rust/crates/hir_ty/src/method_resolution.rs
Florian Diebold e5fd550dfd Use correct, full substs for self type in impl
Without arbitrary self types, the self type could never refer to the method type
parameters, so this wasn't a problem; but with arbitrary self types, it can.

This fixes the crash from #6668; but it doesn't make method resolution work for
these methods.
2020-12-04 18:43:47 +01:00

797 lines
27 KiB
Rust

//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::{iter, sync::Arc};
use arrayvec::ArrayVec;
use base_db::CrateId;
use hir_def::{
builtin_type::{IntBitness, Signedness},
lang_item::LangItemTarget,
type_ref::Mutability,
AssocContainerId, AssocItemId, FunctionId, HasModule, ImplId, Lookup, TraitId,
};
use hir_expand::name::Name;
use rustc_hash::{FxHashMap, FxHashSet};
use super::Substs;
use crate::{
autoderef,
db::HirDatabase,
primitive::{FloatBitness, FloatTy, IntTy},
utils::all_super_traits,
ApplicationTy, Canonical, DebruijnIndex, InEnvironment, TraitEnvironment, TraitRef, Ty, TyKind,
TypeCtor, TypeWalk,
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
Apply(TypeCtor),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
pub(crate) fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
_ => None,
}
}
}
pub(crate) const ALL_INT_FPS: [TyFingerprint; 12] = [
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::X8,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::X16,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::X32,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::X64,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::X128,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Unsigned,
bitness: IntBitness::Xsize,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::X8,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::X16,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::X32,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::X64,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::X128,
})),
TyFingerprint::Apply(TypeCtor::Int(IntTy {
signedness: Signedness::Signed,
bitness: IntBitness::Xsize,
})),
];
pub(crate) const ALL_FLOAT_FPS: [TyFingerprint; 2] = [
TyFingerprint::Apply(TypeCtor::Float(FloatTy { bitness: FloatBitness::X32 })),
TyFingerprint::Apply(TypeCtor::Float(FloatTy { bitness: FloatBitness::X64 })),
];
/// Trait impls defined or available in some crate.
#[derive(Debug, Eq, PartialEq)]
pub struct TraitImpls {
// If the `Option<TyFingerprint>` is `None`, the impl may apply to any self type.
map: FxHashMap<TraitId, FxHashMap<Option<TyFingerprint>, Vec<ImplId>>>,
}
impl TraitImpls {
pub(crate) fn trait_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let _p = profile::span("trait_impls_in_crate_query");
let mut impls = Self { map: FxHashMap::default() };
let crate_def_map = db.crate_def_map(krate);
for (_module_id, module_data) in crate_def_map.modules.iter() {
for impl_id in module_data.scope.impls() {
let target_trait = match db.impl_trait(impl_id) {
Some(tr) => tr.value.trait_,
None => continue,
};
let self_ty = db.impl_self_ty(impl_id);
let self_ty_fp = TyFingerprint::for_impl(&self_ty.value);
impls
.map
.entry(target_trait)
.or_default()
.entry(self_ty_fp)
.or_default()
.push(impl_id);
}
}
Arc::new(impls)
}
pub(crate) fn trait_impls_in_deps_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let _p = profile::span("trait_impls_in_deps_query");
let crate_graph = db.crate_graph();
let mut res = Self { map: FxHashMap::default() };
for krate in crate_graph.transitive_deps(krate) {
res.merge(&db.trait_impls_in_crate(krate));
}
Arc::new(res)
}
fn merge(&mut self, other: &Self) {
for (trait_, other_map) in &other.map {
let map = self.map.entry(*trait_).or_default();
for (fp, impls) in other_map {
let vec = map.entry(*fp).or_default();
vec.extend(impls);
}
}
}
/// Queries all impls of the given trait.
pub fn for_trait(&self, trait_: TraitId) -> impl Iterator<Item = ImplId> + '_ {
self.map
.get(&trait_)
.into_iter()
.flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
}
/// Queries all impls of `trait_` that may apply to `self_ty`.
pub fn for_trait_and_self_ty(
&self,
trait_: TraitId,
self_ty: TyFingerprint,
) -> impl Iterator<Item = ImplId> + '_ {
self.map
.get(&trait_)
.into_iter()
.flat_map(move |map| map.get(&None).into_iter().chain(map.get(&Some(self_ty))))
.flat_map(|v| v.iter().copied())
}
pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
self.map.values().flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
}
}
/// Inherent impls defined in some crate.
///
/// Inherent impls can only be defined in the crate that also defines the self type of the impl
/// (note that some primitives are considered to be defined by both libcore and liballoc).
///
/// This makes inherent impl lookup easier than trait impl lookup since we only have to consider a
/// single crate.
#[derive(Debug, Eq, PartialEq)]
pub struct InherentImpls {
map: FxHashMap<TyFingerprint, Vec<ImplId>>,
}
impl InherentImpls {
pub(crate) fn inherent_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let mut map: FxHashMap<_, Vec<_>> = FxHashMap::default();
