [f, f, f, f, t, t, t, t],
|
|
/*char*/ [f, f, f, f, t, t, f, f],
|
|
/*int*/ [t, t, t, t, t, t, t, f],
|
|
/*float*/ [t, t, t, f, t, t, f, f],
|
|
/*bot*/ [t, t, t, t, t, t, t, t],
|
|
/*raw ptr*/ [f, f, f, f, t, t, f, f]];
|
|
|
|
return tbl[tycat(cx, ty)][opcat(op)];
|
|
}
|
|
|
|
pub fn ty_params_to_tys(tcx: ty::ctxt, generics: &ast::Generics) -> Vec<t> {
|
|
Vec::from_fn(generics.ty_params.len(), |i| {
|
|
let id = generics.ty_params.get(i).id;
|
|
ty::mk_param(tcx, i, ast_util::local_def(id))
|
|
})
|
|
}
|
|
|
|
/// Returns an equivalent type with all the typedefs and self regions removed.
|
|
pub fn normalize_ty(cx: ctxt, t: t) -> t {
|
|
let u = TypeNormalizer(cx).fold_ty(t);
|
|
return u;
|
|
|
|
struct TypeNormalizer(ctxt);
|
|
|
|
impl TypeFolder for TypeNormalizer {
|
|
fn tcx(&self) -> ty::ctxt { let TypeNormalizer(c) = *self; c }
|
|
|
|
fn fold_ty(&mut self, t: ty::t) -> ty::t {
|
|
let normalized_opt = {
|
|
let normalized_cache = self.tcx().normalized_cache.borrow();
|
|
normalized_cache.get().find_copy(&t)
|
|
};
|
|
match normalized_opt {
|
|
Some(u) => {
|
|
return u;
|
|
}
|
|
None => {
|
|
let t_norm = ty_fold::super_fold_ty(self, t);
|
|
let mut normalized_cache = self.tcx()
|
|
.normalized_cache
|
|
.borrow_mut();
|
|
normalized_cache.get().insert(t, t_norm);
|
|
return t_norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fold_vstore(&mut self, vstore: vstore) -> vstore {
|
|
match vstore {
|
|
vstore_fixed(..) | vstore_uniq => vstore,
|
|
vstore_slice(_) => vstore_slice(ReStatic)
|
|
}
|
|
}
|
|
|
|
fn fold_region(&mut self, _: ty::Region) -> ty::Region {
|
|
ty::ReStatic
|
|
}
|
|
|
|
fn fold_substs(&mut self,
|
|
substs: &substs)
|
|
-> substs {
|
|
substs { regions: ErasedRegions,
|
|
self_ty: ty_fold::fold_opt_ty(self, substs.self_ty),
|
|
tps: ty_fold::fold_ty_vec(self, substs.tps.as_slice()) }
|
|
}
|
|
|
|
fn fold_sig(&mut self,
|
|
sig: &ty::FnSig)
|
|
-> ty::FnSig {
|
|
// The binder-id is only relevant to bound regions, which
|
|
// are erased at trans time.
|
|
ty::FnSig {
|
|
binder_id: ast::DUMMY_NODE_ID,
|
|
inputs: ty_fold::fold_ty_vec(self, sig.inputs.as_slice()),
|
|
output: self.fold_ty(sig.output),
|
|
variadic: sig.variadic,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait ExprTyProvider {
|
|
fn expr_ty(&self, ex: &ast::Expr) -> t;
|
|
fn ty_ctxt(&self) -> ctxt;
|
|
}
|
|
|
|
impl ExprTyProvider for ctxt {
|
|
fn expr_ty(&self, ex: &ast::Expr) -> t {
|
|
expr_ty(*self, ex)
|
|
}
|
|
|
|
fn ty_ctxt(&self) -> ctxt {
|
|
*self
|
|
}
|
|
}
|
|
|
|
// Returns the repeat count for a repeating vector expression.
