rust/src/librustc_trans/trans/consts.rs

794 lines
33 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use llvm;
use llvm::{ConstFCmp, ConstICmp, SetLinkage, SetUnnamedAddr};
use llvm::{InternalLinkage, ValueRef, Bool, True};
use middle::{check_const, const_eval, def};
use trans::{adt, closure, debuginfo, expr, inline, machine};
use trans::base::{self, push_ctxt};
use trans::common::*;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of;
use middle::subst::Substs;
use middle::ty::{self, Ty};
use util::ppaux::{Repr, ty_to_string};
use std::iter::repeat;
use libc::c_uint;
use syntax::{ast, ast_util};
use syntax::ptr::P;
pub fn const_lit(cx: &CrateContext, e: &ast::Expr, lit: &ast::Lit)
-> ValueRef {
let _icx = push_ctxt("trans_lit");
debug!("const_lit: {:?}", lit);
match lit.node {
ast::LitByte(b) => C_integral(Type::uint_from_ty(cx, ast::TyU8), b as u64, false),
ast::LitChar(i) => C_integral(Type::char(cx), i as u64, false),
ast::LitInt(i, ast::SignedIntLit(t, _)) => {
C_integral(Type::int_from_ty(cx, t), i, true)
}
ast::LitInt(u, ast::UnsignedIntLit(t)) => {
C_integral(Type::uint_from_ty(cx, t), u, false)
}
ast::LitInt(i, ast::UnsuffixedIntLit(_)) => {
let lit_int_ty = ty::node_id_to_type(cx.tcx(), e.id);
match lit_int_ty.sty {
ty::ty_int(t) => {
C_integral(Type::int_from_ty(cx, t), i as u64, true)
}
ty::ty_uint(t) => {
C_integral(Type::uint_from_ty(cx, t), i as u64, false)
}
_ => cx.sess().span_bug(lit.span,
&format!("integer literal has type {} (expected int \
or uint)",
ty_to_string(cx.tcx(), lit_int_ty)))
}
}
ast::LitFloat(ref fs, t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
ast::LitFloatUnsuffixed(ref fs) => {
let lit_float_ty = ty::node_id_to_type(cx.tcx(), e.id);
match lit_float_ty.sty {
ty::ty_float(t) => {
C_floating(&fs, Type::float_from_ty(cx, t))
}
_ => {
cx.sess().span_bug(lit.span,
"floating point literal doesn't have the right type");
}
}
}
ast::LitBool(b) => C_bool(cx, b),
ast::LitStr(ref s, _) => C_str_slice(cx, (*s).clone()),
ast::LitBinary(ref data) => {
let g = addr_of(cx, C_bytes(cx, &data[..]), "binary", e.id);
let base = ptrcast(g, Type::i8p(cx));
let prev_const = cx.const_unsized().borrow_mut()
.insert(base, g);
assert!(prev_const.is_none() || prev_const == Some(g));
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
C_struct(cx, &[base, C_uint(cx, data.len())], false)
}
}
}
pub fn ptrcast(val: ValueRef, ty: Type) -> ValueRef {
unsafe {
llvm::LLVMConstPointerCast(val, ty.to_ref())
}
}
fn addr_of_mut(ccx: &CrateContext,
cv: ValueRef,
kind: &str,
id: ast::NodeId)
-> ValueRef {
unsafe {
let name = format!("{}{}\0", kind, id);
let gv = llvm::LLVMAddGlobal(ccx.llmod(), val_ty(cv).to_ref(),
name.as_ptr() as *const _);
llvm::LLVMSetInitializer(gv, cv);
SetLinkage(gv, InternalLinkage);
SetUnnamedAddr(gv, true);
gv
}
}
pub fn addr_of(ccx: &CrateContext,
cv: ValueRef,
kind: &str,
id: ast::NodeId)
-> ValueRef {
match ccx.const_globals().borrow().get(&cv) {
Some(&gv) => return gv,
None => {}
}
let gv = addr_of_mut(ccx, cv, kind, id);
unsafe {
llvm::LLVMSetGlobalConstant(gv, True);
}
ccx.const_globals().borrow_mut().insert(cv, gv);
gv
}
fn const_deref_ptr(cx: &CrateContext, v: ValueRef) -> ValueRef {
let v = match cx.const_unsized().borrow().get(&v) {
Some(&v) => v,
None => v
};
unsafe {
llvm::LLVMGetInitializer(v)
}
}
fn const_deref<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
v: ValueRef,
ty: Ty<'tcx>)
-> (ValueRef, Ty<'tcx>) {
match ty::deref(ty, true) {
Some(mt) => {
if type_is_sized(cx.tcx(), mt.ty) {
(const_deref_ptr(cx, v), mt.ty)
} else {
// Derefing a fat pointer does not change the representation,
// just the type to ty_open.
