rust/compiler/rustc_mir_transform/src/const_prop.rs
bors f8ed97ecc1 Auto merge of #110031 - compiler-errors:generic-elaboration, r=b-naber
Make elaboration generic over input

Combines all the `elaborate_*` family of functions into just one, which is an iterator over the same type that you pass in (e.g. elaborating `Predicate` gives `Predicate`s, elaborating `Obligation`s gives `Obligation`s, etc.)
2023-04-09 00:18:10 +00:00

1010 lines
41 KiB
Rust

//! Propagates constants for early reporting of statically known
//! assertion failures
use either::Right;
use rustc_const_eval::const_eval::CheckAlignment;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::{IndexSlice, IndexVec};
use rustc_middle::mir::visit::{
MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
};
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::InternalSubsts;
use rustc_middle::ty::{self, ConstKind, Instance, ParamEnv, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::{def_id::DefId, Span, DUMMY_SP};
use rustc_target::abi::{self, Align, HasDataLayout, Size, TargetDataLayout};
use rustc_target::spec::abi::Abi as CallAbi;
use rustc_trait_selection::traits;
use crate::MirPass;
use rustc_const_eval::interpret::{
self, compile_time_machine, AllocId, ConstAllocation, ConstValue, CtfeValidationMode, Frame,
ImmTy, Immediate, InterpCx, InterpResult, LocalValue, MemoryKind, OpTy, PlaceTy, Pointer,
Scalar, StackPopCleanup,
};
/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;
/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
macro_rules! throw_machine_stop_str {
($($tt:tt)*) => {{
// We make a new local type for it. The type itself does not carry any information,
// but its vtable (for the `MachineStopType` trait) does.
struct Zst;
// Printing this type shows the desired string.
impl std::fmt::Display for Zst {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, $($tt)*)
}
}
impl rustc_middle::mir::interpret::MachineStopType for Zst {}
throw_machine_stop!(Zst)
}};
}
pub struct ConstProp;
impl<'tcx> MirPass<'tcx> for ConstProp {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 1
}
#[instrument(skip(self, tcx), level = "debug")]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
// will be evaluated by miri and produce its errors there
if body.source.promoted.is_some() {
return;
}
let def_id = body.source.def_id().expect_local();
let def_kind = tcx.def_kind(def_id);
let is_fn_like = def_kind.is_fn_like();
let is_assoc_const = def_kind == DefKind::AssocConst;
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
trace!("ConstProp skipped for {:?}", def_id);
return;
}
let is_generator = tcx.type_of(def_id.to_def_id()).subst_identity().is_generator();
// FIXME(welseywiser) const prop doesn't work on generators because of query cycles
// computing their layout.
if is_generator {
trace!("ConstProp skipped for generator {:?}", def_id);
return;
}
// Check if it's even possible to satisfy the 'where' clauses
// for this item.
// This branch will never be taken for any normal function.
// However, it's possible to `#!feature(trivial_bounds)]` to write
// a function with impossible to satisfy clauses, e.g.:
// `fn foo() where String: Copy {}`
//
// We don't usually need to worry about this kind of case,
// since we would get a compilation error if the user tried
// to call it. However, since we can do const propagation
// even without any calls to the function, we need to make
// sure that it even makes sense to try to evaluate the body.
// If there are unsatisfiable where clauses, then all bets are
// off, and we just give up.
//
// We manually filter the predicates, skipping anything that's not
// "global". We are in a potentially generic context
// (e.g. we are evaluating a function without substituting generic
// parameters, so this filtering serves two purposes:
//
// 1. We skip evaluating any predicates that we would
// never be able prove are unsatisfiable (e.g. `<T as Foo>`
// 2. We avoid trying to normalize predicates involving generic
// parameters (e.g. `<T as Foo>::MyItem`). This can confuse
// the normalization code (leading to cycle errors), since
// it's usually never invoked in this way.
let predicates = tcx
.predicates_of(def_id.to_def_id())
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
if traits::impossible_predicates(tcx, traits::elaborate(tcx, predicates).collect()) {
trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
return;
}
trace!("ConstProp starting for {:?}", def_id);
let dummy_body = &Body::new(
body.source,
(*body.basic_blocks).to_owned(),
body.source_scopes.clone(),
body.local_decls.clone(),
Default::default(),
body.arg_count,
Default::default(),
body.span,
body.generator_kind(),
body.tainted_by_errors,
);
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
// That would require a uniform one-def no-mutation analysis
// and RPO (or recursing when needing the value of a local).