|
|
pub fn eval_repeat_count<T: ExprTyProvider>(tcx: &T, count_expr: &ast::Expr) -> uint {
|
|
match const_eval::eval_const_expr_partial(tcx, count_expr) {
|
|
Ok(ref const_val) => match *const_val {
|
|
const_eval::const_int(count) => if count < 0 {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count but found negative integer");
|
|
return 0;
|
|
} else {
|
|
return count as uint
|
|
},
|
|
const_eval::const_uint(count) => return count as uint,
|
|
const_eval::const_float(count) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count but found float");
|
|
return count as uint;
|
|
}
|
|
const_eval::const_str(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count but found string");
|
|
return 0;
|
|
}
|
|
const_eval::const_bool(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count but found boolean");
|
|
return 0;
|
|
}
|
|
const_eval::const_binary(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count but found binary array");
|
|
return 0;
|
|
}
|
|
},
|
|
Err(..) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected constant integer for repeat count \
|
|
but found variable");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine what purity to check a nested function under
|
|
pub fn determine_inherited_purity(parent: (ast::Purity, ast::NodeId),
|
|
child: (ast::Purity, ast::NodeId),
|
|
child_sigil: ast::Sigil)
|
|
-> (ast::Purity, ast::NodeId) {
|
|
// If the closure is a stack closure and hasn't had some non-standard
|
|
// purity inferred for it, then check it under its parent's purity.
|
|
// Otherwise, use its own
|
|
match child_sigil {
|
|
ast::BorrowedSigil if child.val0() == ast::ImpureFn => parent,
|
|
_ => child
|
|
}
|
|
}
|
|
|
|
// Iterate over a type parameter's bounded traits and any supertraits
|
|
// of those traits, ignoring kinds.
|
|
// Here, the supertraits are the transitive closure of the supertrait
|
|
// relation on the supertraits from each bounded trait's constraint
|
|
// list.
|
|
pub fn each_bound_trait_and_supertraits(tcx: ctxt,
|
|
bounds: &[@TraitRef],
|
|
f: |@TraitRef| -> bool)
|
|
-> bool {
|
|
for &bound_trait_ref in bounds.iter() {
|
|
let mut supertrait_set = HashMap::new();
|
|
let mut trait_refs = Vec::new();
|
|
let mut i = 0;
|
|
|
|
// Seed the worklist with the trait from the bound
|
|
supertrait_set.insert(bound_trait_ref.def_id, ());
|
|
trait_refs.push(bound_trait_ref);
|
|
|
|
// Add the given trait ty to the hash map
|
|
while i < trait_refs.len() {
|
|
debug!("each_bound_trait_and_supertraits(i={:?}, trait_ref={})",
|
|
i, trait_refs.get(i).repr(tcx));
|
|
|
|
if !f(*trait_refs.get(i)) {
|
|
return false;
|
|
}
|
|
|
|
// Add supertraits to supertrait_set
|
|
let supertrait_refs = trait_ref_supertraits(tcx,
|
|
*trait_refs.get(i));
|
|
for &supertrait_ref in supertrait_refs.iter() {
|
|
debug!("each_bound_trait_and_supertraits(supertrait_ref={})",
|
|
supertrait_ref.repr(tcx));
|
|
|
|
let d_id = supertrait_ref.def_id;
|
|
if !supertrait_set.contains_key(&d_id) {
|
|
// FIXME(#5527) Could have same trait multiple times
|
|
supertrait_set.insert(d_id, ());
|
|
trait_refs.push(supertrait_ref);
|
|
}
|
|
}
|
|
|
|
i += 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
pub fn count_traits_and_supertraits(tcx: ctxt,
|
|
type_param_defs: &[TypeParameterDef]) -> uint {
|
|
let mut total = 0;
|
|
for type_param_def in type_param_defs.iter() {
|
|
each_bound_trait_and_supertraits(
|
|
tcx, type_param_def.bounds.trait_bounds.as_slice(), |_| {
|
|
total += 1;
|
|
true
|
|
});
|
|
}
|
|
return total;
|
|
}
|
|
|
|
pub fn get_tydesc_ty(tcx: ctxt) -> Result<t, ~str> {
|
|
tcx.lang_items.require(TyDescStructLangItem).map(|tydesc_lang_item| {
|
|
let intrinsic_defs = tcx.intrinsic_defs.borrow();
|
|
intrinsic_defs.get().find_copy(&tydesc_lang_item)
|
|
.expect("Failed to resolve TyDesc")