(v, ty::mk_open(cx.tcx(), mt.ty))
}
}
None => {
cx.sess().bug(&format!("unexpected dereferenceable type {}",
ty_to_string(cx.tcx(), ty)))
}
}
}
pub fn get_const_expr<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
def_id: ast::DefId,
ref_expr: &ast::Expr)
-> &'tcx ast::Expr {
let def_id = inline::maybe_instantiate_inline(ccx, def_id);
if def_id.krate != ast::LOCAL_CRATE {
ccx.sess().span_bug(ref_expr.span,
"cross crate constant could not be inlined");
}
let item = ccx.tcx().map.expect_item(def_id.node);
if let ast::ItemConst(_, ref expr) = item.node {
&**expr
} else {
ccx.sess().span_bug(ref_expr.span,
&format!("get_const_val given non-constant item {}",
item.repr(ccx.tcx())));
}
}
fn get_const_val(ccx: &CrateContext,
def_id: ast::DefId,
ref_expr: &ast::Expr) -> ValueRef {
let expr = get_const_expr(ccx, def_id, ref_expr);
let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
get_const_expr_as_global(ccx, expr, check_const::PURE_CONST, empty_substs)
}
pub fn get_const_expr_as_global<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
expr: &ast::Expr,
qualif: check_const::ConstQualif,
param_substs: &'tcx Substs<'tcx>)
-> ValueRef {
// Special-case constants to cache a common global for all uses.
match expr.node {
ast::ExprPath(_) => {
let def = ccx.tcx().def_map.borrow()[expr.id];
match def {
def::DefConst(def_id) => {
if !ccx.tcx().adjustments.borrow().contains_key(&expr.id) {
return get_const_val(ccx, def_id, expr);
}
}
_ => {}
}
}
_ => {}
}
let key = (expr.id, param_substs);
match ccx.const_values().borrow().get(&key) {
Some(&val) => return val,
None => {}
}
let val = if qualif.intersects(check_const::NON_STATIC_BORROWS) {
// Avoid autorefs as they would create global instead of stack
// references, even when only the latter are correct.
let ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs,
&ty::expr_ty(ccx.tcx(), expr));
const_expr_unadjusted(ccx, expr, ty, param_substs)
} else {
const_expr(ccx, expr, param_substs).0
};
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val = unsafe {
if llvm::LLVMTypeOf(val) == Type::i1(ccx).to_ref() {
llvm::LLVMConstZExt(val, Type::i8(ccx).to_ref())
} else {
val
}
};
let lvalue = addr_of(ccx, val, "const", expr.id);
ccx.const_values().borrow_mut().insert(key, lvalue);
lvalue
}
pub fn const_expr<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &ast::Expr,
param_substs: &'tcx Substs<'tcx>)
-> (ValueRef, Ty<'tcx>) {
let ety = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&ty::expr_ty(cx.tcx(), e));
let llconst = const_expr_unadjusted(cx, e, ety, param_substs);
let mut llconst = llconst;
let mut ety_adjusted = monomorphize::apply_param_substs(cx.tcx(), param_substs,
&ty::expr_ty_adjusted(cx.tcx(), e));
let opt_adj = cx.tcx().adjustments.borrow().get(&e.id).cloned();
match opt_adj {
Some(ty::AdjustReifyFnPointer(_def_id)) => {
// FIXME(#19925) once fn item types are
// zero-sized, we'll need to do something here
}
Some(ty::AdjustDerefRef(adj)) => {
let mut ty = ety;
// Save the last autoderef in case we can avoid it.
