rust/src/libstd/os.rs

2101 lines
66 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Higher-level interfaces to libc::* functions and operating system services.
//!
//! In general these take and return rust types, use rust idioms (enums, closures, vectors) rather
//! than C idioms, and do more extensive safety checks.
//!
//! This module is not meant to only contain 1:1 mappings to libc entries; any os-interface code
//! that is reasonably useful and broadly applicable can go here. Including utility routines that
//! merely build on other os code.
//!
//! We assume the general case is that users do not care, and do not want to be made to care, which
//! operating system they are on. While they may want to special case various special cases -- and
//! so we will not _hide_ the facts of which OS the user is on -- they should be given the
//! opportunity to write OS-ignorant code by default.
#![experimental]
#![allow(missing_docs)]
#![allow(non_snake_case)]
pub use self::MemoryMapKind::*;
pub use self::MapOption::*;
pub use self::MapError::*;
use clone::Clone;
use error::{FromError, Error};
use fmt;
use io::{IoResult, IoError};
use iter::{Iterator, IteratorExt};
use libc::{c_void, c_int};
use libc;
use boxed::Box;
use ops::Drop;
use option::{Some, None, Option};
use os;
use path::{Path, GenericPath, BytesContainer};
use sys;
use sys::os as os_imp;
use ptr::RawPtr;
use ptr;
use result::{Err, Ok, Result};
use slice::{AsSlice, SlicePrelude, PartialEqSlicePrelude};
use slice::CloneSliceAllocPrelude;
use str::{Str, StrPrelude, StrAllocating};
use string::{String, ToString};
use sync::atomic::{AtomicInt, INIT_ATOMIC_INT, SeqCst};
use vec::Vec;
#[cfg(unix)] use c_str::ToCStr;
#[cfg(unix)] use libc::c_char;
#[cfg(unix)]
pub use sys::ext as unix;
#[cfg(windows)]
pub use sys::ext as windows;
/// Get the number of cores available
pub fn num_cpus() -> uint {
unsafe {
return rust_get_num_cpus() as uint;
}
extern {
fn rust_get_num_cpus() -> libc::uintptr_t;
}
}
pub const TMPBUF_SZ : uint = 1000u;
const BUF_BYTES : uint = 2048u;
/// Returns the current working directory as a `Path`.
///
/// # Errors
///
/// Returns an `Err` if the current working directory value is invalid.
/// Possible cases:
///
/// * Current directory does not exist.
/// * There are insufficient permissions to access the current directory.
/// * The internal buffer is not large enough to hold the path.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// // We assume that we are in a valid directory like "/home".
/// let current_working_directory = os::getcwd().unwrap();
/// println!("The current directory is {}", current_working_directory.display());
/// // /home
/// ```
#[cfg(unix)]
pub fn getcwd() -> IoResult<Path> {
use c_str::CString;
let mut buf = [0 as c_char, ..BUF_BYTES];
unsafe {
if libc::getcwd(buf.as_mut_ptr(), buf.len() as libc::size_t).is_null() {
Err(IoError::last_error())
} else {
Ok(Path::new(CString::new(buf.as_ptr(), false)))
}
}
}
/// Returns the current working directory as a `Path`.
///
/// # Errors
///
/// Returns an `Err` if the current working directory value is invalid.
/// Possible cases:
///
/// * Current directory does not exist.
/// * There are insufficient permissions to access the current directory.
/// * The internal buffer is not large enough to hold the path.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// // We assume that we are in a valid directory like "C:\\Windows".
/// let current_working_directory = os::getcwd().unwrap();
/// println!("The current directory is {}", current_working_directory.display());
/// // C:\\Windows
/// ```
#[cfg(windows)]
pub fn getcwd() -> IoResult<Path> {
use libc::DWORD;
use libc::GetCurrentDirectoryW;
use io::OtherIoError;
let mut buf = [0 as u16, ..BUF_BYTES];
unsafe {
if libc::GetCurrentDirectoryW(buf.len() as DWORD, buf.as_mut_ptr()) == 0 as DWORD {
return Err(IoError::last_error());
}
}
match String::from_utf16(::str::truncate_utf16_at_nul(&buf)) {
Some(ref cwd) => Ok(Path::new(cwd)),
None => Err(IoError {
kind: OtherIoError,
desc: "GetCurrentDirectoryW returned invalid UTF-16",
detail: None,
}),
}
}
#[cfg(windows)]
pub mod windows {
use libc::types::os::arch::extra::DWORD;
use libc;
use option::{None, Option};
use option;
use os::TMPBUF_SZ;
use slice::{SlicePrelude};
use string::String;
use str::StrPrelude;
use vec::Vec;
pub fn fill_utf16_buf_and_decode(f: |*mut u16, DWORD| -> DWORD)
-> Option<String> {
unsafe {
let mut n = TMPBUF_SZ as DWORD;
let mut res = None;
let mut done = false;
while !done {
let mut buf = Vec::from_elem(n as uint, 0u16);
let k = f(buf.as_mut_ptr(), n);
if k == (0 as DWORD) {
done = true;
} else if k == n &&
libc::GetLastError() ==
libc::ERROR_INSUFFICIENT_BUFFER as DWORD {
n *= 2 as DWORD;
} else if k >= n {
n = k;
} else {
done = true;
}
if k != 0 && done {
let sub = buf.slice(0, k as uint);
// We want to explicitly catch the case when the
// closure returned invalid UTF-16, rather than
// set `res` to None and continue.
let s = String::from_utf16(sub)
.expect("fill_utf16_buf_and_decode: closure created invalid UTF-16");
res = option::Some(s)
}
}
return res;
}
}
}
/*
Accessing environment variables is not generally threadsafe.
Serialize access through a global lock.
*/
fn with_env_lock<T>(f: || -> T) -> T {
use rustrt::mutex::{StaticNativeMutex, NATIVE_MUTEX_INIT};
static LOCK: StaticNativeMutex = NATIVE_MUTEX_INIT;
unsafe {
let _guard = LOCK.lock();
f()
}
}
/// Returns a vector of (variable, value) pairs, for all the environment
/// variables of the current process.
///
/// Invalid UTF-8 bytes are replaced with \uFFFD. See `String::from_utf8_lossy()`
/// for details.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// // We will iterate through the references to the element returned by os::env();
/// for &(ref key, ref value) in os::env().iter() {
/// println!("'{}': '{}'", key, value );
/// }
/// ```
pub fn env() -> Vec<(String,String)> {
env_as_bytes().into_iter().map(|(k,v)| {
let k = String::from_utf8_lossy(k.as_slice()).into_string();
let v = String::from_utf8_lossy(v.as_slice()).into_string();
(k,v)
}).collect()
}
/// Returns a vector of (variable, value) byte-vector pairs for all the
/// environment variables of the current process.
pub fn env_as_bytes() -> Vec<(Vec<u8>,Vec<u8>)> {
unsafe {
#[cfg(windows)]
unsafe fn get_env_pairs() -> Vec<Vec<u8>> {
use slice;
use libc::funcs::extra::kernel32::{
GetEnvironmentStringsW,
FreeEnvironmentStringsW
};
let ch = GetEnvironmentStringsW();
if ch as uint == 0 {
panic!("os::env() failure getting env string from OS: {}",
os::last_os_error());
}
// Here, we lossily decode the string as UTF16.