|
|
})
|
|
}
|
|
|
|
pub fn get_opaque_ty(tcx: ctxt) -> Result<t, ~str> {
|
|
tcx.lang_items.require(OpaqueStructLangItem).map(|opaque_lang_item| {
|
|
let intrinsic_defs = tcx.intrinsic_defs.borrow();
|
|
intrinsic_defs.get().find_copy(&opaque_lang_item)
|
|
.expect("Failed to resolve Opaque")
|
|
})
|
|
}
|
|
|
|
pub fn visitor_object_ty(tcx: ctxt,
|
|
region: ty::Region) -> Result<(@TraitRef, t), ~str> {
|
|
let trait_lang_item = match tcx.lang_items.require(TyVisitorTraitLangItem) {
|
|
Ok(id) => id,
|
|
Err(s) => { return Err(s); }
|
|
};
|
|
let substs = substs {
|
|
regions: ty::NonerasedRegions(opt_vec::Empty),
|
|
self_ty: None,
|
|
tps: Vec::new()
|
|
};
|
|
let trait_ref = @TraitRef { def_id: trait_lang_item, substs: substs };
|
|
Ok((trait_ref,
|
|
mk_trait(tcx,
|
|
trait_ref.def_id,
|
|
trait_ref.substs.clone(),
|
|
RegionTraitStore(region),
|
|
ast::MutMutable,
|
|
EmptyBuiltinBounds())))
|
|
}
|
|
|
|
pub fn item_variances(tcx: ctxt, item_id: ast::DefId) -> @ItemVariances {
|
|
let mut item_variance_map = tcx.item_variance_map.borrow_mut();
|
|
lookup_locally_or_in_crate_store(
|
|
"item_variance_map", item_id, item_variance_map.get(),
|
|
|| @csearch::get_item_variances(tcx.cstore, item_id))
|
|
}
|
|
|
|
/// Records a trait-to-implementation mapping.
|
|
fn record_trait_implementation(tcx: ctxt,
|
|
trait_def_id: DefId,
|
|
implementation: @Impl) {
|
|
let implementation_list;
|
|
let mut trait_impls = tcx.trait_impls.borrow_mut();
|
|
match trait_impls.get().find(&trait_def_id) {
|
|
None => {
|
|
implementation_list = @RefCell::new(Vec::new());
|
|
trait_impls.get().insert(trait_def_id, implementation_list);
|
|
}
|
|
Some(&existing_implementation_list) => {
|
|
implementation_list = existing_implementation_list
|
|
}
|
|
}
|
|
|
|
let mut implementation_list = implementation_list.borrow_mut();
|
|
implementation_list.get().push(implementation);
|
|
}
|
|
|
|
/// Populates the type context with all the implementations for the given type
|
|
/// if necessary.
|
|
pub fn populate_implementations_for_type_if_necessary(tcx: ctxt,
|
|
type_id: ast::DefId) {
|
|
if type_id.krate == LOCAL_CRATE {
|
|
return
|
|
}
|
|
{
|
|
let populated_external_types = tcx.populated_external_types.borrow();
|
|
if populated_external_types.get().contains(&type_id) {
|
|
return
|
|
}
|
|
}
|
|
|
|
csearch::each_implementation_for_type(tcx.sess.cstore, type_id,
|
|
|implementation_def_id| {
|
|
let implementation = @csearch::get_impl(tcx, implementation_def_id);
|
|
|
|
// Record the trait->implementation mappings, if applicable.
|
|
let associated_traits = csearch::get_impl_trait(tcx,
|
|
implementation.did);
|
|
for trait_ref in associated_traits.iter() {
|
|
record_trait_implementation(tcx,
|
|
trait_ref.def_id,
|
|
implementation);
|
|
}
|
|
|
|
// For any methods that use a default implementation, add them to
|
|
// the map. This is a bit unfortunate.
|
|
for method in implementation.methods.iter() {
|
|
for source in method.provided_source.iter() {
|
|
let mut provided_method_sources =
|
|
tcx.provided_method_sources.borrow_mut();
|
|
provided_method_sources.get().insert(method.def_id, *source);
|
|
}
|
|
}
|
|
|
|
// If this is an inherent implementation, record it.
|
|
if associated_traits.is_none() {
|
|
let implementation_list;
|
|
let mut inherent_impls = tcx.inherent_impls.borrow_mut();
|
|
match inherent_impls.get().find(&type_id) {
|
|
None => {
|
|
implementation_list = @RefCell::new(Vec::new());
|
|
inherent_impls.get().insert(type_id, implementation_list);
|
|
}
|
|
Some(&existing_implementation_list) => {
|
|
implementation_list = existing_implementation_list;
|
|
}
|
|
}
|
|
{
|
|
let mut implementation_list =
|
|
implementation_list.borrow_mut();
|
|
implementation_list.get().push(implementation);
|
|
}
|
|
}
|
|
|
|
// Store the implementation info.
