rust/src/librustc/middle/check_match.rs
bors aba11b3206 Auto merge of #31020 - regexident:fix_16884, r=brson
Changes error message from displaying first found missing constructor witness to showing up to 10, if necessary.

Fixes issue #16884.
2016-01-27 07:32:00 +00:00

1215 lines
46 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use dep_graph::DepNode;
use middle::const_eval::{compare_const_vals, ConstVal};
use middle::const_eval::{eval_const_expr, eval_const_expr_partial};
use middle::const_eval::{const_expr_to_pat, lookup_const_by_id};
use middle::const_eval::EvalHint::ExprTypeChecked;
use middle::def::*;
use middle::def_id::{DefId};
use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor};
use middle::expr_use_visitor::{LoanCause, MutateMode};
use middle::expr_use_visitor as euv;
use middle::infer;
use middle::mem_categorization::{cmt};
use middle::pat_util::*;
use middle::ty::*;
use middle::ty;
use std::cmp::Ordering;
use std::fmt;
use std::iter::{FromIterator, IntoIterator, repeat};
use rustc_front::hir;
use rustc_front::hir::Pat;
use rustc_front::intravisit::{self, Visitor, FnKind};
use rustc_front::util as front_util;
use rustc_back::slice;
use syntax::ast::{self, DUMMY_NODE_ID, NodeId};
use syntax::ast_util;
use syntax::codemap::{Span, Spanned, DUMMY_SP};
use rustc_front::fold::{Folder, noop_fold_pat};
use rustc_front::print::pprust::pat_to_string;
use syntax::ptr::P;
use util::nodemap::FnvHashMap;
pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
id: DUMMY_NODE_ID,
node: hir::PatWild,
span: DUMMY_SP
};
struct Matrix<'a>(Vec<Vec<&'a Pat>>);
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a> fmt::Debug for Matrix<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "\n"));
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter()
.map(|&pat| pat_to_string(&*pat))
.collect::<Vec<String>>()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
try!(write!(f, "{}\n", br));
for row in pretty_printed_matrix {
try!(write!(f, "+"));
for (column, pat_str) in row.into_iter().enumerate() {
try!(write!(f, " "));
try!(write!(f, "{:1$}", pat_str, column_widths[column]));
try!(write!(f, " +"));
}
try!(write!(f, "\n"));
try!(write!(f, "{}\n", br));
}
Ok(())
}
}
impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pat>>>(iter: T) -> Matrix<'a> {
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>,
pub param_env: ParameterEnvironment<'a, 'tcx>,
}
#[derive(Clone, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(ConstVal),
/// Ranges of literal values (2..5).
ConstantRange(ConstVal, ConstVal),
/// Array patterns of length n.
Slice(usize),
/// Array patterns with a subslice.
SliceWithSubslice(usize, usize)
}
#[derive(Clone, PartialEq)]
enum Usefulness {
Useful,
UsefulWithWitness(Vec<P<Pat>>),
NotUseful
}
#[derive(Copy, Clone)]
enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
fn visit_expr(&mut self, ex: &hir::Expr) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &hir::Local) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
b: &'v hir::Block, s: Span, n: NodeId) {
check_fn(self, fk, fd, b, s, n);
}
}
pub fn check_crate(tcx: &ty::ctxt) {
tcx.visit_all_items_in_krate(DepNode::MatchCheck, &mut MatchCheckCtxt {
tcx: tcx,
param_env: tcx.empty_parameter_environment(),
});
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &hir::Expr) {
intravisit::walk_expr(cx, ex);
match ex.node {
hir::ExprMatch(ref scrut, ref arms, source) => {
for arm in arms {
// First, check legality of move bindings.
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
&arm.pats);
// Second, if there is a guard on each arm, make sure it isn't
// assigning or borrowing anything mutably.
match arm.guard {
Some(ref guard) => check_for_mutation_in_guard(cx, &**guard),
None => {}
}
}
let mut static_inliner = StaticInliner::new(cx.tcx, None);
let inlined_arms = arms.iter().map(|arm| {
(arm.pats.iter().map(|pat| {
static_inliner.fold_pat((*pat).clone())
}).collect(), arm.guard.as_ref().map(|e| &**e))
}).collect::<Vec<(Vec<P<Pat>>, Option<&hir::Expr>)>>();
// Bail out early if inlining failed.