//
// The docs suggest that the result should be in Unicode, but
// Windows doesn't guarantee it's actually UTF16 -- it doesn't
// validate the environment string passed to CreateProcess nor
// SetEnvironmentVariable. Yet, it's unlikely that returning a
// raw u16 buffer would be of practical use since the result would
// be inherently platform-dependent and introduce additional
// complexity to this code.
//
// Using the non-Unicode version of GetEnvironmentStrings is even
// worse since the result is in an OEM code page. Characters that
// can't be encoded in the code page would be turned into question
// marks.
let mut result = Vec::new();
let mut i = 0;
while *ch.offset(i) != 0 {
let p = &*ch.offset(i);
let mut len = 0;
while *(p as *const _).offset(len) != 0 {
len += 1;
}
let p = p as *const u16;
let s = slice::from_raw_buf(&p, len as uint);
result.push(String::from_utf16_lossy(s).into_bytes());
i += len as int + 1;
}
FreeEnvironmentStringsW(ch);
result
}
#[cfg(unix)]
unsafe fn get_env_pairs() -> Vec<Vec<u8>> {
use c_str::CString;
extern {
fn rust_env_pairs() -> *const *const c_char;
}
let mut environ = rust_env_pairs();
if environ as uint == 0 {
panic!("os::env() failure getting env string from OS: {}",
os::last_os_error());
}
let mut result = Vec::new();
while *environ != 0 as *const _ {
let env_pair =
CString::new(*environ, false).as_bytes_no_nul().to_vec();
result.push(env_pair);
environ = environ.offset(1);
}
result
}
fn env_convert(input: Vec<Vec<u8>>) -> Vec<(Vec<u8>, Vec<u8>)> {
let mut pairs = Vec::new();
for p in input.iter() {
let mut it = p.as_slice().splitn(1, |b| *b == b'=');
let key = it.next().unwrap().to_vec();
let default: &[u8] = &[];
let val = it.next().unwrap_or(default).to_vec();
pairs.push((key, val));
}
pairs
}
with_env_lock(|| {
let unparsed_environ = get_env_pairs();
env_convert(unparsed_environ)
})
}
}
#[cfg(unix)]
/// Fetches the environment variable `n` from the current process, returning
/// None if the variable isn't set.
///
/// Any invalid UTF-8 bytes in the value are replaced by \uFFFD. See
/// `String::from_utf8_lossy()` for details.
///
/// # Panics
///
/// Panics if `n` has any interior NULs.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// let key = "HOME";
/// match os::getenv(key) {
/// Some(val) => println!("{}: {}", key, val),
/// None => println!("{} is not defined in the environment.", key)
/// }
/// ```
pub fn getenv(n: &str) -> Option<String> {
getenv_as_bytes(n).map(|v| String::from_utf8_lossy(v.as_slice()).into_string())
}
#[cfg(unix)]
/// Fetches the environment variable `n` byte vector from the current process,
/// returning None if the variable isn't set.
///
/// # Panics
///
/// Panics if `n` has any interior NULs.
pub fn getenv_as_bytes(n: &str) -> Option<Vec<u8>> {
use c_str::CString;
unsafe {
with_env_lock(|| {
let s = n.with_c_str(|buf| libc::getenv(buf));
if s.is_null() {
None
} else {
Some(CString::new(s as *const i8, false).as_bytes_no_nul().to_vec())
}
})
}
}
#[cfg(windows)]
/// Fetches the environment variable `n` from the current process, returning
/// None if the variable isn't set.
pub fn getenv(n: &str) -> Option<String> {
unsafe {
with_env_lock(|| {
use os::windows::{fill_utf16_buf_and_decode};
let mut n: Vec<u16> = n.utf16_units().collect();
n.push(0);
fill_utf16_buf_and_decode(|buf, sz| {
libc::GetEnvironmentVariableW(n.as_ptr(), buf, sz)
})
})
}
}
#[cfg(windows)]
/// Fetches the environment variable `n` byte vector from the current process,
/// returning None if the variable isn't set.
pub fn getenv_as_bytes(n: &str) -> Option<Vec<u8>> {
getenv(n).map(|s| s.into_bytes())
}
/// Sets the environment variable `n` to the value `v` for the currently running
/// process.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// let key = "KEY";
/// os::setenv(key, "VALUE");
/// match os::getenv(key) {
/// Some(ref val) => println!("{}: {}", key, val),
/// None => println!("{} is not defined in the environment.", key)
/// }
/// ```
pub fn setenv<T: BytesContainer>(n: &str, v: T) {
#[cfg(unix)]
fn _setenv(n: &str, v: &[u8]) {
unsafe {
with_env_lock(|| {
n.with_c_str(|nbuf| {
v.with_c_str(|vbuf| {
if libc::funcs::posix01::unistd::setenv(nbuf, vbuf, 1) != 0 {
panic!(IoError::last_error());
}
})
})
})
}
}
#[cfg(windows)]
fn _setenv(n: &str, v: &[u8]) {
let mut n: Vec<u16> = n.utf16_units().collect();
n.push(0);
let mut v: Vec<u16> = ::str::from_utf8(v).unwrap().utf16_units().collect();
v.push(0);
unsafe {
with_env_lock(|| {
if libc::SetEnvironmentVariableW(n.as_ptr(), v.as_ptr()) == 0 {
panic!(IoError::last_error());
}
})
}
}
_setenv(n, v.container_as_bytes())
}
/// Remove a variable from the environment entirely.
pub fn unsetenv(n: &str) {
#[cfg(unix)]
fn _unsetenv(n: &str) {
unsafe {
with_env_lock(|| {
n.with_c_str(|nbuf| {
if libc::funcs::posix01::unistd::unsetenv(nbuf) != 0 {
panic!(IoError::last_error());
}
})
})
}
}
#[cfg(windows)]
fn _unsetenv(n: &str) {
let mut n: Vec<u16> = n.utf16_units().collect();
n.push(0);
unsafe {
with_env_lock(|| {
if libc::SetEnvironmentVariableW(n.as_ptr(), ptr::null()) == 0 {
panic!(IoError::last_error());
}
})
}
}
_unsetenv(n)
}
/// Parses input according to platform conventions for the `PATH`
/// environment variable.
///
/// # Example
/// ```rust
/// use std::os;
///
/// let key = "PATH";
/// match os::getenv_as_bytes(key) {
/// Some(paths) => {
/// for path in os::split_paths(paths).iter() {
/// println!("'{}'", path.display());
/// }
/// }
/// None => println!("{} is not defined in the environment.", key)
/// }
/// ```
pub fn split_paths<T: BytesContainer>(unparsed: T) -> Vec<Path> {
#[cfg(unix)]
fn _split_paths<T: BytesContainer>(unparsed: T) -> Vec<Path> {
unparsed.container_as_bytes()
.split(|b| *b == b':')
.map(Path::new)
.collect()
}
#[cfg(windows)]
fn _split_paths<T: BytesContainer>(unparsed: T) -> Vec<Path> {
// On Windows, the PATH environment variable is semicolon separated. Double
// quotes are used as a way of introducing literal semicolons (since
// c:\some;dir is a valid Windows path). Double quotes are not themselves
// permitted in path names, so there is no way to escape a double quote.