|
|
let mut impls = tcx.impls.borrow_mut();
|
|
impls.get().insert(implementation_def_id, implementation);
|
|
});
|
|
|
|
let mut populated_external_types = tcx.populated_external_types
|
|
.borrow_mut();
|
|
populated_external_types.get().insert(type_id);
|
|
}
|
|
|
|
/// Populates the type context with all the implementations for the given
|
|
/// trait if necessary.
|
|
pub fn populate_implementations_for_trait_if_necessary(
|
|
tcx: ctxt,
|
|
trait_id: ast::DefId) {
|
|
if trait_id.krate == LOCAL_CRATE {
|
|
return
|
|
}
|
|
{
|
|
let populated_external_traits = tcx.populated_external_traits
|
|
.borrow();
|
|
if populated_external_traits.get().contains(&trait_id) {
|
|
return
|
|
}
|
|
}
|
|
|
|
csearch::each_implementation_for_trait(tcx.sess.cstore, trait_id,
|
|
|implementation_def_id| {
|
|
let implementation = @csearch::get_impl(tcx, implementation_def_id);
|
|
|
|
// Record the trait->implementation mapping.
|
|
record_trait_implementation(tcx, trait_id, implementation);
|
|
|
|
// For any methods that use a default implementation, add them to
|
|
// the map. This is a bit unfortunate.
|
|
for method in implementation.methods.iter() {
|
|
for source in method.provided_source.iter() {
|
|
let mut provided_method_sources =
|
|
tcx.provided_method_sources.borrow_mut();
|
|
provided_method_sources.get().insert(method.def_id, *source);
|
|
}
|
|
}
|
|
|
|
// Store the implementation info.
|
|
let mut impls = tcx.impls.borrow_mut();
|
|
impls.get().insert(implementation_def_id, implementation);
|
|
});
|
|
|
|
let mut populated_external_traits = tcx.populated_external_traits
|
|
.borrow_mut();
|
|
populated_external_traits.get().insert(trait_id);
|
|
}
|
|
|
|
/// Given the def_id of an impl, return the def_id of the trait it implements.
|
|
/// If it implements no trait, return `None`.
|
|
pub fn trait_id_of_impl(tcx: ctxt,
|
|
def_id: ast::DefId) -> Option<ast::DefId> {
|
|
let node = match tcx.map.find(def_id.node) {
|
|
Some(node) => node,
|
|
None => return None
|
|
};
|
|
match node {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemImpl(_, Some(ref trait_ref), _, _) => {
|
|
Some(node_id_to_trait_ref(tcx, trait_ref.ref_id).def_id)
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
/// If the given def ID describes a method belonging to a trait (either a
|
|
/// default method or an implementation of a trait method), return the ID of
|
|
/// the trait that the method belongs to. Otherwise, return `None`.
|
|
pub fn trait_of_method(tcx: ctxt, def_id: ast::DefId)
|
|
-> Option<ast::DefId> {
|
|
if def_id.krate != LOCAL_CRATE {
|
|
return csearch::get_trait_of_method(tcx.cstore, def_id, tcx);
|
|
}
|
|
let method;
|
|
{
|
|
let methods = tcx.methods.borrow();
|
|
method = methods.get().find(&def_id).map(|method| *method);
|
|
}
|
|
match method {
|
|
Some(method) => {
|
|
match method.container {
|
|
TraitContainer(def_id) => Some(def_id),
|
|
ImplContainer(def_id) => trait_id_of_impl(tcx, def_id),
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// If the given def ID describes a method belonging to a trait, (either a
|
|
/// default method or an implementation of a trait method), return the ID of
|
|
/// the method inside trait definition (this means that if the given def ID
|
|
/// is already that of the original trait method, then the return value is
|
|
/// the same).
|
|
/// Otherwise, return `None`.
|
|
pub fn trait_method_of_method(tcx: ctxt,
|
|
def_id: ast::DefId) -> Option<ast::DefId> {
|
|
let method;
|
|
{
|
|
let methods = tcx.methods.borrow();
|
|
match methods.get().find(&def_id) {
|
|
Some(m) => method = *m,
|
|
None => return None,
|
|
}
|
|
}
|
|
let name = method.ident.name;
|
|
match trait_of_method(tcx, def_id) {
|
|
Some(trait_did) => {
|
|
let trait_methods = ty::trait_methods(tcx, trait_did);
|
|
trait_methods.iter()
|
|
.position(|m| m.ident.name == name)
|
|
.map(|idx| ty::trait_method(tcx, trait_did, idx).def_id)
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Creates a hash of the type `t` which will be the same no matter what crate
|
|
/// context it's calculated within. This is used by the `type_id` intrinsic.