if static_inliner.failed {
return;
}
for pat in inlined_arms
.iter()
.flat_map(|&(ref pats, _)| pats) {
// Third, check legality of move bindings.
check_legality_of_bindings_in_at_patterns(cx, &**pat);
// Fourth, check if there are any references to NaN that we should warn about.
check_for_static_nan(cx, &**pat);
// Fifth, check if for any of the patterns that match an enumerated type
// are bindings with the same name as one of the variants of said type.
check_for_bindings_named_the_same_as_variants(cx, &**pat);
}
// Fourth, check for unreachable arms.
check_arms(cx, &inlined_arms[..], source);
// Finally, check if the whole match expression is exhaustive.
// Check for empty enum, because is_useful only works on inhabited types.
let pat_ty = cx.tcx.node_id_to_type(scrut.id);
if inlined_arms.is_empty() {
if !pat_ty.is_empty(cx.tcx) {
// We know the type is inhabited, so this must be wrong
let mut err = struct_span_err!(cx.tcx.sess, ex.span, E0002,
"non-exhaustive patterns: type {} is non-empty",
pat_ty);
span_help!(&mut err, ex.span,
"Please ensure that all possible cases are being handled; \
possibly adding wildcards or more match arms.");
err.emit();
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
let matrix: Matrix = inlined_arms
.iter()
.filter(|&&(_, guard)| guard.is_none())
.flat_map(|arm| &arm.0)
.map(|pat| vec![&**pat])
.collect();
check_exhaustive(cx, ex.span, &matrix, source);
},
_ => ()
}
}
fn check_for_bindings_named_the_same_as_variants(cx: &MatchCheckCtxt, pat: &Pat) {
front_util::walk_pat(pat, |p| {
match p.node {
hir::PatIdent(hir::BindByValue(hir::MutImmutable), ident, None) => {
let pat_ty = cx.tcx.pat_ty(p);
if let ty::TyEnum(edef, _) = pat_ty.sty {
let def = cx.tcx.def_map.borrow().get(&p.id).map(|d| d.full_def());
if let Some(Def::Local(..)) = def {
if edef.variants.iter().any(|variant|
variant.name == ident.node.unhygienic_name
&& variant.kind() == VariantKind::Unit
) {
let ty_path = cx.tcx.item_path_str(edef.did);
let mut err = struct_span_warn!(cx.tcx.sess, p.span, E0170,
"pattern binding `{}` is named the same as one \
of the variants of the type `{}`",
ident.node, ty_path);
fileline_help!(err, p.span,
"if you meant to match on a variant, \
consider making the path in the pattern qualified: `{}::{}`",
ty_path, ident.node);
err.emit();
}
}
}
}
_ => ()
}
true
});
}
// Check that we do not match against a static NaN (#6804)
fn check_for_static_nan(cx: &MatchCheckCtxt, pat: &Pat) {
front_util::walk_pat(pat, |p| {
if let hir::PatLit(ref expr) = p.node {
match eval_const_expr_partial(cx.tcx, &**expr, ExprTypeChecked, None) {
Ok(ConstVal::Float(f)) if f.is_nan() => {
span_warn!(cx.tcx.sess, p.span, E0003,
"unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
Ok(_) => {}
Err(err) => {
let mut diag = struct_span_err!(cx.tcx.sess, err.span, E0471,
"constant evaluation error: {}",
err.description());
if !p.span.contains(err.span) {
diag.span_note(p.span, "in pattern here");
}
diag.emit();
}
}
}
true
});
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt,
arms: &[(Vec<P<Pat>>, Option<&hir::Expr>)],
source: hir::MatchSource) {
let mut seen = Matrix(vec![]);
let mut printed_if_let_err = false;
for &(ref pats, guard) in arms {
for pat in pats {
let v = vec![&**pat];
match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
NotUseful => {
match source {
hir::MatchSource::IfLetDesugar { .. } => {
if printed_if_let_err {
// we already printed an irrefutable if-let pattern error.
// We don't want two, that's just confusing.