// Quoted regions can appear in arbitrary locations, so
//
// c:\foo;c:\som"e;di"r;c:\bar
//
// Should parse as [c:\foo, c:\some;dir, c:\bar].
//
// (The above is based on testing; there is no clear reference available
// for the grammar.)
let mut parsed = Vec::new();
let mut in_progress = Vec::new();
let mut in_quote = false;
for b in unparsed.container_as_bytes().iter() {
match *b {
b';' if !in_quote => {
parsed.push(Path::new(in_progress.as_slice()));
in_progress.truncate(0)
}
b'"' => {
in_quote = !in_quote;
}
_ => {
in_progress.push(*b);
}
}
}
parsed.push(Path::new(in_progress));
parsed
}
_split_paths(unparsed)
}
/// Joins a collection of `Path`s appropriately for the `PATH`
/// environment variable.
///
/// Returns a `Vec<u8>` on success, since `Path`s are not utf-8
/// encoded on all platforms.
///
/// Returns an `Err` (containing an error message) if one of the input
/// `Path`s contains an invalid character for constructing the `PATH`
/// variable (a double quote on Windows or a colon on Unix).
///
/// # Example
///
/// ```rust
/// use std::os;
/// use std::path::Path;
///
/// let key = "PATH";
/// let mut paths = os::getenv_as_bytes(key).map_or(Vec::new(), os::split_paths);
/// paths.push(Path::new("/home/xyz/bin"));
/// os::setenv(key, os::join_paths(paths.as_slice()).unwrap());
/// ```
pub fn join_paths<T: BytesContainer>(paths: &[T]) -> Result<Vec<u8>, &'static str> {
#[cfg(windows)]
fn _join_paths<T: BytesContainer>(paths: &[T]) -> Result<Vec<u8>, &'static str> {
let mut joined = Vec::new();
let sep = b';';
for (i, path) in paths.iter().map(|p| p.container_as_bytes()).enumerate() {
if i > 0 { joined.push(sep) }
if path.contains(&b'"') {
return Err("path segment contains `\"`");
} else if path.contains(&sep) {
joined.push(b'"');
joined.push_all(path);
joined.push(b'"');
} else {
joined.push_all(path);
}
}
Ok(joined)
}
#[cfg(unix)]
fn _join_paths<T: BytesContainer>(paths: &[T]) -> Result<Vec<u8>, &'static str> {
let mut joined = Vec::new();
let sep = b':';
for (i, path) in paths.iter().map(|p| p.container_as_bytes()).enumerate() {
if i > 0 { joined.push(sep) }
if path.contains(&sep) { return Err("path segment contains separator `:`") }
joined.push_all(path);
}
Ok(joined)
}
_join_paths(paths)
}
/// A low-level OS in-memory pipe.
pub struct Pipe {
/// A file descriptor representing the reading end of the pipe. Data written
/// on the `out` file descriptor can be read from this file descriptor.
pub reader: c_int,
/// A file descriptor representing the write end of the pipe. Data written
/// to this file descriptor can be read from the `input` file descriptor.
pub writer: c_int,
}
/// Creates a new low-level OS in-memory pipe.
///
/// This function can fail to succeed if there are no more resources available
/// to allocate a pipe.
///
/// This function is also unsafe as there is no destructor associated with the
/// `Pipe` structure will return. If it is not arranged for the returned file
/// descriptors to be closed, the file descriptors will leak. For safe handling
/// of this scenario, use `std::io::PipeStream` instead.
pub unsafe fn pipe() -> IoResult<Pipe> {
let (reader, writer) = try!(sys::os::pipe());
Ok(Pipe {
reader: reader.unwrap(),
writer: writer.unwrap(),
})
}
/// Returns the proper dll filename for the given basename of a file
/// as a String.
#[cfg(not(target_os="ios"))]
pub fn dll_filename(base: &str) -> String {
format!("{}{}{}", consts::DLL_PREFIX, base, consts::DLL_SUFFIX)
}
/// Optionally returns the filesystem path to the current executable which is
/// running but with the executable name.
///
/// # Examples
///
/// ```rust
/// use std::os;
///
/// match os::self_exe_name() {
/// Some(exe_path) => println!("Path of this executable is: {}", exe_path.display()),
/// None => println!("Unable to get the path of this executable!")
/// };
/// ```
pub fn self_exe_name() -> Option<Path> {
#[cfg(any(target_os = "freebsd", target_os = "dragonfly"))]
fn load_self() -> Option<Vec<u8>> {
unsafe {
use libc::funcs::bsd44::*;
use libc::consts::os::extra::*;
let mut mib = vec![CTL_KERN as c_int,
KERN_PROC as c_int,
KERN_PROC_PATHNAME as c_int,
-1 as c_int];
let mut sz: libc::size_t = 0;
let err = sysctl(mib.as_mut_ptr(), mib.len() as ::libc::c_uint,
ptr::null_mut(), &mut sz, ptr::null_mut(),
0u as libc::size_t);
if err != 0 { return None; }
if sz == 0 { return None; }
let mut v: Vec<u8> = Vec::with_capacity(sz as uint);
let err = sysctl(mib.as_mut_ptr(), mib.len() as ::libc::c_uint,
v.as_mut_ptr() as *mut c_void, &mut sz,
ptr::null_mut(), 0u as libc::size_t);
if err != 0 { return None; }
if sz == 0 { return None; }
v.set_len(sz as uint - 1); // chop off trailing NUL
Some(v)
}
}
#[cfg(any(target_os = "linux", target_os = "android"))]
fn load_self() -> Option<Vec<u8>> {
use std::io;
match io::fs::readlink(&Path::new("/proc/self/exe")) {
Ok(path) => Some(path.into_vec()),
Err(..) => None
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
fn load_self() -> Option<Vec<u8>> {
unsafe {
use libc::funcs::extra::_NSGetExecutablePath;
let mut sz: u32 = 0;
_NSGetExecutablePath(ptr::null_mut(), &mut sz);
if sz == 0 { return None; }
let mut v: Vec<u8> = Vec::with_capacity(sz as uint);
let err = _NSGetExecutablePath(v.as_mut_ptr() as *mut i8, &mut sz);
if err != 0 { return None; }
v.set_len(sz as uint - 1); // chop off trailing NUL
Some(v)
}
}
#[cfg(windows)]
fn load_self() -> Option<Vec<u8>> {
unsafe {
use os::windows::fill_utf16_buf_and_decode;
fill_utf16_buf_and_decode(|buf, sz| {
libc::GetModuleFileNameW(0u as libc::DWORD, buf, sz)
}).map(|s| s.into_string().into_bytes())
}
}
load_self().and_then(Path::new_opt)
}
/// Optionally returns the filesystem path to the current executable which is
/// running.
///
/// Like self_exe_name() but without the binary's name.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// match os::self_exe_path() {
/// Some(exe_path) => println!("Executable's Path is: {}", exe_path.display()),
/// None => println!("Impossible to fetch the path of this executable.")
/// };
/// ```
pub fn self_exe_path() -> Option<Path> {
self_exe_name().map(|mut p| { p.pop(); p })
}
/// Optionally returns the path to the current user's home directory if known.
///
/// # Unix
///
/// Returns the value of the 'HOME' environment variable if it is set
/// and not equal to the empty string.