let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx);
optimization_finder.visit_body(body);
trace!("ConstProp done for {:?}", def_id);
}
}
pub struct ConstPropMachine<'mir, 'tcx> {
/// The virtual call stack.
stack: Vec<Frame<'mir, 'tcx>>,
pub written_only_inside_own_block_locals: FxHashSet<Local>,
pub can_const_prop: IndexVec<Local, ConstPropMode>,
}
impl ConstPropMachine<'_, '_> {
pub fn new(can_const_prop: IndexVec<Local, ConstPropMode>) -> Self {
Self {
stack: Vec::new(),
written_only_inside_own_block_locals: Default::default(),
can_const_prop,
}
}
}
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
compile_time_machine!(<'mir, 'tcx>);
const PANIC_ON_ALLOC_FAIL: bool = true; // all allocations are small (see `MAX_ALLOC_LIMIT`)
type MemoryKind = !;
#[inline(always)]
fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> CheckAlignment {
// We do not check for alignment to avoid having to carry an `Align`
// in `ConstValue::ByRef`.
CheckAlignment::No
}
#[inline(always)]
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>, _layout: TyAndLayout<'tcx>) -> bool {
false // for now, we don't enforce validity
}
fn alignment_check_failed(
ecx: &InterpCx<'mir, 'tcx, Self>,
_has: Align,
_required: Align,
_check: CheckAlignment,
) -> InterpResult<'tcx, ()> {
span_bug!(
ecx.cur_span(),
"`alignment_check_failed` called when no alignment check requested"
)
}
fn load_mir(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_instance: ty::InstanceDef<'tcx>,
) -> InterpResult<'tcx, &'tcx Body<'tcx>> {
throw_machine_stop_str!("calling functions isn't supported in ConstProp")
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_abi: CallAbi,
_args: &[OpTy<'tcx>],
_destination: &PlaceTy<'tcx>,
_target: Option<BasicBlock>,
_unwind: UnwindAction,
) -> InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
Ok(None)
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_destination: &PlaceTy<'tcx>,
_target: Option<BasicBlock>,
_unwind: UnwindAction,
) -> InterpResult<'tcx> {
throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_msg: &rustc_middle::mir::AssertMessage<'tcx>,
_unwind: rustc_middle::mir::UnwindAction,
) -> InterpResult<'tcx> {
bug!("panics terminators are not evaluated in ConstProp")
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: &ImmTy<'tcx>,
_right: &ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
// We can't do this because aliasing of memory can differ between const eval and llvm
throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
}
fn access_local_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
frame: usize,
local: Local,
) -> InterpResult<'tcx, &'a mut interpret::Operand<Self::Provenance>> {
assert_eq!(frame, 0);
match ecx.machine.can_const_prop[local] {
ConstPropMode::NoPropagation => {
throw_machine_stop_str!(
"tried to write to a local that is marked as not propagatable"
)
}
ConstPropMode::OnlyInsideOwnBlock => {
ecx.machine.written_only_inside_own_block_locals.insert(local);
}
ConstPropMode::FullConstProp => {}
}
ecx.machine.stack[frame].locals[local].access_mut()
}
fn before_access_global(
_tcx: TyCtxt<'tcx>,
_machine: &Self,
_alloc_id: AllocId,
alloc: ConstAllocation<'tcx>,
_static_def_id: Option<DefId>,
is_write: bool,
) -> InterpResult<'tcx> {
if is_write {
throw_machine_stop_str!("can't write to global");
}
// If the static allocation is mutable, then we can't const prop it as its content
// might be different at runtime.
