591 lines
12 KiB
Rust
591 lines
12 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
*
|
|
* Traits representing built-in operators, useful for overloading
|
|
*
|
|
* Implementing these traits allows you to get an effect similar to
|
|
* overloading operators.
|
|
*
|
|
* The values for the right hand side of an operator are automatically
|
|
* borrowed, so `a + b` is sugar for `a.add(&b)`.
|
|
*
|
|
* All of these traits are imported by the prelude, so they are available in
|
|
* every Rust program.
|
|
*
|
|
* # Example
|
|
*
|
|
* This example creates a `Point` struct that implements `Add` and `Sub`, and then
|
|
* demonstrates adding and subtracting two `Point`s.
|
|
*
|
|
* ```rust
|
|
* struct Point {
|
|
* x: int,
|
|
* y: int
|
|
* }
|
|
*
|
|
* impl Add<Point, Point> for Point {
|
|
* fn add(&self, other: &Point) -> Point {
|
|
* Point {x: self.x + other.x, y: self.y + other.y}
|
|
* }
|
|
* }
|
|
*
|
|
* impl Sub<Point, Point> for Point {
|
|
* fn sub(&self, other: &Point) -> Point {
|
|
* Point {x: self.x - other.x, y: self.y - other.y}
|
|
* }
|
|
* }
|
|
* fn main() {
|
|
* println!("{:?}", Point {x: 1, y: 0} + Point {x: 2, y: 3});
|
|
* println!("{:?}", Point {x: 1, y: 0} - Point {x: 2, y: 3});
|
|
* }
|
|
* ```
|
|
*
|
|
* See the documentation for each trait for a minimum implementation that prints
|
|
* something to the screen.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* The `Drop` trait is used to run some code when a value goes out of scope. This
|
|
* is sometimes called a 'destructor'.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Drop`. The `drop` method is called when `_x` goes
|
|
* out of scope, and therefore `main` prints `Dropping!`.
|
|
*
|
|
* ```rust
|
|
* struct HasDrop;
|
|
*
|
|
* impl Drop for HasDrop {
|
|
* fn drop(&mut self) {
|
|
* println!("Dropping!");
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* let _x = HasDrop;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="drop"]
|
|
pub trait Drop {
|
|
/// The `drop` method, called when the value goes out of scope.
|
|
fn drop(&mut self);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Add` trait is used to specify the functionality of `+`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Add`. When `Foo + Foo` happens, it ends up
|
|
* calling `add`, and therefore, `main` prints `Adding!`.
|
|
*
|
|
* ```rust
|
|
* struct Foo;
|
|
*
|
|
* impl Add<Foo, Foo> for Foo {
|
|
* fn add(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Adding!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo + Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="add"]
|
|
pub trait Add<RHS,Result> {
|
|
/// The method for the `+` operator
|
|
fn add(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Sub` trait is used to specify the functionality of `-`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Sub`. When `Foo - Foo` happens, it ends up
|
|
* calling `sub`, and therefore, `main` prints `Subtracting!`.
|
|
*
|
|
* ```rust
|
|
* struct Foo;
|
|
*
|
|
* impl Sub<Foo, Foo> for Foo {
|
|
* fn sub(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Subtracting!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo - Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="sub"]
|
|
pub trait Sub<RHS,Result> {
|
|
/// The method for the `-` operator
|
|
fn sub(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Mul` trait is used to specify the functionality of `*`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Mul`. When `Foo * Foo` happens, it ends up
|
|
* calling `mul`, and therefore, `main` prints `Multiplying!`.