///
/// # Windows
///
/// Returns the value of the 'HOME' environment variable if it is
/// set and not equal to the empty string. Otherwise, returns the value of the
/// 'USERPROFILE' environment variable if it is set and not equal to the empty
/// string.
///
/// # Example
///
/// ```rust
/// use std::os;
///
/// match os::homedir() {
/// Some(ref p) => println!("{}", p.display()),
/// None => println!("Impossible to get your home dir!")
/// }
/// ```
pub fn homedir() -> Option<Path> {
#[inline]
#[cfg(unix)]
fn _homedir() -> Option<Path> {
aux_homedir("HOME")
}
#[inline]
#[cfg(windows)]
fn _homedir() -> Option<Path> {
aux_homedir("HOME").or(aux_homedir("USERPROFILE"))
}
#[inline]
fn aux_homedir(home_name: &str) -> Option<Path> {
match getenv_as_bytes(home_name) {
Some(p) => {
if p.is_empty() { None } else { Path::new_opt(p) }
},
_ => None
}
}
_homedir()
}
/// Returns the path to a temporary directory.
///
/// On Unix, returns the value of the 'TMPDIR' environment variable if it is
/// set, otherwise for non-Android it returns '/tmp'. If Android, since there
/// is no global temporary folder (it is usually allocated per-app), we return
/// '/data/local/tmp'.
///
/// On Windows, returns the value of, in order, the 'TMP', 'TEMP',
/// 'USERPROFILE' environment variable if any are set and not the empty
/// string. Otherwise, tmpdir returns the path to the Windows directory.
pub fn tmpdir() -> Path {
return lookup();
fn getenv_nonempty(v: &str) -> Option<Path> {
match getenv(v) {
Some(x) =>
if x.is_empty() {
None
} else {
Path::new_opt(x)
},
_ => None
}
}
#[cfg(unix)]
fn lookup() -> Path {
let default = if cfg!(target_os = "android") {
Path::new("/data/local/tmp")
} else {
Path::new("/tmp")
};
getenv_nonempty("TMPDIR").unwrap_or(default)
}
#[cfg(windows)]
fn lookup() -> Path {
getenv_nonempty("TMP").or(
getenv_nonempty("TEMP").or(
getenv_nonempty("USERPROFILE").or(
getenv_nonempty("WINDIR")))).unwrap_or(Path::new("C:\\Windows"))
}
}
///
/// Convert a relative path to an absolute path
///
/// If the given path is relative, return it prepended with the current working
/// directory. If the given path is already an absolute path, return it
/// as is.
///
/// # Example
/// ```rust
/// use std::os;
/// use std::path::Path;
///
/// // Assume we're in a path like /home/someuser
/// let rel_path = Path::new("..");
/// let abs_path = os::make_absolute(&rel_path).unwrap();
/// println!("The absolute path is {}", abs_path.display());
/// // Prints "The absolute path is /home"
/// ```
// NB: this is here rather than in path because it is a form of environment
// querying; what it does depends on the process working directory, not just
// the input paths.
pub fn make_absolute(p: &Path) -> IoResult<Path> {
if p.is_absolute() {
Ok(p.clone())
} else {
getcwd().map(|mut cwd| {
cwd.push(p);
cwd
})
}
}
/// Changes the current working directory to the specified path, returning
/// whether the change was completed successfully or not.
///
/// # Example
/// ```rust
/// use std::os;
/// use std::path::Path;
///
/// let root = Path::new("/");
/// assert!(os::change_dir(&root).is_ok());
/// println!("Successfully changed working directory to {}!", root.display());
/// ```
pub fn change_dir(p: &Path) -> IoResult<()> {
return chdir(p);
#[cfg(windows)]
fn chdir(p: &Path) -> IoResult<()> {
let mut p = p.as_str().unwrap().utf16_units().collect::<Vec<u16>>();
p.push(0);
unsafe {
match libc::SetCurrentDirectoryW(p.as_ptr()) != (0 as libc::BOOL) {
true => Ok(()),
false => Err(IoError::last_error()),
}
}
}
#[cfg(unix)]
fn chdir(p: &Path) -> IoResult<()> {
p.with_c_str(|buf| {
unsafe {
match libc::chdir(buf) == (0 as c_int) {
true => Ok(()),
false => Err(IoError::last_error()),
}
}
})
}
}
/// Returns the platform-specific value of errno
pub fn errno() -> uint {
os_imp::errno() as uint
}
/// Return the string corresponding to an `errno()` value of `errnum`.
///
/// # Example
/// ```rust
/// use std::os;
///
/// // Same as println!("{}", last_os_error());
/// println!("{}", os::error_string(os::errno() as uint));
/// ```
pub fn error_string(errnum: uint) -> String {
return os_imp::error_string(errnum as i32);
}
/// Get a string representing the platform-dependent last error
pub fn last_os_error() -> String {
error_string(errno() as uint)
}
static EXIT_STATUS: AtomicInt = INIT_ATOMIC_INT;
/// Sets the process exit code
///
/// Sets the exit code returned by the process if all supervised tasks
/// terminate successfully (without panicking). If the current root task panics
/// and is supervised by the scheduler then any user-specified exit status is
/// ignored and the process exits with the default panic status.
///
/// Note that this is not synchronized against modifications of other threads.
pub fn set_exit_status(code: int) {
EXIT_STATUS.store(code, SeqCst)
}
/// Fetches the process's current exit code. This defaults to 0 and can change
/// by calling `set_exit_status`.
pub fn get_exit_status() -> int {
EXIT_STATUS.load(SeqCst)
}
#[cfg(target_os = "macos")]
unsafe fn load_argc_and_argv(argc: int,
argv: *const *const c_char) -> Vec<Vec<u8>> {
use c_str::CString;
Vec::from_fn(argc as uint, |i| {
CString::new(*argv.offset(i as int), false).as_bytes_no_nul().to_vec()
})
}
/// Returns the command line arguments
///
/// Returns a list of the command line arguments.