if alloc.inner().mutability.is_mut() {
throw_machine_stop_str!("can't access mutable globals in ConstProp");
}
Ok(())
}
#[inline(always)]
fn expose_ptr(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_ptr: Pointer<AllocId>,
) -> InterpResult<'tcx> {
throw_machine_stop_str!("exposing pointers isn't supported in ConstProp")
}
#[inline(always)]
fn init_frame_extra(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
frame: Frame<'mir, 'tcx>,
) -> InterpResult<'tcx, Frame<'mir, 'tcx>> {
Ok(frame)
}
#[inline(always)]
fn stack<'a>(
ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>] {
&ecx.machine.stack
}
#[inline(always)]
fn stack_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>> {
&mut ecx.machine.stack
}
}
/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
local_decls: &'mir IndexSlice<Local, LocalDecl<'tcx>>,
}
impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> {
type LayoutOfResult = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> {
err
}
}
impl HasDataLayout for ConstPropagator<'_, '_> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> {
#[inline]
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
}
impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
fn new(
body: &Body<'tcx>,
dummy_body: &'mir Body<'tcx>,
tcx: TyCtxt<'tcx>,
) -> ConstPropagator<'mir, 'tcx> {
let def_id = body.source.def_id();
let substs = &InternalSubsts::identity_for_item(tcx, def_id);
let param_env = tcx.param_env_reveal_all_normalized(def_id);
let can_const_prop = CanConstProp::check(tcx, param_env, body);
let mut ecx = InterpCx::new(
tcx,
tcx.def_span(def_id),
param_env,
ConstPropMachine::new(can_const_prop),
);
let ret_layout = ecx
.layout_of(body.bound_return_ty().subst(tcx, substs))
.ok()
// Don't bother allocating memory for large values.
// I don't know how return types can seem to be unsized but this happens in the
// `type/type-unsatisfiable.rs` test.
.filter(|ret_layout| {
ret_layout.is_sized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
})
.unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap());
let ret = ecx
.allocate(ret_layout, MemoryKind::Stack)
.expect("couldn't perform small allocation")
.into();
ecx.push_stack_frame(
Instance::new(def_id, substs),
dummy_body,
&ret,
StackPopCleanup::Root { cleanup: false },
)
.expect("failed to push initial stack frame");
ConstPropagator { ecx, tcx, param_env, local_decls: &dummy_body.local_decls }
}
fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
let op = match self.ecx.eval_place_to_op(place, None) {
Ok(op) => {
if matches!(*op, interpret::Operand::Immediate(Immediate::Uninit)) {
// Make sure nobody accidentally uses this value.
return None;
}
op
}
Err(e) => {
trace!("get_const failed: {}", e);
return None;
}
};
// Try to read the local as an immediate so that if it is representable as a scalar, we can
// handle it as such, but otherwise, just return the value as is.
Some(match self.ecx.read_immediate_raw(&op) {
Ok(Right(imm)) => imm.into(),
_ => op,
})
}
/// Remove `local` from the pool of `Locals`. Allows writing to them,
/// but not reading from them anymore.
fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
ecx.frame_mut().locals[local].value =
LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit));
ecx.machine.written_only_inside_own_block_locals.remove(&local);
}
/// Returns the value, if any, of evaluating `c`.
fn eval_constant(&mut self, c: &Constant<'tcx>) -> Option<OpTy<'tcx>> {
// FIXME we need to revisit this for #67176
if c.needs_subst() {
return None;
}
// No span, we don't want errors to be shown.
self.ecx.eval_mir_constant(&c.literal, None, None).ok()
}
/// Returns the value, if any, of evaluating `place`.
fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
trace!("eval_place(place={:?})", place);
self.ecx.eval_place_to_op(place, None).ok()
}
/// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
/// or `eval_place`, depending on the variant of `Operand` used.
fn eval_operand(&mut self, op: &Operand<'tcx>) -> Option<OpTy<'tcx>> {
match *op {
Operand::Constant(ref c) => self.eval_constant(c),
Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
}
}
fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
match *operand {
Operand::Copy(l) | Operand::Move(l) => {
if let Some(value) = self.get_const(l) && self.should_const_prop(&value) {
// FIXME(felix91gr): this code only handles `Scalar` cases.
// For now, we're not handling `ScalarPair` cases because
// doing so here would require a lot of code duplication.
// We should hopefully generalize `Operand` handling into a fn,
// and use it to do const-prop here and everywhere else
// where it makes sense.
if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
scalar,
)) = *value
{
*operand = self.operand_from_scalar(scalar, value.layout.ty);
}
}
}
Operand::Constant(_) => (),
}
}
fn check_rvalue(&mut self, rvalue: &Rvalue<'tcx>) -> Option<()> {
// Perform any special handling for specific Rvalue types.
// Generally, checks here fall into one of two categories:
// 1. Additional checking to provide useful lints to the user
// - In this case, we will do some validation and then fall through to the
// end of the function which evals the assignment.