} else {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
printed_if_let_err = true;
}
},
hir::MatchSource::WhileLetDesugar => {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
},
hir::MatchSource::ForLoopDesugar => {
// this is a bug, because on `match iter.next()` we cover
// `Some(<head>)` and `None`. It's impossible to have an unreachable
// pattern
// (see libsyntax/ext/expand.rs for the full expansion of a for loop)
cx.tcx.sess.span_bug(pat.span, "unreachable for-loop pattern")
},
hir::MatchSource::Normal => {
span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern")
},
}
}
Useful => (),
UsefulWithWitness(_) => unreachable!()
}
if guard.is_none() {
let Matrix(mut rows) = seen;
rows.push(v);
seen = Matrix(rows);
}
}
}
}
fn raw_pat<'a>(p: &'a Pat) -> &'a Pat {
match p.node {
hir::PatIdent(_, _, Some(ref s)) => raw_pat(&**s),
_ => p
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix, source: hir::MatchSource) {
match is_useful(cx, matrix, &[DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
let witnesses = if pats.is_empty() {
vec![DUMMY_WILD_PAT]
} else {
pats.iter().map(|w| &**w ).collect()
};
match source {
hir::MatchSource::ForLoopDesugar => {
// `witnesses[0]` has the form `Some(<head>)`, peel off the `Some`
let witness = match witnesses[0].node {
hir::PatEnum(_, Some(ref pats)) => match &pats[..] {
[ref pat] => &**pat,
_ => unreachable!(),
},
_ => unreachable!(),
};
span_err!(cx.tcx.sess, sp, E0297,
"refutable pattern in `for` loop binding: \
`{}` not covered",
pat_to_string(witness));
},
_ => {
let pattern_strings: Vec<_> = witnesses.iter().map(|w| {
pat_to_string(w)
}).collect();
const LIMIT: usize = 3;
let joined_patterns = match pattern_strings.len() {
0 => unreachable!(),
1 => format!("`{}`", pattern_strings[0]),
2...LIMIT => {
let (tail, head) = pattern_strings.split_last().unwrap();
format!("`{}`", head.join("`, `") + "` and `" + tail)
},
_ => {
let (head, tail) = pattern_strings.split_at(LIMIT);
format!("`{}` and {} more", head.join("`, `"), tail.len())
}
};
span_err!(cx.tcx.sess, sp, E0004,
"non-exhaustive patterns: {} not covered",
joined_patterns
);
},
}
}
NotUseful => {
// This is good, wildcard pattern isn't reachable
},
_ => unreachable!()
}
}
fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
let node = match value {
&ConstVal::Bool(b) => ast::LitBool(b),
_ => unreachable!()
};
P(hir::Expr {
id: 0,
node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP,
attrs: None,
})
}
pub struct StaticInliner<'a, 'tcx: 'a> {
pub tcx: &'a ty::ctxt<'tcx>,
pub failed: bool,
pub renaming_map: Option<&'a mut FnvHashMap<(NodeId, Span), NodeId>>,
}
impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
pub fn new<'b>(tcx: &'b ty::ctxt<'tcx>,
renaming_map: Option<&'b mut FnvHashMap<(NodeId, Span), NodeId>>)
-> StaticInliner<'b, 'tcx> {
StaticInliner {
tcx: tcx,
failed: false,
renaming_map: renaming_map
}
}
}
struct RenamingRecorder<'map> {
substituted_node_id: NodeId,
origin_span: Span,
renaming_map: &'map mut FnvHashMap<(NodeId, Span), NodeId>
}
impl<'map> ast_util::IdVisitingOperation for RenamingRecorder<'map> {
fn visit_id(&mut self, node_id: NodeId) {
let key = (node_id, self.origin_span);
self.renaming_map.insert(key, self.substituted_node_id);
}
}
impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
return match pat.node {
hir::PatIdent(..) | hir::PatEnum(..) | hir::PatQPath(..) => {
let def = self.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def());
match def {
Some(Def::AssociatedConst(did)) |
Some(Def::Const(did)) => match lookup_const_by_id(self.tcx, did,
Some(pat.id), None) {
Some(const_expr) => {
const_expr_to_pat(self.tcx, const_expr, pat.span).map(|new_pat| {
if let Some(ref mut renaming_map) = self.renaming_map {
// Record any renamings we do here
record_renamings(const_expr, &pat, renaming_map);
}
new_pat