#[cfg(target_os = "macos")]
fn real_args_as_bytes() -> Vec<Vec<u8>> {
unsafe {
let (argc, argv) = (*_NSGetArgc() as int,
*_NSGetArgv() as *const *const c_char);
load_argc_and_argv(argc, argv)
}
}
// As _NSGetArgc and _NSGetArgv aren't mentioned in iOS docs
// and use underscores in their names - they're most probably
// are considered private and therefore should be avoided
// Here is another way to get arguments using Objective C
// runtime
//
// In general it looks like:
// res = Vec::new()
// let args = [[NSProcessInfo processInfo] arguments]
// for i in range(0, [args count])
// res.push([args objectAtIndex:i])
// res
#[cfg(target_os = "ios")]
fn real_args_as_bytes() -> Vec<Vec<u8>> {
use c_str::CString;
use iter::range;
use mem;
#[link(name = "objc")]
extern {
fn sel_registerName(name: *const libc::c_uchar) -> Sel;
fn objc_msgSend(obj: NsId, sel: Sel, ...) -> NsId;
fn objc_getClass(class_name: *const libc::c_uchar) -> NsId;
}
#[link(name = "Foundation", kind = "framework")]
extern {}
type Sel = *const libc::c_void;
type NsId = *const libc::c_void;
let mut res = Vec::new();
unsafe {
let processInfoSel = sel_registerName("processInfo\0".as_ptr());
let argumentsSel = sel_registerName("arguments\0".as_ptr());
let utf8Sel = sel_registerName("UTF8String\0".as_ptr());
let countSel = sel_registerName("count\0".as_ptr());
let objectAtSel = sel_registerName("objectAtIndex:\0".as_ptr());
let klass = objc_getClass("NSProcessInfo\0".as_ptr());
let info = objc_msgSend(klass, processInfoSel);
let args = objc_msgSend(info, argumentsSel);
let cnt: int = mem::transmute(objc_msgSend(args, countSel));
for i in range(0, cnt) {
let tmp = objc_msgSend(args, objectAtSel, i);
let utf_c_str: *const libc::c_char =
mem::transmute(objc_msgSend(tmp, utf8Sel));
let s = CString::new(utf_c_str, false);
res.push(s.as_bytes_no_nul().to_vec())
}
}
res
}
#[cfg(any(target_os = "linux",
target_os = "android",
target_os = "freebsd",
target_os = "dragonfly"))]
fn real_args_as_bytes() -> Vec<Vec<u8>> {
use rustrt;
match rustrt::args::clone() {
Some(args) => args,
None => panic!("process arguments not initialized")
}
}
#[cfg(not(windows))]
fn real_args() -> Vec<String> {
real_args_as_bytes().into_iter()
.map(|v| {
String::from_utf8_lossy(v.as_slice()).into_string()
}).collect()
}
#[cfg(windows)]
fn real_args() -> Vec<String> {
use slice;
let mut nArgs: c_int = 0;
let lpArgCount: *mut c_int = &mut nArgs;
let lpCmdLine = unsafe { GetCommandLineW() };
let szArgList = unsafe { CommandLineToArgvW(lpCmdLine, lpArgCount) };
let args = Vec::from_fn(nArgs as uint, |i| unsafe {
// Determine the length of this argument.
let ptr = *szArgList.offset(i as int);
let mut len = 0;
while *ptr.offset(len as int) != 0 { len += 1; }
// Push it onto the list.
let ptr = ptr as *const u16;
let buf = slice::from_raw_buf(&ptr, len);
let opt_s = String::from_utf16(::str::truncate_utf16_at_nul(buf));
opt_s.expect("CommandLineToArgvW returned invalid UTF-16")
});
unsafe {
LocalFree(szArgList as *mut c_void);
}
return args
}
#[cfg(windows)]
fn real_args_as_bytes() -> Vec<Vec<u8>> {
real_args().into_iter().map(|s| s.into_bytes()).collect()
}
type LPCWSTR = *const u16;
#[cfg(windows)]
#[link_name="kernel32"]
extern "system" {
fn GetCommandLineW() -> LPCWSTR;
fn LocalFree(ptr: *mut c_void);
}
#[cfg(windows)]
#[link_name="shell32"]
extern "system" {
fn CommandLineToArgvW(lpCmdLine: LPCWSTR,
pNumArgs: *mut c_int) -> *mut *mut u16;
}
/// Returns the arguments which this program was started with (normally passed
/// via the command line).
///
/// The first element is traditionally the path to the executable, but it can be
/// set to arbitrary text, and it may not even exist, so this property should not
/// be relied upon for security purposes.
///
/// The arguments are interpreted as utf-8, with invalid bytes replaced with \uFFFD.
/// See `String::from_utf8_lossy` for details.
/// # Example
///
/// ```rust
/// use std::os;
///
/// // Prints each argument on a separate line
/// for argument in os::args().iter() {
/// println!("{}", argument);
/// }
/// ```
pub fn args() -> Vec<String> {
real_args()
}
/// Returns the arguments which this program was started with (normally passed
/// via the command line) as byte vectors.
pub fn args_as_bytes() -> Vec<Vec<u8>> {
real_args_as_bytes()
}
#[cfg(target_os = "macos")]
extern {
// These functions are in crt_externs.h.
pub fn _NSGetArgc() -> *mut c_int;
pub fn _NSGetArgv() -> *mut *mut *mut c_char;
}
// Round up `from` to be divisible by `to`
fn round_up(from: uint, to: uint) -> uint {
let r = if from % to == 0 {
from
} else {
from + to - (from % to)
};
if r == 0 {
to
} else {
r
}
}
/// Returns the page size of the current architecture in bytes.
#[cfg(unix)]
pub fn page_size() -> uint {
unsafe {
libc::sysconf(libc::_SC_PAGESIZE) as uint
}
}
/// Returns the page size of the current architecture in bytes.
#[cfg(windows)]
pub fn page_size() -> uint {
use mem;
unsafe {
let mut info = mem::zeroed();
libc::GetSystemInfo(&mut info);
return info.dwPageSize as uint;
}
}
/// A memory mapped file or chunk of memory. This is a very system-specific
/// interface to the OS's memory mapping facilities (`mmap` on POSIX,
/// `VirtualAlloc`/`CreateFileMapping` on Windows). It makes no attempt at
/// abstracting platform differences, besides in error values returned. Consider
/// yourself warned.
///
/// The memory map is released (unmapped) when the destructor is run, so don't
/// let it leave scope by accident if you want it to stick around.
pub struct MemoryMap {
data: *mut u8,
len: uint,
kind: MemoryMapKind,
}
/// Type of memory map
pub enum MemoryMapKind {
/// Virtual memory map. Usually used to change the permissions of a given
/// chunk of memory. Corresponds to `VirtualAlloc` on Windows.
MapFile(*const u8),
/// Virtual memory map. Usually used to change the permissions of a given
/// chunk of memory, or for allocation. Corresponds to `VirtualAlloc` on
/// Windows.
MapVirtual
}
/// Options the memory map is created with
pub enum MapOption {
/// The memory should be readable
MapReadable,
/// The memory should be writable
MapWritable,
/// The memory should be executable
MapExecutable,
/// Create a map for a specific address range. Corresponds to `MAP_FIXED` on
/// POSIX.
MapAddr(*const u8),
/// Create a memory mapping for a file with a given fd.
MapFd(c_int),
/// When using `MapFd`, the start of the map is `uint` bytes from the start
/// of the file.
MapOffset(uint),
/// On POSIX, this can be used to specify the default flags passed to
/// `mmap`. By default it uses `MAP_PRIVATE` and, if not using `MapFd`,
/// `MAP_ANON`. This will override both of those. This is platform-specific
/// (the exact values used) and ignored on Windows.
MapNonStandardFlags(c_int),
}
/// Possible errors when creating a map.
pub enum MapError {
/// ## The following are POSIX-specific
///
/// fd was not open for reading or, if using `MapWritable`, was not open for
/// writing.
ErrFdNotAvail,
/// fd was not valid
ErrInvalidFd,
/// Either the address given by `MapAddr` or offset given by `MapOffset` was
/// not a multiple of `MemoryMap::granularity` (unaligned to page size).
ErrUnaligned,
/// With `MapFd`, the fd does not support mapping.
ErrNoMapSupport,
/// If using `MapAddr`, the address + `min_len` was outside of the process's
/// address space. If using `MapFd`, the target of the fd didn't have enough
/// resources to fulfill the request.
ErrNoMem,
/// A zero-length map was requested. This is invalid according to
/// [POSIX](http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html).