if adj.autoderefs > 0 {
for _ in 0..adj.autoderefs-1 {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
ty = dt;
}
}
let second_autoref = match adj.autoref {
None => {
let (dv, dt) = const_deref(cx, llconst, ty);
llconst = dv;
// If we derefed a fat pointer then we will have an
// open type here. So we need to update the type with
// the one returned from const_deref.
ety_adjusted = dt;
None
}
Some(ty::AutoUnsafe(_, opt_autoref)) |
Some(ty::AutoPtr(_, _, opt_autoref)) => {
if adj.autoderefs == 0 {
// Don't copy data to do a deref+ref
// (i.e., skip the last auto-deref).
llconst = addr_of(cx, llconst, "autoref", e.id);
} else {
// Seeing as we are deref'ing here and take a reference
// again to make the pointer part of the far pointer below,
// we just skip the whole thing. We still need the type
// though. This works even if we don't need to deref
// because of byref semantics. Note that this is not just
// an optimisation, it is necessary for mutable vectors to
// work properly.
ty = match ty::deref(ty, true) {
Some(mt) => {
if type_is_sized(cx.tcx(), mt.ty) {
mt.ty
} else {
// Derefing a fat pointer does not change the representation,
// just the type to ty_open.
ty::mk_open(cx.tcx(), mt.ty)
}
}
None => {
cx.sess().bug(&format!("unexpected dereferenceable type {}",
ty_to_string(cx.tcx(), ty)))
}
}
}
opt_autoref
}
Some(autoref) => {
cx.sess().span_bug(e.span,
&format!("unimplemented const first autoref {:?}", autoref))
}
};
match second_autoref {
None => {}
Some(box ty::AutoUnsafe(_, None)) |
Some(box ty::AutoPtr(_, _, None)) => {
llconst = addr_of(cx, llconst, "autoref", e.id);
}
Some(box ty::AutoUnsize(ref k)) => {
let unsized_ty = ty::unsize_ty(cx.tcx(), ty, k, e.span);
let info = expr::unsized_info(cx, k, e.id, ty, param_substs,
|t| ty::mk_imm_rptr(cx.tcx(), cx.tcx().mk_region(ty::ReStatic), t));
let base = ptrcast(llconst, type_of::type_of(cx, unsized_ty).ptr_to());
let prev_const = cx.const_unsized().borrow_mut()
.insert(base, llconst);
assert!(prev_const.is_none() || prev_const == Some(llconst));
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
llconst = C_struct(cx, &[base, info], false);
}
Some(autoref) => {
cx.sess().span_bug(e.span,
&format!("unimplemented const second autoref {:?}", autoref))
}
}
}
None => {}
};
let llty = type_of::sizing_type_of(cx, ety_adjusted);
let csize = machine::llsize_of_alloc(cx, val_ty(llconst));
let tsize = machine::llsize_of_alloc(cx, llty);
if csize != tsize {
unsafe {
// FIXME these values could use some context
llvm::LLVMDumpValue(llconst);