// 2. Working around bugs in other parts of the compiler
// - In this case, we'll return `None` from this function to stop evaluation.
match rvalue {
// Do not try creating references (#67862)
Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
trace!("skipping AddressOf | Ref for {:?}", place);
// This may be creating mutable references or immutable references to cells.
// If that happens, the pointed to value could be mutated via that reference.
// Since we aren't tracking references, the const propagator loses track of what
// value the local has right now.
// Thus, all locals that have their reference taken
// must not take part in propagation.
Self::remove_const(&mut self.ecx, place.local);
return None;
}
Rvalue::ThreadLocalRef(def_id) => {
trace!("skipping ThreadLocalRef({:?})", def_id);
return None;
}
// Do not try creating references, nor any types with potentially-complex
// invariants. This avoids an issue where checking validity would do a
// bunch of work generating a nice message about the invariant violation,
// only to not show it to anyone (since this isn't the lint).
Rvalue::Cast(CastKind::Transmute, op, dst_ty) if !dst_ty.is_primitive() => {
trace!("skipping Transmute of {:?} to {:?}", op, dst_ty);
return None;
}
// There's no other checking to do at this time.
Rvalue::Aggregate(..)
| Rvalue::Use(..)
| Rvalue::CopyForDeref(..)
| Rvalue::Repeat(..)
| Rvalue::Len(..)
| Rvalue::Cast(..)
| Rvalue::ShallowInitBox(..)
| Rvalue::Discriminant(..)
| Rvalue::NullaryOp(..)
| Rvalue::UnaryOp(..)
| Rvalue::BinaryOp(..)
| Rvalue::CheckedBinaryOp(..) => {}
}
// FIXME we need to revisit this for #67176
if rvalue.needs_subst() {
return None;
}
if !rvalue
.ty(&self.ecx.frame().body.local_decls, *self.ecx.tcx)
.is_sized(*self.ecx.tcx, self.param_env)
{
// the interpreter doesn't support unsized locals (only unsized arguments),
// but rustc does (in a kinda broken way), so we have to skip them here
return None;
}
Some(())
}
// Attempt to use algebraic identities to eliminate constant expressions
fn eval_rvalue_with_identities(
&mut self,
rvalue: &Rvalue<'tcx>,
place: Place<'tcx>,
) -> Option<()> {
match rvalue {
Rvalue::BinaryOp(op, box (left, right))
| Rvalue::CheckedBinaryOp(op, box (left, right)) => {
let l = self.ecx.eval_operand(left, None).and_then(|x| self.ecx.read_immediate(&x));
let r =
self.ecx.eval_operand(right, None).and_then(|x| self.ecx.read_immediate(&x));
let const_arg = match (l, r) {
(Ok(x), Err(_)) | (Err(_), Ok(x)) => x, // exactly one side is known
(Err(_), Err(_)) => return None, // neither side is known
(Ok(_), Ok(_)) => return self.ecx.eval_rvalue_into_place(rvalue, place).ok(), // both sides are known
};
if !matches!(const_arg.layout.abi, abi::Abi::Scalar(..)) {
// We cannot handle Scalar Pair stuff.
// No point in calling `eval_rvalue_into_place`, since only one side is known
return None;
}
let arg_value = const_arg.to_scalar().to_bits(const_arg.layout.size).ok()?;
let dest = self.ecx.eval_place(place).ok()?;
match op {
BinOp::BitAnd if arg_value == 0 => {
self.ecx.write_immediate(*const_arg, &dest).ok()
}
BinOp::BitOr
if arg_value == const_arg.layout.size.truncate(u128::MAX)
|| (const_arg.layout.ty.is_bool() && arg_value == 1) =>
{
self.ecx.write_immediate(*const_arg, &dest).ok()
}
BinOp::Mul if const_arg.layout.ty.is_integral() && arg_value == 0 => {
if let Rvalue::CheckedBinaryOp(_, _) = rvalue {
let val = Immediate::ScalarPair(
const_arg.to_scalar(),
Scalar::from_bool(false),
);
self.ecx.write_immediate(val, &dest).ok()
} else {
self.ecx.write_immediate(*const_arg, &dest).ok()
}
}
_ => None,
}
}
_ => self.ecx.eval_rvalue_into_place(rvalue, place).ok(),
}
}
/// Creates a new `Operand::Constant` from a `Scalar` value
fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>) -> Operand<'tcx> {
Operand::Constant(Box::new(Constant {
span: DUMMY_SP,
user_ty: None,
literal: ConstantKind::from_scalar(self.tcx, scalar, ty),
}))
}
fn replace_with_const(&mut self, place: Place<'tcx>, rval: &mut Rvalue<'tcx>) {
// This will return None if the above `const_prop` invocation only "wrote" a
// type whose creation requires no write. E.g. a generator whose initial state
// consists solely of uninitialized memory (so it doesn't capture any locals).