})
}
None => {
self.failed = true;
span_err!(self.tcx.sess, pat.span, E0158,
"statics cannot be referenced in patterns");
pat
}
},
_ => noop_fold_pat(pat, self)
}
}
_ => noop_fold_pat(pat, self)
};
fn record_renamings(const_expr: &hir::Expr,
substituted_pat: &hir::Pat,
renaming_map: &mut FnvHashMap<(NodeId, Span), NodeId>) {
let mut renaming_recorder = RenamingRecorder {
substituted_node_id: substituted_pat.id,
origin_span: substituted_pat.span,
renaming_map: renaming_map,
};
let mut id_visitor = front_util::IdVisitor::new(&mut renaming_recorder);
id_visitor.visit_expr(const_expr);
}
}
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn construct_witness<'a,'tcx>(cx: &MatchCheckCtxt<'a,'tcx>, ctor: &Constructor,
pats: Vec<&Pat>, left_ty: Ty<'tcx>) -> P<Pat> {
let pats_len = pats.len();
let mut pats = pats.into_iter().map(|p| P((*p).clone()));
let pat = match left_ty.sty {
ty::TyTuple(_) => hir::PatTup(pats.collect()),
ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
let v = adt.variant_of_ctor(ctor);
if let VariantKind::Struct = v.kind() {
let field_pats: hir::HirVec<_> = v.fields.iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != hir::PatWild)
.map(|(field, pat)| Spanned {
span: DUMMY_SP,
node: hir::FieldPat {
name: field.name,
pat: pat,
is_shorthand: false,
}
}).collect();
let has_more_fields = field_pats.len() < pats_len;
hir::PatStruct(def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
} else {
hir::PatEnum(def_to_path(cx.tcx, v.did), Some(pats.collect()))
}
}
ty::TyRef(_, ty::TypeAndMut { ty, mutbl }) => {
match ty.sty {
ty::TyArray(_, n) => match ctor {
&Single => {
assert_eq!(pats_len, n);
hir::PatVec(pats.collect(), None, hir::HirVec::new())
},
_ => unreachable!()
},
ty::TySlice(_) => match ctor {
&Slice(n) => {
assert_eq!(pats_len, n);
hir::PatVec(pats.collect(), None, hir::HirVec::new())
},
_ => unreachable!()
},
ty::TyStr => hir::PatWild,
_ => {
assert_eq!(pats_len, 1);
hir::PatRegion(pats.nth(0).unwrap(), mutbl)
}
}
}
ty::TyArray(_, len) => {
assert_eq!(pats_len, len);
hir::PatVec(pats.collect(), None, hir::HirVec::new())
}
_ => {
match *ctor {
ConstantValue(ref v) => hir::PatLit(const_val_to_expr(v)),
_ => hir::PatWild,
}
}
};
P(hir::Pat {
id: 0,
node: pat,
span: DUMMY_SP
})
}
impl<'tcx, 'container> ty::AdtDefData<'tcx, 'container> {
fn variant_of_ctor(&self,
ctor: &Constructor)
-> &VariantDefData<'tcx, 'container> {
match ctor {
&Variant(vid) => self.variant_with_id(vid),
_ => self.struct_variant()
}
}
}
fn missing_constructors(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let used_constructors: Vec<Constructor> = rows.iter()
.flat_map(|row| pat_constructors(cx, row[0], left_ty, max_slice_length))
.collect();
all_constructors(cx, left_ty, max_slice_length)
.into_iter()
.filter(|c| !used_constructors.contains(c))
.collect()
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(_cx: &MatchCheckCtxt, left_ty: Ty,
max_slice_length: usize) -> Vec<Constructor> {
match left_ty.sty {
ty::TyBool =>
[true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
ty::TySlice(_) =>
(0..max_slice_length+1).map(|length| Slice(length)).collect(),
_ => vec![Single]
},
ty::TyEnum(def, _) => def.variants.iter().map(|v| Variant(v.did)).collect(),
_ => vec![Single]
}
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt,
matrix: &Matrix,
v: &[&Pat],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("{:?}", matrix);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec!()),
LeaveOutWitness => Useful
};
}
if rows[0].is_empty() {
return NotUseful;
}
assert!(rows.iter().all(|r| r.len() == v.len()));
let real_pat = match rows.iter().find(|r| (*r)[0].id != DUMMY_NODE_ID) {
Some(r) => raw_pat(r[0]),
None if v.is_empty() => return NotUseful,
None => v[0]
};
let left_ty = if real_pat.id == DUMMY_NODE_ID {
cx.tcx.mk_nil()
} else {
let left_ty = cx.tcx.pat_ty(&*real_pat);