llvm::LLVMDumpValue(C_undef(llty));
}
cx.sess().bug(&format!("const {} of type {} has size {} instead of {}",
e.repr(cx.tcx()), ty_to_string(cx.tcx(), ety_adjusted),
csize, tsize));
}
(llconst, ety_adjusted)
}
fn const_expr_unadjusted<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
e: &ast::Expr,
ety: Ty<'tcx>,
param_substs: &'tcx Substs<'tcx>) -> ValueRef {
let map_list = |exprs: &[P<ast::Expr>]| {
exprs.iter().map(|e| const_expr(cx, &**e, param_substs).0)
.fold(Vec::new(), |mut l, val| { l.push(val); l })
};
unsafe {
let _icx = push_ctxt("const_expr");
return match e.node {
ast::ExprLit(ref lit) => {
const_lit(cx, e, &**lit)
}
ast::ExprBinary(b, ref e1, ref e2) => {
/* Neither type is bottom, and we expect them to be unified
* already, so the following is safe. */
let (te1, ty) = const_expr(cx, &**e1, param_substs);
let is_simd = ty::type_is_simd(cx.tcx(), ty);
let intype = if is_simd {
ty::simd_type(cx.tcx(), ty)
} else {
ty
};
let is_float = ty::type_is_fp(intype);
let signed = ty::type_is_signed(intype);
let (te2, _) = const_expr(cx, &**e2, param_substs);
let te2 = base::cast_shift_const_rhs(b, te1, te2);
return match b.node {
ast::BiAdd => {
if is_float { llvm::LLVMConstFAdd(te1, te2) }
else { llvm::LLVMConstAdd(te1, te2) }
}
ast::BiSub => {
if is_float { llvm::LLVMConstFSub(te1, te2) }
else { llvm::LLVMConstSub(te1, te2) }
}
ast::BiMul => {
if is_float { llvm::LLVMConstFMul(te1, te2) }
else { llvm::LLVMConstMul(te1, te2) }
}
ast::BiDiv => {
if is_float { llvm::LLVMConstFDiv(te1, te2) }
else if signed { llvm::LLVMConstSDiv(te1, te2) }
else { llvm::LLVMConstUDiv(te1, te2) }
}
ast::BiRem => {
if is_float { llvm::LLVMConstFRem(te1, te2) }
else if signed { llvm::LLVMConstSRem(te1, te2) }
else { llvm::LLVMConstURem(te1, te2) }
}
ast::BiAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiOr => llvm::LLVMConstOr(te1, te2),
ast::BiBitXor => llvm::LLVMConstXor(te1, te2),
ast::BiBitAnd => llvm::LLVMConstAnd(te1, te2),
ast::BiBitOr => llvm::LLVMConstOr(te1, te2),
ast::BiShl => llvm::LLVMConstShl(te1, te2),
ast::BiShr => {
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
}
ast::BiEq | ast::BiNe | ast::BiLt | ast::BiLe | ast::BiGt | ast::BiGe => {
if is_float {
let cmp = base::bin_op_to_fcmp_predicate(cx, b.node);
ConstFCmp(cmp, te1, te2)
} else {
let cmp = base::bin_op_to_icmp_predicate(cx, b.node, signed);
let bool_val = ConstICmp(cmp, te1, te2);
if is_simd {
// LLVM outputs an `< size x i1 >`, so we need to perform
// a sign extension to get the correctly sized type.