|
|
*
|
|
* ```rust
|
|
* struct Foo;
|
|
*
|
|
* impl Mul<Foo, Foo> for Foo {
|
|
* fn mul(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Multiplying!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo * Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="mul"]
|
|
pub trait Mul<RHS,Result> {
|
|
/// The method for the `*` operator
|
|
fn mul(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Div` trait is used to specify the functionality of `/`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Div`. When `Foo / Foo` happens, it ends up
|
|
* calling `div`, and therefore, `main` prints `Dividing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Div<Foo, Foo> for Foo {
|
|
* fn div(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Dividing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo / Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="div"]
|
|
pub trait Div<RHS,Result> {
|
|
/// The method for the `/` operator
|
|
fn div(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Rem` trait is used to specify the functionality of `%`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Rem`. When `Foo % Foo` happens, it ends up
|
|
* calling `rem`, and therefore, `main` prints `Remainder-ing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Rem<Foo, Foo> for Foo {
|
|
* fn rem(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Remainder-ing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo % Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="rem"]
|
|
pub trait Rem<RHS,Result> {
|
|
/// The method for the `%` operator
|
|
fn rem(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Neg` trait is used to specify the functionality of unary `-`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Neg`. When `-Foo` happens, it ends up calling
|
|
* `neg`, and therefore, `main` prints `Negating!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Neg<Foo> for Foo {
|
|
* fn neg(&self) -> Foo {
|
|
* println!("Negating!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* -Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="neg"]
|
|
pub trait Neg<Result> {
|
|
/// The method for the unary `-` operator
|
|
fn neg(&self) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Not` trait is used to specify the functionality of unary `!`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Not`. When `!Foo` happens, it ends up calling
|
|
* `not`, and therefore, `main` prints `Not-ing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Not<Foo> for Foo {
|
|
* fn not(&self) -> Foo {
|
|
* println!("Not-ing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* !Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="not"]
|
|
pub trait Not<Result> {
|
|
/// The method for the unary `!` operator
|
|
fn not(&self) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `BitAnd` trait is used to specify the functionality of `&`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `BitAnd`. When `Foo & Foo` happens, it ends up
|
|
* calling `bitand`, and therefore, `main` prints `Bitwise And-ing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl BitAnd<Foo, Foo> for Foo {
|
|
* fn bitand(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Bitwise And-ing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo & Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="bitand"]
|
|
pub trait BitAnd<RHS,Result> {
|
|
/// The method for the `&` operator
|
|
fn bitand(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `BitOr` trait is used to specify the functionality of `|`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `BitOr`. When `Foo | Foo` happens, it ends up
|
|
* calling `bitor`, and therefore, `main` prints `Bitwise Or-ing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl BitOr<Foo, Foo> for Foo {
|
|
* fn bitor(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Bitwise Or-ing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo | Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="bitor"]
|
|
pub trait BitOr<RHS,Result> {
|
|
/// The method for the `|` operator
|
|
fn bitor(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `BitXor` trait is used to specify the functionality of `^`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `BitXor`. When `Foo ^ Foo` happens, it ends up
|
|
* calling `bitxor`, and therefore, `main` prints `Bitwise Xor-ing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl BitXor<Foo, Foo> for Foo {
|
|
* fn bitxor(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Bitwise Xor-ing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo ^ Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="bitxor"]
|
|
pub trait BitXor<RHS,Result> {
|
|
/// The method for the `^` operator
|
|
fn bitxor(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Shl` trait is used to specify the functionality of `<<`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Shl`. When `Foo << Foo` happens, it ends up
|
|
* calling `shl`, and therefore, `main` prints `Shifting left!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Shl<Foo, Foo> for Foo {
|
|
* fn shl(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Shifting left!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo << Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="shl"]
|
|
pub trait Shl<RHS,Result> {
|
|
/// The method for the `<<` operator
|
|
fn shl(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Shr` trait is used to specify the functionality of `>>`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Shr`. When `Foo >> Foo` happens, it ends up
|
|
* calling `shr`, and therefore, `main` prints `Shifting right!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Shr<Foo, Foo> for Foo {
|
|
* fn shr(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Shifting right!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo >> Foo;
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="shr"]
|
|
pub trait Shr<RHS,Result> {
|
|
/// The method for the `>>` operator
|
|
fn shr(&self, rhs: &RHS) -> Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Index` trait is used to specify the functionality of indexing operations
|
|
* like `arr[idx]`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A trivial implementation of `Index`. When `Foo[Foo]` happens, it ends up
|
|
* calling `index`, and therefore, `main` prints `Indexing!`.