let Some(ref value) = self.get_const(place) else { return };
if !self.should_const_prop(value) {
return;
}
trace!("replacing {:?}={:?} with {:?}", place, rval, value);
if let Rvalue::Use(Operand::Constant(c)) = rval {
match c.literal {
ConstantKind::Ty(c) if matches!(c.kind(), ConstKind::Unevaluated(..)) => {}
_ => {
trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
return;
}
}
}
trace!("attempting to replace {:?} with {:?}", rval, value);
if let Err(e) = self.ecx.const_validate_operand(
value,
vec![],
// FIXME: is ref tracking too expensive?
// FIXME: what is the point of ref tracking if we do not even check the tracked refs?
&mut interpret::RefTracking::empty(),
CtfeValidationMode::Regular,
) {
trace!("validation error, attempt failed: {:?}", e);
return;
}
// FIXME> figure out what to do when read_immediate_raw fails
let imm = self.ecx.read_immediate_raw(value).ok();
if let Some(Right(imm)) = imm {
match *imm {
interpret::Immediate::Scalar(scalar) => {
*rval = Rvalue::Use(self.operand_from_scalar(scalar, value.layout.ty));
}
Immediate::ScalarPair(..) => {
// Found a value represented as a pair. For now only do const-prop if the type
// of `rvalue` is also a tuple with two scalars.
// FIXME: enable the general case stated above ^.
let ty = value.layout.ty;
// Only do it for tuples
if let ty::Tuple(types) = ty.kind() {
// Only do it if tuple is also a pair with two scalars
if let [ty1, ty2] = types[..] {
let ty_is_scalar = |ty| {
self.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
== Some(true)
};
let alloc = if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
let alloc = self
.ecx
.intern_with_temp_alloc(value.layout, |ecx, dest| {
ecx.write_immediate(*imm, dest)
})
.unwrap();
Some(alloc)
} else {
None
};
if let Some(alloc) = alloc {
// Assign entire constant in a single statement.
// We can't use aggregates, as we run after the aggregate-lowering `MirPhase`.
let const_val = ConstValue::ByRef { alloc, offset: Size::ZERO };
let literal = ConstantKind::Val(const_val, ty);
*rval = Rvalue::Use(Operand::Constant(Box::new(Constant {
span: DUMMY_SP,
user_ty: None,
literal,
})));
}
}
}
}
// Scalars or scalar pairs that contain undef values are assumed to not have
// successfully evaluated and are thus not propagated.
_ => {}
}
}
}
/// Returns `true` if and only if this `op` should be const-propagated into.
fn should_const_prop(&mut self, op: &OpTy<'tcx>) -> bool {
if !self.tcx.consider_optimizing(|| format!("ConstantPropagation - OpTy: {:?}", op)) {
return false;
}
match **op {
interpret::Operand::Immediate(Immediate::Scalar(s)) => s.try_to_int().is_ok(),
interpret::Operand::Immediate(Immediate::ScalarPair(l, r)) => {
l.try_to_int().is_ok() && r.try_to_int().is_ok()
}
_ => false,
}
}
fn ensure_not_propagated(&self, local: Local) {
if cfg!(debug_assertions) {
assert!(
self.get_const(local.into()).is_none()
|| self
.layout_of(self.local_decls[local].ty)
.map_or(true, |layout| layout.is_zst()),
"failed to remove values for `{local:?}`, value={:?}",
self.get_const(local.into()),
)
}
}
}
/// The mode that `ConstProp` is allowed to run in for a given `Local`.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ConstPropMode {
/// The `Local` can be propagated into and reads of this `Local` can also be propagated.
FullConstProp,
/// The `Local` can only be propagated into and from its own block.
