rust/src/libstd/cmp.rs
OGINO Masanori b4d6ae5bb8 Remove redundant Ord method impls.
Basically, generic containers should not use the default methods since a
type of elements may not guarantees total order. str could use them
since u8's Ord guarantees total order. Floating point numbers are also
broken with the default methods because of NaN. Thanks for @thestinger.

Timespec also guarantees total order AIUI. I'm unsure whether
extra::semver::Identifier does so I left it alone. Proof needed.

Signed-off-by: OGINO Masanori <masanori.ogino@gmail.com>
2013-08-09 14:28:14 +09:00

244 lines
6.1 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
The `Ord` and `Eq` comparison traits
This module contains the definition of both `Ord` and `Eq` which define
the common interfaces for doing comparison. Both are language items
that the compiler uses to implement the comparison operators. Rust code
may implement `Ord` to overload the `<`, `<=`, `>`, and `>=` operators,
and `Eq` to overload the `==` and `!=` operators.
*/
#[allow(missing_doc)];
/**
* Trait for values that can be compared for equality and inequality.
*
* This trait allows partial equality, where types can be unordered instead of strictly equal or
* unequal. For example, with the built-in floating-point types `a == b` and `a != b` will both
* evaluate to false if either `a` or `b` is NaN (cf. IEEE 754-2008 section 5.11).
*
* Eq only requires the `eq` method to be implemented; `ne` is its negation by default.
*
* Eventually, this will be implemented by default for types that implement `TotalEq`.
*/
#[lang="eq"]
pub trait Eq {
fn eq(&self, other: &Self) -> bool;
fn ne(&self, other: &Self) -> bool { !self.eq(other) }
}
/// Trait for equality comparisons where `a == b` and `a != b` are strict inverses.
pub trait TotalEq {
fn equals(&self, other: &Self) -> bool;
}
macro_rules! totaleq_impl(
($t:ty) => {
impl TotalEq for $t {
#[inline]
fn equals(&self, other: &$t) -> bool { *self == *other }
}
}
)
totaleq_impl!(bool)
totaleq_impl!(u8)
totaleq_impl!(u16)
totaleq_impl!(u32)
totaleq_impl!(u64)
totaleq_impl!(i8)
totaleq_impl!(i16)
totaleq_impl!(i32)
totaleq_impl!(i64)
totaleq_impl!(int)
totaleq_impl!(uint)
totaleq_impl!(char)
/// Trait for testing approximate equality
pub trait ApproxEq<Eps> {
fn approx_epsilon() -> Eps;
fn approx_eq(&self, other: &Self) -> bool;
fn approx_eq_eps(&self, other: &Self, approx_epsilon: &Eps) -> bool;
}
#[deriving(Clone, Eq)]
pub enum Ordering { Less = -1, Equal = 0, Greater = 1 }
/// Trait for types that form a total order
pub trait TotalOrd: TotalEq {
fn cmp(&self, other: &Self) -> Ordering;
}
impl TotalEq for Ordering {
#[inline]
fn equals(&self, other: &Ordering) -> bool {
*self == *other
}
}
impl TotalOrd for Ordering {
#[inline]
fn cmp(&self, other: &Ordering) -> Ordering {
(*self as int).cmp(&(*other as int))
}
}
impl Ord for Ordering {
#[inline]
fn lt(&self, other: &Ordering) -> bool { (*self as int) < (*other as int) }
}
macro_rules! totalord_impl(
($t:ty) => {
impl TotalOrd for $t {
#[inline]
fn cmp(&self, other: &$t) -> Ordering {
if *self < *other { Less }
else if *self > *other { Greater }
else { Equal }
}
}
}
)
totalord_impl!(u8)
totalord_impl!(u16)
totalord_impl!(u32)
totalord_impl!(u64)
totalord_impl!(i8)
totalord_impl!(i16)
totalord_impl!(i32)
totalord_impl!(i64)
totalord_impl!(int)
totalord_impl!(uint)
totalord_impl!(char)
/// Compares (a1, b1) against (a2, b2), where the a values are more significant.
pub fn cmp2<A:TotalOrd,B:TotalOrd>(
a1: &A, b1: &B,
a2: &A, b2: &B) -> Ordering
{
match a1.cmp(a2) {
Less => Less,
Greater => Greater,
Equal => b1.cmp(b2)
}
}
/**
Return `o1` if it is not `Equal`, otherwise `o2`. Simulates the
lexical ordering on a type `(int, int)`.
*/
#[inline]
pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
match o1 {
Equal => o2,
_ => o1
}
}
/**
* Trait for values that can be compared for a sort-order.
*
* Ord only requires implementation of the `lt` method,
* with the others generated from default implementations.
*
* However it remains possible to implement the others separately,
* for compatibility with floating-point NaN semantics
* (cf. IEEE 754-2008 section 5.11).
*/
#[lang="ord"]
pub trait Ord {
fn lt(&self, other: &Self) -> bool;
#[inline]
fn le(&self, other: &Self) -> bool { !other.lt(self) }
#[inline]
fn gt(&self, other: &Self) -> bool { other.lt(self) }
#[inline]
fn ge(&self, other: &Self) -> bool { !self.lt(other) }
}
/// The equivalence relation. Two values may be equivalent even if they are
/// of different types. The most common use case for this relation is
/// container types; e.g. it is often desirable to be able to use `&str`
/// values to look up entries in a container with `~str` keys.
pub trait Equiv<T> {
fn equiv(&self, other: &T) -> bool;
}
#[inline]
pub fn min<T:Ord>(v1: T, v2: T) -> T {
if v1 < v2 { v1 } else { v2 }
}
#[inline]
pub fn max<T:Ord>(v1: T, v2: T) -> T {
if v1 > v2 { v1 } else { v2 }
}
#[cfg(test)]
mod test {
use super::lexical_ordering;
#[test]
fn test_int_totalord() {
assert_eq!(5.cmp(&10), Less);
assert_eq!(10.cmp(&5), Greater);
assert_eq!(5.cmp(&5), Equal);
assert_eq!((-5).cmp(&12), Less);
assert_eq!(12.cmp(-5), Greater);
}
#[test]
fn test_cmp2() {
assert_eq!(cmp2(1, 2, 3, 4), Less);
assert_eq!(cmp2(3, 2, 3, 4), Less);
assert_eq!(cmp2(5, 2, 3, 4), Greater);
assert_eq!(cmp2(5, 5, 5, 4), Greater);
}
#[test]
fn test_int_totaleq() {
assert!(5.equals(&5));
assert!(!2.equals(&17));
}
#[test]
fn test_ordering_order() {
assert!(Less < Equal);
assert_eq!(Greater.cmp(&Less), Greater);
}
#[test]
fn test_lexical_ordering() {
fn t(o1: Ordering, o2: Ordering, e: Ordering) {
assert_eq!(lexical_ordering(o1, o2), e);
}
let xs = [Less, Equal, Greater];
for &o in xs.iter() {
t(Less, o, Less);
t(Equal, o, o);
t(Greater, o, Greater);
}
}
}