|
|
*
|
|
* ```
|
|
* struct Foo;
|
|
*
|
|
* impl Index<Foo, Foo> for Foo {
|
|
* fn index(&self, _rhs: &Foo) -> Foo {
|
|
* println!("Indexing!");
|
|
* *self
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* Foo[Foo];
|
|
* }
|
|
* ```
|
|
*/
|
|
#[lang="index"]
|
|
pub trait Index<Index,Result> {
|
|
/// The method for the indexing (`Foo[Bar]`) operation
|
|
fn index(&self, index: &Index) -> Result;
|
|
}
|
|
|
|
/// Dummy dox
|
|
#[cfg(stage0)]
|
|
pub trait Deref<Result> {
|
|
/// dummy dox
|
|
fn deref<'a>(&'a self) -> &'a Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `Deref` trait is used to specify the functionality of dereferencing
|
|
* operations like `*v`.
|
|
*
|
|
* # Example
|
|
*
|
|
* A struct with a single field which is accessible via dereferencing the
|
|
* struct.
|
|
*
|
|
* ```
|
|
* struct DerefExample<T> {
|
|
* value: T
|
|
* }
|
|
*
|
|
* impl<T> Deref<T> for DerefExample<T> {
|
|
* fn deref<'a>(&'a self) -> &'a T {
|
|
* &self.value
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* let x = DerefExample { value: 'a' };
|
|
* assert_eq!('a', *x);
|
|
* }
|
|
* ```
|
|
*/
|
|
#[cfg(not(stage0))]
|
|
#[lang="deref"]
|
|
pub trait Deref<Result> {
|
|
/// The method called to dereference a value
|
|
fn deref<'a>(&'a self) -> &'a Result;
|
|
}
|
|
|
|
/// dummy dox
|
|
#[cfg(stage0)]
|
|
pub trait DerefMut<Result>: Deref<Result> {
|
|
/// dummy dox
|
|
fn deref_mut<'a>(&'a mut self) -> &'a mut Result;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* The `DerefMut` trait is used to specify the functionality of dereferencing
|
|
* mutably like `*v = 1;`
|
|
*
|
|
* # Example
|
|
*
|
|
* A struct with a single field which is modifiable via dereferencing the
|
|
* struct.
|
|
*
|
|
* ```
|
|
* struct DerefMutExample<T> {
|
|
* value: T
|
|
* }
|
|
*
|
|
* impl<T> Deref<T> for DerefMutExample<T> {
|
|
* fn deref<'a>(&'a self) -> &'a T {
|
|
* &self.value
|
|
* }
|
|
* }
|
|
*
|
|
* impl<T> DerefMut<T> for DerefMutExample<T> {
|
|
* fn deref_mut<'a>(&'a mut self) -> &'a mut T {
|
|
* &mut self.value
|
|
* }
|
|
* }
|
|
*
|
|
* fn main() {
|
|
* let mut x = DerefMutExample { value: 'a' };
|
|
* *x = 'b';
|
|
* assert_eq!('b', *x);
|
|
* }
|
|
* ```
|
|
*/
|
|
#[cfg(not(stage0))]
|
|
#[lang="deref_mut"]
|
|
pub trait DerefMut<Result>: Deref<Result> {
|
|
/// The method called to mutably dereference a value
|
|
fn deref_mut<'a>(&'a mut self) -> &'a mut Result;
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
extern crate test;
|
|
use self::test::BenchHarness;
|
|
use ops::Drop;
|
|
|
|
// Overhead of dtors
|
|
|
|
struct HasDtor {
|
|
x: int
|
|
}
|
|
|
|
impl Drop for HasDtor {
|
|
fn drop(&mut self) {
|
|
}
|
|
}
|
|
|
|
#[bench]
|
|
fn alloc_obj_with_dtor(bh: &mut BenchHarness) {
|
|
bh.iter(|| {
|
|
HasDtor { x : 10 };
|
|
})
|
|
}
|
|
}
|