llvm::LLVMConstIntCast(bool_val, val_ty(te1).to_ref(), True)
} else {
bool_val
}
}
}
}
},
ast::ExprUnary(u, ref e) => {
let (te, ty) = const_expr(cx, &**e, param_substs);
let is_float = ty::type_is_fp(ty);
return match u {
ast::UnUniq | ast::UnDeref => {
const_deref(cx, te, ty).0
}
ast::UnNot => llvm::LLVMConstNot(te),
ast::UnNeg => {
if is_float { llvm::LLVMConstFNeg(te) }
else { llvm::LLVMConstNeg(te) }
}
}
}
ast::ExprField(ref base, field) => {
let (bv, bt) = const_expr(cx, &**base, param_substs);
let brepr = adt::represent_type(cx, bt);
expr::with_field_tys(cx.tcx(), bt, None, |discr, field_tys| {
let ix = ty::field_idx_strict(cx.tcx(), field.node.name, field_tys);
adt::const_get_field(cx, &*brepr, bv, discr, ix)
})
}
ast::ExprTupField(ref base, idx) => {
let (bv, bt) = const_expr(cx, &**base, param_substs);
let brepr = adt::represent_type(cx, bt);
expr::with_field_tys(cx.tcx(), bt, None, |discr, _| {
adt::const_get_field(cx, &*brepr, bv, discr, idx.node)
})
}
ast::ExprIndex(ref base, ref index) => {
let (bv, bt) = const_expr(cx, &**base, param_substs);
let iv = match const_eval::eval_const_expr(cx.tcx(), &**index) {
const_eval::const_int(i) => i as u64,
const_eval::const_uint(u) => u,
_ => cx.sess().span_bug(index.span,
"index is not an integer-constant expression")
};
let (arr, len) = match bt.sty {
ty::ty_vec(_, Some(u)) => (bv, C_uint(cx, u)),
ty::ty_open(ty) => match ty.sty {
ty::ty_vec(_, None) | ty::ty_str => {
let e1 = const_get_elt(cx, bv, &[0]);
(const_deref_ptr(cx, e1), const_get_elt(cx, bv, &[1]))
},
_ => cx.sess().span_bug(base.span,
&format!("index-expr base must be a vector \
or string type, found {}",
ty_to_string(cx.tcx(), bt)))
},
ty::ty_rptr(_, mt) => match mt.ty.sty {
ty::ty_vec(_, Some(u)) => {
(const_deref_ptr(cx, bv), C_uint(cx, u))
},
_ => cx.sess().span_bug(base.span,
&format!("index-expr base must be a vector \
or string type, found {}",
ty_to_string(cx.tcx(), bt)))
},
_ => cx.sess().span_bug(base.span,
&format!("index-expr base must be a vector \
or string type, found {}",
ty_to_string(cx.tcx(), bt)))
};
let len = llvm::LLVMConstIntGetZExtValue(len) as u64;
let len = match bt.sty {
ty::ty_uniq(ty) | ty::ty_rptr(_, ty::mt{ty, ..}) => match ty.sty {
ty::ty_str => {
assert!(len > 0);
len - 1
}
_ => len
},
_ => len
};
if iv >= len {
// FIXME #3170: report this earlier on in the const-eval
// pass. Reporting here is a bit late.
cx.sess().span_err(e.span,
"const index-expr is out of bounds");
}
const_get_elt(cx, arr, &[iv as c_uint])
}
ast::ExprCast(ref base, _) => {
let llty = type_of::type_of(cx, ety);
let (v, basety) = const_expr(cx, &**base, param_substs);
if expr::cast_is_noop(basety, ety) {
return v;
}
return match (expr::cast_type_kind(cx.tcx(), basety),
expr::cast_type_kind(cx.tcx(), ety)) {
(expr::cast_integral, expr::cast_integral) => {
let s = ty::type_is_signed(basety) as Bool;
llvm::LLVMConstIntCast(v, llty.to_ref(), s)
}
(expr::cast_integral, expr::cast_float) => {
if ty::type_is_signed(basety) {
llvm::LLVMConstSIToFP(v, llty.to_ref())
} else {
llvm::LLVMConstUIToFP(v, llty.to_ref())
}
}
(expr::cast_float, expr::cast_float) => {
llvm::LLVMConstFPCast(v, llty.to_ref())
}
(expr::cast_float, expr::cast_integral) => {
if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty.to_ref()) }
else { llvm::LLVMConstFPToUI(v, llty.to_ref()) }
}
(expr::cast_enum, expr::cast_integral) => {
let repr = adt::represent_type(cx, basety);
let discr = adt::const_get_discrim(cx, &*repr, v);
let iv = C_integral(cx.int_type(), discr, false);
let ety_cast = expr::cast_type_kind(cx.tcx(), ety);
match ety_cast {
expr::cast_integral => {
let s = ty::type_is_signed(ety) as Bool;
llvm::LLVMConstIntCast(iv, llty.to_ref(), s)
}
_ => cx.sess().bug("enum cast destination is not \
integral")
}
}
(expr::cast_pointer, expr::cast_pointer) => {
ptrcast(v, llty)
}
(expr::cast_integral, expr::cast_pointer) => {
llvm::LLVMConstIntToPtr(v, llty.to_ref())
}
(expr::cast_pointer, expr::cast_integral) => {
llvm::LLVMConstPtrToInt(v, llty.to_ref())
}
_ => {
cx.sess().impossible_case(e.span,
"bad combination of types for cast")
}
}
}
ast::ExprAddrOf(ast::MutImmutable, ref sub) => {
// If this is the address of some static, then we need to return
// the actual address of the static itself (short circuit the rest
// of const eval).