/// Not all platforms obey this, but this wrapper does.
ErrZeroLength,
/// Unrecognized error. The inner value is the unrecognized errno.
ErrUnknown(int),
/// ## The following are Windows-specific
///
/// Unsupported combination of protection flags
/// (`MapReadable`/`MapWritable`/`MapExecutable`).
ErrUnsupProt,
/// When using `MapFd`, `MapOffset` was given (Windows does not support this
/// at all)
ErrUnsupOffset,
/// When using `MapFd`, there was already a mapping to the file.
ErrAlreadyExists,
/// Unrecognized error from `VirtualAlloc`. The inner value is the return
/// value of GetLastError.
ErrVirtualAlloc(uint),
/// Unrecognized error from `CreateFileMapping`. The inner value is the
/// return value of `GetLastError`.
ErrCreateFileMappingW(uint),
/// Unrecognized error from `MapViewOfFile`. The inner value is the return
/// value of `GetLastError`.
ErrMapViewOfFile(uint)
}
impl fmt::Show for MapError {
fn fmt(&self, out: &mut fmt::Formatter) -> fmt::Result {
let str = match *self {
ErrFdNotAvail => "fd not available for reading or writing",
ErrInvalidFd => "Invalid fd",
ErrUnaligned => {
"Unaligned address, invalid flags, negative length or \
unaligned offset"
}
ErrNoMapSupport=> "File doesn't support mapping",
ErrNoMem => "Invalid address, or not enough available memory",
ErrUnsupProt => "Protection mode unsupported",
ErrUnsupOffset => "Offset in virtual memory mode is unsupported",
ErrAlreadyExists => "File mapping for specified file already exists",
ErrZeroLength => "Zero-length mapping not allowed",
ErrUnknown(code) => {
return write!(out, "Unknown error = {}", code)
},
ErrVirtualAlloc(code) => {
return write!(out, "VirtualAlloc failure = {}", code)
},
ErrCreateFileMappingW(code) => {
return write!(out, "CreateFileMappingW failure = {}", code)
},
ErrMapViewOfFile(code) => {
return write!(out, "MapViewOfFile failure = {}", code)
}
};
write!(out, "{}", str)
}
}
impl Error for MapError {
fn description(&self) -> &str { "memory map error" }
fn detail(&self) -> Option<String> { Some(self.to_string()) }
}
impl FromError<MapError> for Box<Error> {
fn from_error(err: MapError) -> Box<Error> {
box err
}
}
#[cfg(unix)]
impl MemoryMap {
/// Create a new mapping with the given `options`, at least `min_len` bytes
/// long. `min_len` must be greater than zero; see the note on
/// `ErrZeroLength`.
pub fn new(min_len: uint, options: &[MapOption]) -> Result<MemoryMap, MapError> {
use libc::off_t;
if min_len == 0 {
return Err(ErrZeroLength)
}
let mut addr: *const u8 = ptr::null();
let mut prot = 0;
let mut flags = libc::MAP_PRIVATE;
let mut fd = -1;
let mut offset = 0;
let mut custom_flags = false;
let len = round_up(min_len, page_size());
for &o in options.iter() {
match o {
MapReadable => { prot |= libc::PROT_READ; },
MapWritable => { prot |= libc::PROT_WRITE; },
MapExecutable => { prot |= libc::PROT_EXEC; },
MapAddr(addr_) => {
flags |= libc::MAP_FIXED;
addr = addr_;
},
MapFd(fd_) => {
flags |= libc::MAP_FILE;
fd = fd_;
},
MapOffset(offset_) => { offset = offset_ as off_t; },
MapNonStandardFlags(f) => { custom_flags = true; flags = f },
}
}
if fd == -1 && !custom_flags { flags |= libc::MAP_ANON; }
let r = unsafe {
libc::mmap(addr as *mut c_void, len as libc::size_t, prot, flags,
fd, offset)
};
if r == libc::MAP_FAILED {
Err(match errno() as c_int {
libc::EACCES => ErrFdNotAvail,
libc::EBADF => ErrInvalidFd,
libc::EINVAL => ErrUnaligned,
libc::ENODEV => ErrNoMapSupport,
libc::ENOMEM => ErrNoMem,
code => ErrUnknown(code as int)
})
} else {
Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: if fd == -1 {
MapVirtual
} else {
MapFile(ptr::null())
}
})
}
}
/// Granularity that the offset or address must be for `MapOffset` and
/// `MapAddr` respectively.
pub fn granularity() -> uint {
page_size()
}
}
#[cfg(unix)]
impl Drop for MemoryMap {
/// Unmap the mapping. Panics the task if `munmap` panics.
fn drop(&mut self) {
if self.len == 0 { /* workaround for dummy_stack */ return; }
unsafe {
// `munmap` only panics due to logic errors
libc::munmap(self.data as *mut c_void, self.len as libc::size_t);
}
}
}
#[cfg(windows)]
impl MemoryMap {
/// Create a new mapping with the given `options`, at least `min_len` bytes long.
pub fn new(min_len: uint, options: &[MapOption]) -> Result<MemoryMap, MapError> {
use libc::types::os::arch::extra::{LPVOID, DWORD, SIZE_T, HANDLE};
let mut lpAddress: LPVOID = ptr::null_mut();
let mut readable = false;
let mut writable = false;
let mut executable = false;
let mut fd: c_int = -1;
let mut offset: uint = 0;
let len = round_up(min_len, page_size());
for &o in options.iter() {
match o {
MapReadable => { readable = true; },
MapWritable => { writable = true; },
MapExecutable => { executable = true; }
MapAddr(addr_) => { lpAddress = addr_ as LPVOID; },
MapFd(fd_) => { fd = fd_; },
MapOffset(offset_) => { offset = offset_; },
MapNonStandardFlags(..) => {}
}
}
let flProtect = match (executable, readable, writable) {
(false, false, false) if fd == -1 => libc::PAGE_NOACCESS,
(false, true, false) => libc::PAGE_READONLY,
(false, true, true) => libc::PAGE_READWRITE,
(true, false, false) if fd == -1 => libc::PAGE_EXECUTE,
(true, true, false) => libc::PAGE_EXECUTE_READ,
(true, true, true) => libc::PAGE_EXECUTE_READWRITE,
_ => return Err(ErrUnsupProt)
};
if fd == -1 {
if offset != 0 {
return Err(ErrUnsupOffset);
}
let r = unsafe {
libc::VirtualAlloc(lpAddress,
len as SIZE_T,
libc::MEM_COMMIT | libc::MEM_RESERVE,
flProtect)
};
match r as uint {
0 => Err(ErrVirtualAlloc(errno())),
_ => Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: MapVirtual
})
}
} else {
let dwDesiredAccess = match (executable, readable, writable) {
(false, true, false) => libc::FILE_MAP_READ,
(false, true, true) => libc::FILE_MAP_WRITE,
(true, true, false) => libc::FILE_MAP_READ | libc::FILE_MAP_EXECUTE,
(true, true, true) => libc::FILE_MAP_WRITE | libc::FILE_MAP_EXECUTE,
_ => return Err(ErrUnsupProt) // Actually, because of the check above,
// we should never get here.