|
|
pub fn hash_crate_independent(tcx: ctxt, t: t, svh: &Svh) -> u64 {
|
|
let mut state = sip::SipState::new();
|
|
macro_rules! byte( ($b:expr) => { ($b as u8).hash(&mut state) } );
|
|
macro_rules! hash( ($e:expr) => { $e.hash(&mut state) } );
|
|
|
|
let region = |_state: &mut sip::SipState, r: Region| {
|
|
match r {
|
|
ReStatic => {}
|
|
|
|
ReEmpty |
|
|
ReEarlyBound(..) |
|
|
ReLateBound(..) |
|
|
ReFree(..) |
|
|
ReScope(..) |
|
|
ReInfer(..) => {
|
|
tcx.sess.bug("non-static region found when hashing a type")
|
|
}
|
|
}
|
|
};
|
|
let vstore = |state: &mut sip::SipState, v: vstore| {
|
|
match v {
|
|
vstore_fixed(_) => 0u8.hash(state),
|
|
vstore_uniq => 1u8.hash(state),
|
|
vstore_slice(r) => {
|
|
2u8.hash(state);
|
|
region(state, r);
|
|
}
|
|
}
|
|
};
|
|
let did = |state: &mut sip::SipState, did: DefId| {
|
|
let h = if ast_util::is_local(did) {
|
|
svh.clone()
|
|
} else {
|
|
tcx.sess.cstore.get_crate_hash(did.krate)
|
|
};
|
|
h.as_str().hash(state);
|
|
did.node.hash(state);
|
|
};
|
|
let mt = |state: &mut sip::SipState, mt: mt| {
|
|
mt.mutbl.hash(state);
|
|
};
|
|
ty::walk_ty(t, |t| {
|
|
match ty::get(t).sty {
|
|
ty_nil => byte!(0),
|
|
ty_bot => byte!(1),
|
|
ty_bool => byte!(2),
|
|
ty_char => byte!(3),
|
|
ty_int(i) => {
|
|
byte!(4);
|
|
hash!(i);
|
|
}
|
|
ty_uint(u) => {
|
|
byte!(5);
|
|
hash!(u);
|
|
}
|
|
ty_float(f) => {
|
|
byte!(6);
|
|
hash!(f);
|
|
}
|
|
ty_str(v) => {
|
|
byte!(7);
|
|
hash!(v);
|
|
}
|
|
ty_enum(d, _) => {
|
|
byte!(8);
|
|
hash!(d)
|
|
}
|
|
ty_box(_) => {
|
|
byte!(9);
|
|
}
|
|
ty_uniq(_) => {
|
|
byte!(10);
|
|
}
|
|
ty_vec(m, v) => {
|
|
byte!(11);
|
|
mt(&mut state, m);
|
|
vstore(&mut state, v);
|
|
}
|
|
ty_ptr(m) => {
|
|
byte!(12);
|
|
mt(&mut state, m);
|
|
}
|
|
ty_rptr(r, m) => {
|
|
byte!(13);
|
|
region(&mut state, r);
|
|
mt(&mut state, m);
|
|
}
|
|
ty_bare_fn(ref b) => {
|
|
byte!(14);
|
|
hash!(b.purity);
|
|
hash!(b.abis);
|
|
}
|
|
ty_closure(ref c) => {
|
|
byte!(15);
|
|
hash!(c.purity);
|
|
hash!(c.sigil);
|
|
hash!(c.onceness);
|
|
hash!(c.bounds);
|
|
region(&mut state, c.region);
|
|
}
|
|
ty_trait(d, _, store, m, bounds) => {
|
|
byte!(17);
|
|
did(&mut state, d);
|
|
match store {
|
|
UniqTraitStore => byte!(0),
|
|
RegionTraitStore(r) => {
|
|
byte!(1)
|
|
region(&mut state, r);
|
|
}
|
|
}
|
|
hash!(m);
|
|
hash!(bounds);
|
|
}
|
|
ty_struct(d, _) => {
|
|
byte!(18);
|
|
did(&mut state, d);
|
|
}
|
|
ty_tup(ref inner) => {
|
|
byte!(19);
|
|
hash!(inner.len());
|
|
}
|
|
ty_param(p) => {
|
|
byte!(20);
|
|
hash!(p.idx);
|
|
did(&mut state, p.def_id);
|
|
}
|
|
ty_self(d) => {
|
|
byte!(21);
|
|
did(&mut state, d);
|
|
}
|
|
ty_infer(_) => unreachable!(),
|
|
ty_err => byte!(23),
|
|
ty_unboxed_vec(m) => {
|
|
byte!(24);
|
|
mt(&mut state, m);
|
|
}
|
|
}
|
|
});
|
|
|
|
state.result()
|
|
}
|
|
|
|
impl Variance {