match real_pat.node {
hir::PatIdent(hir::BindByRef(..), _, _) => {
left_ty.builtin_deref(false, NoPreference).unwrap().ty
}
_ => left_ty,
}
};
let max_slice_length = rows.iter().filter_map(|row| match row[0].node {
hir::PatVec(ref before, _, ref after) => Some(before.len() + after.len()),
_ => None
}).max().map_or(0, |v| v + 1);
let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
if constructors.is_empty() {
let constructors = missing_constructors(cx, matrix, left_ty, max_slice_length);
if constructors.is_empty() {
all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
UsefulWithWitness(pats) => UsefulWithWitness({
let arity = constructor_arity(cx, &c, left_ty);
let mut result = {
let pat_slice = &pats[..];
let subpats: Vec<_> = (0..arity).map(|i| {
pat_slice.get(i).map_or(DUMMY_WILD_PAT, |p| &**p)
}).collect();
vec![construct_witness(cx, &c, subpats, left_ty)]
};
result.extend(pats.into_iter().skip(arity));
result
}),
result => result
}
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
if pat_is_binding_or_wild(&cx.tcx.def_map.borrow(), raw_pat(r[0])) {
Some(r[1..].to_vec())
} else {
None
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let mut new_pats: Vec<_> = constructors.into_iter().map(|constructor| {
let arity = constructor_arity(cx, &constructor, left_ty);
let wild_pats = vec![DUMMY_WILD_PAT; arity];
construct_witness(cx, &constructor, wild_pats, left_ty)
}).collect();
new_pats.extend(pats);
UsefulWithWitness(new_pats)
},
result => result
}
}
} else {
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
v: &[&Pat], ctor: Constructor, lty: Ty,
witness: WitnessPreference) -> Usefulness {
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().filter_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
}).collect());
match specialize(cx, v, &ctor, 0, arity) {
Some(v) => is_useful(cx, &matrix, &v[..], witness),
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// On the other hand, a wild pattern and an identifier pattern cannot be
/// specialized in any way.
fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let pat = raw_pat(p);
match pat.node {
hir::PatIdent(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(Def::Const(..)) | Some(Def::AssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(Def::Struct(..)) => vec!(Single),
Some(Def::Variant(_, id)) => vec!(Variant(id)),
_ => vec!()
},
hir::PatEnum(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(Def::Const(..)) | Some(Def::AssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(Def::Variant(_, id)) => vec!(Variant(id)),
_ => vec!(Single)
},
hir::PatQPath(..) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
hir::PatStruct(..) =>
match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
Some(Def::Const(..)) | Some(Def::AssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat.span, "const pattern should've \
been rewritten"),
Some(Def::Variant(_, id)) => vec!(Variant(id)),
_ => vec!(Single)
},
hir::PatLit(ref expr) =>
vec!(ConstantValue(eval_const_expr(cx.tcx, &**expr))),
hir::PatRange(ref lo, ref hi) =>
vec!(ConstantRange(eval_const_expr(cx.tcx, &**lo), eval_const_expr(cx.tcx, &**hi))),
hir::PatVec(ref before, ref slice, ref after) =>
match left_ty.sty {
ty::TyArray(_, _) => vec!(Single),
_ => if slice.is_some() {
(before.len() + after.len()..max_slice_length+1)
.map(|length| Slice(length))
.collect()
} else {
vec!(Slice(before.len() + after.len()))
}
},
hir::PatBox(_) | hir::PatTup(_) | hir::PatRegion(..) =>
vec!(Single),
hir::PatWild =>
vec!(),
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
pub fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
match ty.sty {
ty::TyTuple(ref fs) => fs.len(),
ty::TyBox(_) => 1,
ty::TyRef(_, ty::TypeAndMut { ty, .. }) => match ty.sty {
ty::TySlice(_) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => unreachable!()