};
unsafe {
let hFile = libc::get_osfhandle(fd) as HANDLE;
let mapping = libc::CreateFileMappingW(hFile,
ptr::null_mut(),
flProtect,
0,
0,
ptr::null());
if mapping == ptr::null_mut() {
return Err(ErrCreateFileMappingW(errno()));
}
if errno() as c_int == libc::ERROR_ALREADY_EXISTS {
return Err(ErrAlreadyExists);
}
let r = libc::MapViewOfFile(mapping,
dwDesiredAccess,
((len as u64) >> 32) as DWORD,
(offset & 0xffff_ffff) as DWORD,
0);
match r as uint {
0 => Err(ErrMapViewOfFile(errno())),
_ => Ok(MemoryMap {
data: r as *mut u8,
len: len,
kind: MapFile(mapping as *const u8)
})
}
}
}
}
/// Granularity of MapAddr() and MapOffset() parameter values.
/// This may be greater than the value returned by page_size().
pub fn granularity() -> uint {
use mem;
unsafe {
let mut info = mem::zeroed();
libc::GetSystemInfo(&mut info);
return info.dwAllocationGranularity as uint;
}
}
}
#[cfg(windows)]
impl Drop for MemoryMap {
/// Unmap the mapping. Panics the task if any of `VirtualFree`,
/// `UnmapViewOfFile`, or `CloseHandle` fail.
fn drop(&mut self) {
use libc::types::os::arch::extra::{LPCVOID, HANDLE};
use libc::consts::os::extra::FALSE;
if self.len == 0 { return }
unsafe {
match self.kind {
MapVirtual => {
if libc::VirtualFree(self.data as *mut c_void, 0,
libc::MEM_RELEASE) == 0 {
println!("VirtualFree failed: {}", errno());
}
},
MapFile(mapping) => {
if libc::UnmapViewOfFile(self.data as LPCVOID) == FALSE {
println!("UnmapViewOfFile failed: {}", errno());
}
if libc::CloseHandle(mapping as HANDLE) == FALSE {
println!("CloseHandle failed: {}", errno());
}
}
}
}
}
}
impl MemoryMap {
/// Returns the pointer to the memory created or modified by this map.
pub fn data(&self) -> *mut u8 { self.data }
/// Returns the number of bytes this map applies to.
pub fn len(&self) -> uint { self.len }
/// Returns the type of mapping this represents.
pub fn kind(&self) -> MemoryMapKind { self.kind }
}
#[cfg(target_os = "linux")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `linux`.
pub const SYSNAME: &'static str = "linux";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub const DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub const DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub const DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "macos")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `macos`.
pub const SYSNAME: &'static str = "macos";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub const DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.dylib`.
pub const DLL_SUFFIX: &'static str = ".dylib";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `dylib`.
pub const DLL_EXTENSION: &'static str = "dylib";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "ios")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `ios`.
pub const SYSNAME: &'static str = "ios";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "freebsd")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `freebsd`.
pub const SYSNAME: &'static str = "freebsd";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub const DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub const DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub const DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "dragonfly")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `dragonfly`.
pub const SYSNAME: &'static str = "dragonfly";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub const DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub const DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub const DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "android")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "unix";
/// A string describing the specific operating system in use: in this
/// case, `android`.
pub const SYSNAME: &'static str = "android";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, `lib`.
pub const DLL_PREFIX: &'static str = "lib";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.so`.
pub const DLL_SUFFIX: &'static str = ".so";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `so`.
pub const DLL_EXTENSION: &'static str = "so";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, the empty string.
pub const EXE_SUFFIX: &'static str = "";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, the empty string.
pub const EXE_EXTENSION: &'static str = "";
}
#[cfg(target_os = "windows")]
pub mod consts {
pub use os::arch_consts::ARCH;
pub const FAMILY: &'static str = "windows";
/// A string describing the specific operating system in use: in this
/// case, `windows`.
pub const SYSNAME: &'static str = "windows";
/// Specifies the filename prefix used for shared libraries on this
/// platform: in this case, the empty string.
pub const DLL_PREFIX: &'static str = "";
/// Specifies the filename suffix used for shared libraries on this
/// platform: in this case, `.dll`.
pub const DLL_SUFFIX: &'static str = ".dll";
/// Specifies the file extension used for shared libraries on this
/// platform that goes after the dot: in this case, `dll`.
pub const DLL_EXTENSION: &'static str = "dll";
/// Specifies the filename suffix used for executable binaries on this
/// platform: in this case, `.exe`.
pub const EXE_SUFFIX: &'static str = ".exe";
/// Specifies the file extension, if any, used for executable binaries
/// on this platform: in this case, `exe`.
pub const EXE_EXTENSION: &'static str = "exe";
}
#[cfg(target_arch = "x86")]
mod arch_consts {
pub const ARCH: &'static str = "x86";
}
#[cfg(target_arch = "x86_64")]
mod arch_consts {
pub const ARCH: &'static str = "x86_64";
}
#[cfg(target_arch = "arm")]
mod arch_consts {
pub const ARCH: &'static str = "arm";
}
#[cfg(target_arch = "mips")]
mod arch_consts {
pub const ARCH: &'static str = "mips";
}
#[cfg(target_arch = "mipsel")]
mod arch_consts {
pub const ARCH: &'static str = "mipsel";
}
#[cfg(test)]
mod tests {
use prelude::*;
use c_str::ToCStr;
use option;
use os::{env, getcwd, getenv, make_absolute};
use os::{split_paths, join_paths, setenv, unsetenv};
use os;
use rand::Rng;
use rand;
#[test]
pub fn last_os_error() {
debug!("{}", os::last_os_error());
}
fn make_rand_name() -> String {
let mut rng = rand::task_rng();
let n = format!("TEST{}", rng.gen_ascii_chars().take(10u)
.collect::<String>());
assert!(getenv(n.as_slice()).is_none());
n
}
#[test]
fn test_num_cpus() {
assert!(os::num_cpus() > 0);
}
#[test]
fn test_setenv() {
let n = make_rand_name();
setenv(n.as_slice(), "VALUE");
assert_eq!(getenv(n.as_slice()), option::Some("VALUE".to_string()));
}
#[test]
fn test_unsetenv() {
let n = make_rand_name();
setenv(n.as_slice(), "VALUE");
unsetenv(n.as_slice());
assert_eq!(getenv(n.as_slice()), option::None);
}
#[test]
#[ignore]
fn test_setenv_overwrite() {
let n = make_rand_name();
setenv(n.as_slice(), "1");
setenv(n.as_slice(), "2");
assert_eq!(getenv(n.as_slice()), option::Some("2".to_string()));
setenv(n.as_slice(), "");
assert_eq!(getenv(n.as_slice()), option::Some("".to_string()));
}
// Windows GetEnvironmentVariable requires some extra work to make sure
// the buffer the variable is copied into is the right size
#[test]
#[ignore]
fn test_getenv_big() {
let mut s = "".to_string();
let mut i = 0i;
while i < 100 {
s.push_str("aaaaaaaaaa");
i += 1;
}
let n = make_rand_name();
setenv(n.as_slice(), s.as_slice());
debug!("{}", s.clone());
assert_eq!(getenv(n.as_slice()), option::Some(s));
}
#[test]
fn test_self_exe_name() {
let path = os::self_exe_name();
assert!(path.is_some());
let path = path.unwrap();
debug!("{}", path.display());
// Hard to test this function
assert!(path.is_absolute());
}
#[test]
fn test_self_exe_path() {
let path = os::self_exe_path();
assert!(path.is_some());
let path = path.unwrap();
debug!("{}", path.display());
// Hard to test this function
assert!(path.is_absolute());
}
#[test]
#[ignore]
fn test_env_getenv() {
let e = env();
assert!(e.len() > 0u);
for p in e.iter() {
let (n, v) = (*p).clone();
debug!("{}", n);
let v2 = getenv(n.as_slice());
// MingW seems to set some funky environment variables like
// "=C:=C:\MinGW\msys\1.0\bin" and "!::=::\" that are returned
// from env() but not visible from getenv().