let mut cur = sub;
loop {
match cur.node {
ast::ExprParen(ref sub) => cur = sub,
ast::ExprBlock(ref blk) => {
if let Some(ref sub) = blk.expr {
cur = sub;
} else {
break;
}
}
_ => break,
}
}
let opt_def = cx.tcx().def_map.borrow().get(&cur.id).cloned();
if let Some(def::DefStatic(def_id, _)) = opt_def {
return get_static_val(cx, def_id, ety);
}
// If this isn't the address of a static, then keep going through
// normal constant evaluation.
let (v, _) = const_expr(cx, &**sub, param_substs);
addr_of(cx, v, "ref", e.id)
}
ast::ExprAddrOf(ast::MutMutable, ref sub) => {
let (v, _) = const_expr(cx, &**sub, param_substs);
addr_of_mut(cx, v, "ref_mut_slice", e.id)
}
ast::ExprTup(ref es) => {
let repr = adt::represent_type(cx, ety);
let vals = map_list(&es[..]);
adt::trans_const(cx, &*repr, 0, &vals[..])
}
ast::ExprStruct(_, ref fs, ref base_opt) => {
let repr = adt::represent_type(cx, ety);
let base_val = match *base_opt {
Some(ref base) => Some(const_expr(cx, &**base, param_substs)),
None => None
};
expr::with_field_tys(cx.tcx(), ety, Some(e.id), |discr, field_tys| {
let cs = field_tys.iter().enumerate()
.map(|(ix, &field_ty)| {
match fs.iter().find(|f| field_ty.name == f.ident.node.name) {
Some(ref f) => const_expr(cx, &*f.expr, param_substs).0,
None => {
match base_val {
Some((bv, _)) => {
adt::const_get_field(cx, &*repr, bv,
discr, ix)
}
None => {
cx.sess().span_bug(e.span,
"missing struct field")
}
}
}
}
}).collect::<Vec<_>>();
if ty::type_is_simd(cx.tcx(), ety) {
C_vector(&cs[..])
} else {
adt::trans_const(cx, &*repr, discr, &cs[..])
}
})
}
ast::ExprVec(ref es) => {
let unit_ty = ty::sequence_element_type(cx.tcx(), ety);
let llunitty = type_of::type_of(cx, unit_ty);
let vs = es.iter().map(|e| const_expr(cx, &**e, param_substs).0)
.collect::<Vec<_>>();
// If the vector contains enums, an LLVM array won't work.
if vs.iter().any(|vi| val_ty(*vi) != llunitty) {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
}
ast::ExprRepeat(ref elem, ref count) => {
let unit_ty = ty::sequence_element_type(cx.tcx(), ety);
let llunitty = type_of::type_of(cx, unit_ty);
let n = match const_eval::eval_const_expr(cx.tcx(), &**count) {
const_eval::const_int(i) => i as uint,
const_eval::const_uint(i) => i as uint,
_ => cx.sess().span_bug(count.span, "count must be integral const expression.")