|
|
pub fn to_str(self) -> &'static str {
|
|
match self {
|
|
Covariant => "+",
|
|
Contravariant => "-",
|
|
Invariant => "o",
|
|
Bivariant => "*",
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn construct_parameter_environment(
|
|
tcx: ctxt,
|
|
self_bound: Option<@TraitRef>,
|
|
item_type_params: &[TypeParameterDef],
|
|
method_type_params: &[TypeParameterDef],
|
|
item_region_params: &[RegionParameterDef],
|
|
free_id: ast::NodeId)
|
|
-> ParameterEnvironment
|
|
{
|
|
/*! See `ParameterEnvironment` struct def'n for details */
|
|
|
|
//
|
|
// Construct the free substs.
|
|
//
|
|
|
|
// map Self => Self
|
|
let self_ty = self_bound.map(|t| ty::mk_self(tcx, t.def_id));
|
|
|
|
// map A => A
|
|
let num_item_type_params = item_type_params.len();
|
|
let num_method_type_params = method_type_params.len();
|
|
let num_type_params = num_item_type_params + num_method_type_params;
|
|
let type_params = Vec::from_fn(num_type_params, |i| {
|
|
let def_id = if i < num_item_type_params {
|
|
item_type_params[i].def_id
|
|
} else {
|
|
method_type_params[i - num_item_type_params].def_id
|
|
};
|
|
|
|
ty::mk_param(tcx, i, def_id)
|
|
});
|
|
|
|
// map bound 'a => free 'a
|
|
let region_params = item_region_params.iter().
|
|
map(|r| ty::ReFree(ty::FreeRegion {
|
|
scope_id: free_id,
|
|
bound_region: ty::BrNamed(r.def_id, r.ident)})).
|
|
collect();
|
|
|
|
let free_substs = substs {
|
|
self_ty: self_ty,
|
|
tps: type_params,
|
|
regions: ty::NonerasedRegions(region_params)
|
|
};
|
|
|
|
//
|
|
// Compute the bounds on Self and the type parameters.
|
|
//
|
|
|
|
let self_bound_substd = self_bound.map(|b| b.subst(tcx, &free_substs));
|
|
let type_param_bounds_substd = Vec::from_fn(num_type_params, |i| {
|
|
if i < num_item_type_params {
|
|
(*item_type_params[i].bounds).subst(tcx, &free_substs)
|
|
} else {
|
|
let j = i - num_item_type_params;
|
|
(*method_type_params[j].bounds).subst(tcx, &free_substs)
|
|
}
|
|
});
|
|
|
|
ty::ParameterEnvironment {
|
|
free_substs: free_substs,
|
|
self_param_bound: self_bound_substd,
|
|
type_param_bounds: type_param_bounds_substd,
|
|
}
|
|
}
|
|
|
|
impl substs {
|
|
pub fn empty() -> substs {
|
|
substs {
|
|
self_ty: None,
|
|
tps: Vec::new(),
|
|
regions: NonerasedRegions(opt_vec::Empty)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BorrowKind {
|
|
pub fn from_mutbl(m: ast::Mutability) -> BorrowKind {
|
|
match m {
|
|
ast::MutMutable => MutBorrow,
|
|
ast::MutImmutable => ImmBorrow,
|
|
}
|
|
}
|
|
|
|
pub fn to_user_str(&self) -> &'static str {
|
|
match *self {
|
|
MutBorrow => "mutable",
|
|
ImmBorrow => "immutable",
|
|
UniqueImmBorrow => "uniquely immutable",
|
|
}
|
|
}
|
|
|
|
pub fn to_short_str(&self) -> &'static str {
|
|
match *self {
|
|
MutBorrow => "mut",
|
|
ImmBorrow => "imm",
|
|
UniqueImmBorrow => "own",
|
|
}
|
|
}
|
|
}
|