},
ty::TyStr => 0,
_ => 1
},
ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
adt.variant_of_ctor(ctor).fields.len()
}
ty::TyArray(_, n) => n,
_ => 0
}
}
fn range_covered_by_constructor(ctor: &Constructor,
from: &ConstVal, to: &ConstVal) -> Option<bool> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Some(true),
_ => unreachable!()
};
let cmp_from = compare_const_vals(c_from, from);
let cmp_to = compare_const_vals(c_to, to);
match (cmp_from, cmp_to) {
(Some(cmp_from), Some(cmp_to)) => {
Some(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
}
_ => None
}
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
constructor: &Constructor, col: usize, arity: usize) -> Option<Vec<&'a Pat>> {
let &Pat {
id: pat_id, ref node, span: pat_span
} = raw_pat(r[col]);
let head: Option<Vec<&Pat>> = match *node {
hir::PatWild =>
Some(vec![DUMMY_WILD_PAT; arity]),
hir::PatIdent(_, _, _) => {
let opt_def = cx.tcx.def_map.borrow().get(&pat_id).map(|d| d.full_def());
match opt_def {
Some(Def::Const(..)) | Some(Def::AssociatedConst(..)) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
Some(Def::Variant(_, id)) => if *constructor == Variant(id) {
Some(vec!())
} else {
None
},
_ => Some(vec![DUMMY_WILD_PAT; arity])
}
}
hir::PatEnum(_, ref args) => {
let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
match def {
Def::Const(..) | Def::AssociatedConst(..) =>
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten"),
Def::Variant(_, id) if *constructor != Variant(id) => None,
Def::Variant(..) | Def::Struct(..) => {
Some(match args {
&Some(ref args) => args.iter().map(|p| &**p).collect(),
&None => vec![DUMMY_WILD_PAT; arity],
})
}
_ => None
}
}
hir::PatQPath(_, _) => {
cx.tcx.sess.span_bug(pat_span, "const pattern should've \
been rewritten")
}
hir::PatStruct(_, ref pattern_fields, _) => {
let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
let adt = cx.tcx.node_id_to_type(pat_id).ty_adt_def().unwrap();
let variant = adt.variant_of_ctor(constructor);
let def_variant = adt.variant_of_def(def);
if variant.did == def_variant.did {
Some(variant.fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.node.name == sf.name) {
Some(ref f) => &*f.node.pat,
_ => DUMMY_WILD_PAT
}
}).collect())
} else {
None
}
}
hir::PatTup(ref args) =>
Some(args.iter().map(|p| &**p).collect()),
hir::PatBox(ref inner) | hir::PatRegion(ref inner, _) =>
Some(vec![&**inner]),
hir::PatLit(ref expr) => {
let expr_value = eval_const_expr(cx.tcx, &**expr);
match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
None
}
}
}
hir::PatRange(ref from, ref to) => {
let from_value = eval_const_expr(cx.tcx, &**from);
let to_value = eval_const_expr(cx.tcx, &**to);
match range_covered_by_constructor(constructor, &from_value, &to_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0299, "mismatched types between arms");
None
}
}
}
hir::PatVec(ref before, ref slice, ref after) => {
match *constructor {
// Fixed-length vectors.
Single => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() <= length && slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - before.len() - after.len()));
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
Slice(length) if before.len() + after.len() == length => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
},
SliceWithSubslice(prefix, suffix)
if before.len() == prefix
&& after.len() == suffix
&& slice.is_some() => {
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
Some(pats)
}
_ => None
}
}
};
head.map(|mut head| {
head.extend_from_slice(&r[..col]);
head.extend_from_slice(&r[col + 1..]);
head
})
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &hir::Local) {
intravisit::walk_local(cx, loc);
let pat = StaticInliner::new(cx.tcx, None).fold_pat(loc.pat.clone());
check_irrefutable(cx, &pat, false);
// Check legality of move bindings and `@` patterns.