};
let unit_val = const_expr(cx, &**elem, param_substs).0;
let vs: Vec<_> = repeat(unit_val).take(n).collect();
if val_ty(unit_val) != llunitty {
C_struct(cx, &vs[..], false)
} else {
C_array(llunitty, &vs[..])
}
}
ast::ExprPath(_) | ast::ExprQPath(_) => {
let def = cx.tcx().def_map.borrow()[e.id];
match def {
def::DefFn(..) | def::DefStaticMethod(..) | def::DefMethod(..) => {
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
}
def::DefConst(def_id) => {
const_deref_ptr(cx, get_const_val(cx, def_id, e))
}
def::DefVariant(enum_did, variant_did, _) => {
let vinfo = ty::enum_variant_with_id(cx.tcx(),
enum_did,
variant_did);
if vinfo.args.len() > 0 {
// N-ary variant.
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
} else {
// Nullary variant.
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &*repr, vinfo.disr_val, &[])
}
}
def::DefStruct(_) => {
if let ty::ty_bare_fn(..) = ety.sty {
// Tuple struct.
expr::trans_def_fn_unadjusted(cx, e, def, param_substs).val
} else {
// Unit struct.
C_null(type_of::type_of(cx, ety))
}
}
_ => {
cx.sess().span_bug(e.span, "expected a const, fn, struct, \
or variant def")
}
}
}
ast::ExprCall(ref callee, ref args) => {
let opt_def = cx.tcx().def_map.borrow().get(&callee.id).cloned();
let arg_vals = map_list(&args[..]);
match opt_def {
Some(def::DefStruct(_)) => {
if ty::type_is_simd(cx.tcx(), ety) {
C_vector(&arg_vals[..])
} else {
let repr = adt::represent_type(cx, ety);
adt::trans_const(cx, &*repr, 0, &arg_vals[..])
}
}
Some(def::DefVariant(enum_did, variant_did, _)) => {
let repr = adt::represent_type(cx, ety);
let vinfo = ty::enum_variant_with_id(cx.tcx(),
enum_did,
variant_did);
adt::trans_const(cx,
&*repr,
vinfo.disr_val,
&arg_vals[..])
}
_ => cx.sess().span_bug(e.span, "expected a struct or variant def")
}
}
ast::ExprParen(ref e) => const_expr(cx, &**e, param_substs).0,
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => const_expr(cx, &**expr, param_substs).0,
None => C_nil(cx)
}
}
ast::ExprClosure(_, ref decl, ref body) => {
closure::trans_closure_expr(closure::Dest::Ignore(cx),
&**decl, &**body, e.id,
param_substs);
C_null(type_of::type_of(cx, ety))
}
_ => cx.sess().span_bug(e.span,
"bad constant expression type in consts::const_expr")
};
}
}
pub fn trans_static(ccx: &CrateContext, m: ast::Mutability, id: ast::NodeId) {
unsafe {
let _icx = push_ctxt("trans_static");
let g = base::get_item_val(ccx, id);
// At this point, get_item_val has already translated the
// constant's initializer to determine its LLVM type.
let v = ccx.static_values().borrow()[id].clone();
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let v = if llvm::LLVMTypeOf(v) == Type::i1(ccx).to_ref() {
llvm::LLVMConstZExt(v, Type::i8(ccx).to_ref())
} else {
v
};
llvm::LLVMSetInitializer(g, v);
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if m != ast::MutMutable {
let node_ty = ty::node_id_to_type(ccx.tcx(), id);
let tcontents = ty::type_contents(ccx.tcx(), node_ty);
if !tcontents.interior_unsafe() {
llvm::LLVMSetGlobalConstant(g, True);
}
}
debuginfo::create_global_var_metadata(ccx, id, g);
}
}
fn get_static_val<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: ast::DefId,
ty: Ty<'tcx>) -> ValueRef {
if ast_util::is_local(did) { return base::get_item_val(ccx, did.node) }
base::trans_external_path(ccx, did, ty)
}