OnlyInsideOwnBlock,
/// The `Local` cannot be part of propagation at all. Any statement
/// referencing it either for reading or writing will not get propagated.
NoPropagation,
}
pub struct CanConstProp {
can_const_prop: IndexVec<Local, ConstPropMode>,
// False at the beginning. Once set, no more assignments are allowed to that local.
found_assignment: BitSet<Local>,
}
impl CanConstProp {
/// Returns true if `local` can be propagated
pub fn check<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
body: &Body<'tcx>,
) -> IndexVec<Local, ConstPropMode> {
let mut cpv = CanConstProp {
can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
found_assignment: BitSet::new_empty(body.local_decls.len()),
};
for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
let ty = body.local_decls[local].ty;
match tcx.layout_of(param_env.and(ty)) {
Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
// Either the layout fails to compute, then we can't use this local anyway
// or the local is too large, then we don't want to.
_ => {
*val = ConstPropMode::NoPropagation;
continue;
}
}
}
// Consider that arguments are assigned on entry.
for arg in body.args_iter() {
cpv.found_assignment.insert(arg);
}
cpv.visit_body(&body);
cpv.can_const_prop
}
}
impl Visitor<'_> for CanConstProp {
fn visit_local(&mut self, local: Local, context: PlaceContext, _: Location) {
use rustc_middle::mir::visit::PlaceContext::*;
match context {
// Projections are fine, because `&mut foo.x` will be caught by
// `MutatingUseContext::Borrow` elsewhere.
MutatingUse(MutatingUseContext::Projection)
// These are just stores, where the storing is not propagatable, but there may be later
// mutations of the same local via `Store`
| MutatingUse(MutatingUseContext::Call)
| MutatingUse(MutatingUseContext::AsmOutput)
| MutatingUse(MutatingUseContext::Deinit)
// Actual store that can possibly even propagate a value
| MutatingUse(MutatingUseContext::Store)
| MutatingUse(MutatingUseContext::SetDiscriminant) => {
if !self.found_assignment.insert(local) {
match &mut self.can_const_prop[local] {
// If the local can only get propagated in its own block, then we don't have
// to worry about multiple assignments, as we'll nuke the const state at the
// end of the block anyway, and inside the block we overwrite previous
// states as applicable.
ConstPropMode::OnlyInsideOwnBlock => {}
ConstPropMode::NoPropagation => {}
other @ ConstPropMode::FullConstProp => {
trace!(
"local {:?} can't be propagated because of multiple assignments. Previous state: {:?}",
local, other,
);
*other = ConstPropMode::OnlyInsideOwnBlock;
}
}
}
}
// Reading constants is allowed an arbitrary number of times
NonMutatingUse(NonMutatingUseContext::Copy)
| NonMutatingUse(NonMutatingUseContext::Move)
| NonMutatingUse(NonMutatingUseContext::Inspect)
| NonMutatingUse(NonMutatingUseContext::Projection)
| NonUse(_) => {}
// These could be propagated with a smarter analysis or just some careful thinking about
// whether they'd be fine right now.
MutatingUse(MutatingUseContext::Yield)
| MutatingUse(MutatingUseContext::Drop)
| MutatingUse(MutatingUseContext::Retag)
// These can't ever be propagated under any scheme, as we can't reason about indirect
// mutation.
| NonMutatingUse(NonMutatingUseContext::SharedBorrow)
| NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
| NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
| NonMutatingUse(NonMutatingUseContext::AddressOf)
| MutatingUse(MutatingUseContext::Borrow)
| MutatingUse(MutatingUseContext::AddressOf) => {
trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
self.can_const_prop[local] = ConstPropMode::NoPropagation;
}
}
}
}
impl<'tcx> MutVisitor<'tcx> for ConstPropagator<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_body(&mut self, body: &mut Body<'tcx>) {
for (bb, data) in body.basic_blocks.as_mut_preserves_cfg().iter_enumerated_mut() {
self.visit_basic_block_data(bb, data);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
self.super_operand(operand, location);
// Only const prop copies and moves on `mir_opt_level=3` as doing so
// currently slightly increases compile time in some cases.
if self.tcx.sess.mir_opt_level() >= 3 {
self.propagate_operand(operand)
}
}
fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
trace!("visit_constant: {:?}", constant);
self.super_constant(constant, location);
self.eval_constant(constant);
}
fn visit_assign(
&mut self,
place: &mut Place<'tcx>,
rvalue: &mut Rvalue<'tcx>,
location: Location,
) {
self.super_assign(place, rvalue, location);
let Some(()) = self.check_rvalue(rvalue) else { return };
match self.ecx.machine.can_const_prop[place.local] {
// Do nothing if the place is indirect.