check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
check_legality_of_bindings_in_at_patterns(cx, &*loc.pat);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: FnKind,
decl: &hir::FnDecl,
body: &hir::Block,
sp: Span,
fn_id: NodeId) {
match kind {
FnKind::Closure => {}
_ => cx.param_env = ParameterEnvironment::for_item(cx.tcx, fn_id),
}
intravisit::walk_fn(cx, kind, decl, body, sp);
for input in &decl.inputs {
check_irrefutable(cx, &input.pat, true);
check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
check_legality_of_bindings_in_at_patterns(cx, &*input.pat);
}
}
fn check_irrefutable(cx: &MatchCheckCtxt, pat: &Pat, is_fn_arg: bool) {
let origin = if is_fn_arg {
"function argument"
} else {
"local binding"
};
is_refutable(cx, pat, |uncovered_pat| {
span_err!(cx.tcx.sess, pat.span, E0005,
"refutable pattern in {}: `{}` not covered",
origin,
pat_to_string(uncovered_pat),
);
});
}
fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
F: FnOnce(&Pat) -> A,
{
let pats = Matrix(vec!(vec!(pat)));
match is_useful(cx, &pats, &[DUMMY_WILD_PAT], ConstructWitness) {
UsefulWithWitness(pats) => {
assert_eq!(pats.len(), 1);
Some(refutable(&*pats[0]))
},
NotUseful => None,
Useful => unreachable!()
}
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[P<Pat>]) {
let tcx = cx.tcx;
let def_map = &tcx.def_map;
let mut by_ref_span = None;
for pat in pats {
pat_bindings(def_map, &**pat, |bm, _, span, _path| {
match bm {
hir::BindByRef(_) => {
by_ref_span = Some(span);
}
hir::BindByValue(_) => {
}
}
})
}
let check_move = |p: &Pat, sub: Option<&Pat>| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(&def_map.borrow(), &*p)) {
span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
} else if has_guard {
span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
let mut err = struct_span_err!(cx.tcx.sess, p.span, E0009,
"cannot bind by-move and by-ref in the same pattern");
span_note!(&mut err, by_ref_span.unwrap(), "by-ref binding occurs here");
err.emit();
}
};
for pat in pats {
front_util::walk_pat(&**pat, |p| {
if pat_is_binding(&def_map.borrow(), &*p) {
match p.node {
hir::PatIdent(hir::BindByValue(_), _, ref sub) => {
let pat_ty = tcx.node_id_to_type(p.id);
//FIXME: (@jroesch) this code should be floated up as well
let infcx = infer::new_infer_ctxt(cx.tcx,
&cx.tcx.tables,
Some(cx.param_env.clone()));
if infcx.type_moves_by_default(pat_ty, pat.span) {
check_move(p, sub.as_ref().map(|p| &**p));
}
}
hir::PatIdent(hir::BindByRef(_), _, _) => {
}
_ => {
cx.tcx.sess.span_bug(
p.span,
&format!("binding pattern {} is not an \
identifier: {:?}",
p.id,
p.node));
}
}
}
true
});
}
}
/// Ensures that a pattern guard doesn't borrow by mutable reference or
/// assign.
fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>,
guard: &hir::Expr) {
let mut checker = MutationChecker {
cx: cx,
};
let infcx = infer::new_infer_ctxt(cx.tcx,
&cx.tcx.tables,
Some(checker.cx.param_env.clone()));
let mut visitor = ExprUseVisitor::new(&mut checker, &infcx);
visitor.walk_expr(guard);
}
struct MutationChecker<'a, 'tcx: 'a> {
cx: &'a MatchCheckCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> Delegate<'tcx> for MutationChecker<'a, 'tcx> {
fn matched_pat(&mut self, _: &Pat, _: cmt, _: euv::MatchMode) {}
fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
fn borrow(&mut self,
_: NodeId,
span: Span,
_: cmt,
_: Region,
kind: BorrowKind,
_: LoanCause) {
match kind {
MutBorrow => {
span_err!(self.cx.tcx.sess, span, E0301,
"cannot mutably borrow in a pattern guard")
}
ImmBorrow | UniqueImmBorrow => {}
}
}
fn decl_without_init(&mut self, _: NodeId, _: Span) {}
fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
match mode {
MutateMode::JustWrite | MutateMode::WriteAndRead => {
span_err!(self.cx.tcx.sess, span, E0302, "cannot assign in a pattern guard")
}
MutateMode::Init => {}
}
}
}
/// Forbids bindings in `@` patterns. This is necessary for memory safety,
/// because of the way rvalues are handled in the borrow check. (See issue
/// #14587.)
fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
}
struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
cx: &'a MatchCheckCtxt<'b, 'tcx>,
bindings_allowed: bool
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
fn visit_pat(&mut self, pat: &Pat) {
if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map.borrow(), pat) {
span_err!(self.cx.tcx.sess, pat.span, E0303,
"pattern bindings are not allowed \
after an `@`");
}
match pat.node {
hir::PatIdent(_, _, Some(_)) => {
let bindings_were_allowed = self.bindings_allowed;
self.bindings_allowed = false;
intravisit::walk_pat(self, pat);
self.bindings_allowed = bindings_were_allowed;
}
_ => intravisit::walk_pat(self, pat),
}
}
}