assert!(v2.is_none() || v2 == option::Some(v));
}
}
#[test]
fn test_env_set_get_huge() {
let n = make_rand_name();
let s = "x".repeat(10000).to_string();
setenv(n.as_slice(), s.as_slice());
assert_eq!(getenv(n.as_slice()), Some(s));
unsetenv(n.as_slice());
assert_eq!(getenv(n.as_slice()), None);
}
#[test]
fn test_env_setenv() {
let n = make_rand_name();
let mut e = env();
setenv(n.as_slice(), "VALUE");
assert!(!e.contains(&(n.clone(), "VALUE".to_string())));
e = env();
assert!(e.contains(&(n, "VALUE".to_string())));
}
#[test]
fn test() {
assert!((!Path::new("test-path").is_absolute()));
let cwd = getcwd().unwrap();
debug!("Current working directory: {}", cwd.display());
debug!("{}", make_absolute(&Path::new("test-path")).unwrap().display());
debug!("{}", make_absolute(&Path::new("/usr/bin")).unwrap().display());
}
#[test]
#[cfg(unix)]
fn homedir() {
let oldhome = getenv("HOME");
setenv("HOME", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "");
assert!(os::homedir().is_none());
for s in oldhome.iter() {
setenv("HOME", s.as_slice());
}
}
#[test]
#[cfg(windows)]
fn homedir() {
let oldhome = getenv("HOME");
let olduserprofile = getenv("USERPROFILE");
setenv("HOME", "");
setenv("USERPROFILE", "");
assert!(os::homedir().is_none());
setenv("HOME", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "");
setenv("USERPROFILE", "/home/MountainView");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
setenv("HOME", "/home/MountainView");
setenv("USERPROFILE", "/home/PaloAlto");
assert!(os::homedir() == Some(Path::new("/home/MountainView")));
for s in oldhome.iter() {
setenv("HOME", s.as_slice());
}
for s in olduserprofile.iter() {
setenv("USERPROFILE", s.as_slice());
}
}
#[test]
fn memory_map_rw() {
use result::{Ok, Err};
let chunk = match os::MemoryMap::new(16, &[
os::MapReadable,
os::MapWritable
]) {
Ok(chunk) => chunk,
Err(msg) => panic!("{}", msg)
};
assert!(chunk.len >= 16);
unsafe {
*chunk.data = 0xBE;
assert!(*chunk.data == 0xBE);
}
}
#[test]
fn memory_map_file() {
use result::{Ok, Err};
use os::*;
use libc::*;
use io::fs;
#[cfg(unix)]
fn lseek_(fd: c_int, size: uint) {
unsafe {
assert!(lseek(fd, size as off_t, SEEK_SET) == size as off_t);
}
}
#[cfg(windows)]
fn lseek_(fd: c_int, size: uint) {
unsafe {
assert!(lseek(fd, size as c_long, SEEK_SET) == size as c_long);
}
}
let mut path = tmpdir();
path.push("mmap_file.tmp");
let size = MemoryMap::granularity() * 2;
let fd = unsafe {
let fd = path.with_c_str(|path| {
open(path, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR)
});
lseek_(fd, size);
"x".with_c_str(|x| assert!(write(fd, x as *const c_void, 1) == 1));
fd
};
let chunk = match MemoryMap::new(size / 2, &[
MapReadable,
MapWritable,
MapFd(fd),
MapOffset(size / 2)
]) {
Ok(chunk) => chunk,
Err(msg) => panic!("{}", msg)
};
assert!(chunk.len > 0);
unsafe {
*chunk.data = 0xbe;
assert!(*chunk.data == 0xbe);
close(fd);
}
drop(chunk);
fs::unlink(&path).unwrap();
}
#[test]
#[cfg(windows)]
fn split_paths_windows() {
fn check_parse(unparsed: &str, parsed: &[&str]) -> bool {
split_paths(unparsed) ==
parsed.iter().map(|s| Path::new(*s)).collect()
}
assert!(check_parse("", &mut [""]));
assert!(check_parse(r#""""#, &mut [""]));
assert!(check_parse(";;", &mut ["", "", ""]));
assert!(check_parse(r"c:\", &mut [r"c:\"]));
assert!(check_parse(r"c:\;", &mut [r"c:\", ""]));
assert!(check_parse(r"c:\;c:\Program Files\",
&mut [r"c:\", r"c:\Program Files\"]));
assert!(check_parse(r#"c:\;c:\"foo"\"#, &mut [r"c:\", r"c:\foo\"]));
assert!(check_parse(r#"c:\;c:\"foo;bar"\;c:\baz"#,
&mut [r"c:\", r"c:\foo;bar\", r"c:\baz"]));
}
#[test]
#[cfg(unix)]
fn split_paths_unix() {
fn check_parse(unparsed: &str, parsed: &[&str]) -> bool {
split_paths(unparsed) ==
parsed.iter().map(|s| Path::new(*s)).collect()
}
assert!(check_parse("", &mut [""]));
assert!(check_parse("::", &mut ["", "", ""]));
assert!(check_parse("/", &mut ["/"]));
assert!(check_parse("/:", &mut ["/", ""]));
assert!(check_parse("/:/usr/local", &mut ["/", "/usr/local"]));
}
#[test]
#[cfg(unix)]
fn join_paths_unix() {
fn test_eq(input: &[&str], output: &str) -> bool {
join_paths(input).unwrap().as_slice() == output.as_bytes()
}
assert!(test_eq(&[], ""));
assert!(test_eq(&["/bin", "/usr/bin", "/usr/local/bin"],
"/bin:/usr/bin:/usr/local/bin"));
assert!(test_eq(&["", "/bin", "", "", "/usr/bin", ""],
":/bin:::/usr/bin:"));
assert!(join_paths(&["/te:st"]).is_err());
}
#[test]
#[cfg(windows)]
fn join_paths_windows() {
fn test_eq(input: &[&str], output: &str) -> bool {
join_paths(input).unwrap().as_slice() == output.as_bytes()
}
assert!(test_eq(&[], ""));
assert!(test_eq(&[r"c:\windows", r"c:\"],
r"c:\windows;c:\"));
assert!(test_eq(&["", r"c:\windows", "", "", r"c:\", ""],
r";c:\windows;;;c:\;"));
assert!(test_eq(&[r"c:\te;st", r"c:\"],
r#""c:\te;st";c:\"#));
assert!(join_paths(&[r#"c:\te"st"#]).is_err());
}
// More recursive_mkdir tests are in extra::tempfile
}