_ if place.is_indirect() => {}
ConstPropMode::NoPropagation => self.ensure_not_propagated(place.local),
ConstPropMode::OnlyInsideOwnBlock | ConstPropMode::FullConstProp => {
if let Some(()) = self.eval_rvalue_with_identities(rvalue, *place) {
self.replace_with_const(*place, rvalue);
} else {
// Const prop failed, so erase the destination, ensuring that whatever happens
// from here on, does not know about the previous value.
// This is important in case we have
// ```rust
// let mut x = 42;
// x = SOME_MUTABLE_STATIC;
// // x must now be uninit
// ```
// FIXME: we overzealously erase the entire local, because that's easier to
// implement.
trace!(
"propagation into {:?} failed.
Nuking the entire site from orbit, it's the only way to be sure",
place,
);
Self::remove_const(&mut self.ecx, place.local);
}
}
}
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
trace!("visit_statement: {:?}", statement);
// We want to evaluate operands before any change to the assigned-to value,
// so we recurse first.
self.super_statement(statement, location);
match statement.kind {
StatementKind::SetDiscriminant { ref place, .. } => {
match self.ecx.machine.can_const_prop[place.local] {
// Do nothing if the place is indirect.
_ if place.is_indirect() => {}
ConstPropMode::NoPropagation => self.ensure_not_propagated(place.local),
ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => {
if self.ecx.statement(statement).is_ok() {
trace!("propped discriminant into {:?}", place);
} else {
Self::remove_const(&mut self.ecx, place.local);
}
}
}
}
StatementKind::StorageLive(local) => {
let frame = self.ecx.frame_mut();
frame.locals[local].value =
LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit));
}
StatementKind::StorageDead(local) => {
let frame = self.ecx.frame_mut();
frame.locals[local].value = LocalValue::Dead;
}
_ => {}
}
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
self.super_terminator(terminator, location);
match &mut terminator.kind {
TerminatorKind::Assert { expected, ref mut cond, .. } => {
if let Some(ref value) = self.eval_operand(&cond)
&& let Ok(value_const) = self.ecx.read_scalar(&value)
&& self.should_const_prop(value)
{
trace!("assertion on {:?} should be {:?}", value, expected);
*cond = self.operand_from_scalar(value_const, self.tcx.types.bool);
}
}
TerminatorKind::SwitchInt { ref mut discr, .. } => {
// FIXME: This is currently redundant with `visit_operand`, but sadly
// always visiting operands currently causes a perf regression in LLVM codegen, so
// `visit_operand` currently only runs for propagates places for `mir_opt_level=4`.
self.propagate_operand(discr)
}
// None of these have Operands to const-propagate.
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Terminate
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {}
// Every argument in our function calls have already been propagated in `visit_operand`.
//
// NOTE: because LLVM codegen gives slight performance regressions with it, so this is
// gated on `mir_opt_level=3`.
TerminatorKind::Call { .. } => {}
}
}
fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
self.super_basic_block_data(block, data);
// We remove all Locals which are restricted in propagation to their containing blocks and
// which were modified in the current block.
// Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
let mut written_only_inside_own_block_locals =
std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
// This loop can get very hot for some bodies: it check each local in each bb.
// To avoid this quadratic behaviour, we only clear the locals that were modified inside
// the current block.
for local in written_only_inside_own_block_locals.drain() {
debug_assert_eq!(
self.ecx.machine.can_const_prop[local],
ConstPropMode::OnlyInsideOwnBlock
);
Self::remove_const(&mut self.ecx, local);
}
self.ecx.machine.written_only_inside_own_block_locals =
written_only_inside_own_block_locals;
if cfg!(debug_assertions) {
for (local, &mode) in self.ecx.machine.can_const_prop.iter_enumerated() {
match mode {
ConstPropMode::FullConstProp => {}
ConstPropMode::NoPropagation | ConstPropMode::OnlyInsideOwnBlock => {
self.ensure_not_propagated(local);
}
}
}
}
}
}