let crate_def_map = db.crate_def_map(krate);
for (_module_id, module_data) in crate_def_map.modules.iter() {
for impl_id in module_data.scope.impls() {
let data = db.impl_data(impl_id);
if data.target_trait.is_some() {
continue;
}
let self_ty = db.impl_self_ty(impl_id);
if let Some(fp) = TyFingerprint::for_impl(&self_ty.value) {
map.entry(fp).or_default().push(impl_id);
}
}
}
Arc::new(Self { map })
}
pub fn for_self_ty(&self, self_ty: &Ty) -> &[ImplId] {
match TyFingerprint::for_impl(self_ty) {
Some(fp) => self.map.get(&fp).map(|vec| vec.as_ref()).unwrap_or(&[]),
None => &[],
}
}
pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
self.map.values().flat_map(|v| v.iter().copied())
}
}
impl Ty {
pub fn def_crates(
&self,
db: &dyn HirDatabase,
cur_crate: CrateId,
) -> Option<ArrayVec<[CrateId; 2]>> {
// Types like slice can have inherent impls in several crates, (core and alloc).
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
macro_rules! lang_item_crate {
($($name:expr),+ $(,)?) => {{
let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
$(
v.extend(db.lang_item(cur_crate, $name.into()));
)+
v
}};
}
let lang_item_targets = match self {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Adt(def_id) => {
return Some(std::iter::once(def_id.module(db.upcast()).krate).collect())
}
TypeCtor::ForeignType(type_alias_id) => {
return Some(
std::iter::once(
type_alias_id.lookup(db.upcast()).module(db.upcast()).krate,
)
.collect(),
)
}
TypeCtor::Bool => lang_item_crate!("bool"),
TypeCtor::Char => lang_item_crate!("char"),
TypeCtor::Float(f) => match f.bitness {
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
},
TypeCtor::Int(i) => lang_item_crate!(i.ty_to_string()),
TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
_ => return None,
},
_ => return None,
};
let res = lang_item_targets
.into_iter()
.filter_map(|it| match it {
LangItemTarget::ImplDefId(it) => Some(it),
_ => None,
})
.map(|it| it.lookup(db.upcast()).container.module(db.upcast()).krate)
.collect();
Some(res)
}
}
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: &Name,
) -> Option<(Ty, FunctionId)> {
iterate_method_candidates(
ty,
db,
env,
krate,
&traits_in_scope,
Some(name),
LookupMode::MethodCall,
|ty, f| match f {
AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
_ => None,
},
)
}
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
/// (like `Vec::new`).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LookupMode {
/// Looking up a method call like `v.len()`: We only consider candidates
/// that have a `self` parameter, and do autoderef.
MethodCall,
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
/// candidates including associated constants, but don't do autoderef.
Path,
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
// FIXME add a context type here?
pub fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mode: LookupMode,
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
) -> Option<T> {
let mut slot = None;
iterate_method_candidates_impl(
ty,
db,
env,
krate,
traits_in_scope,
name,
mode,
&mut |ty, item| {
assert!(slot.is_none());
slot = callback(ty, item);
slot.is_some()
},
);
slot
}
fn iterate_method_candidates_impl(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mode: LookupMode,
callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
match mode {
LookupMode::MethodCall => {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
// We have to be careful about the order we're looking at candidates
// in here. Consider the case where we're resolving `x.clone()`
// where `x: &Vec<_>`. This resolves to the clone method with self
// type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where
// the receiver type exactly matches before cases where we have to
// do autoref. But in the autoderef steps, the `&_` self type comes
// up *before* the `Vec<_>` self type.
//
// On the other hand, we don't want to just pick any by-value method
// before any by-autoref method; it's just that we need to consider
// the methods by autoderef order of *receiver types*, not *self
// types*.
let deref_chain = autoderef_method_receiver(db, krate, ty);
for i in 0..deref_chain.len() {
if iterate_method_candidates_with_autoref(
&deref_chain[i..],
db,
env.clone(),
krate,
traits_in_scope,
name,
callback,
) {
return true;
}
}
false
}
LookupMode::Path => {
// No autoderef for path lookups
iterate_method_candidates_for_self_ty(
&ty,
db,
env,
krate,
traits_in_scope,
name,
callback,
)
}
}
}
fn iterate_method_candidates_with_autoref(
deref_chain: &[Canonical<Ty>],
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
if iterate_method_candidates_by_receiver(
&deref_chain[0],
&deref_chain[1..],
db,
env.clone(),
krate,
&traits_in_scope,
name,
&mut callback,
) {
return true;
}
let refed = Canonical {
kinds: deref_chain[0].kinds.clone(),
value: Ty::apply_one(TypeCtor::Ref(Mutability::Shared), deref_chain[0].value.clone()),
};
if iterate_method_candidates_by_receiver(
&refed,
deref_chain,
db,
env.clone(),
krate,
&traits_in_scope,
name,
&mut callback,
) {
return true;
}
let ref_muted = Canonical {
kinds: deref_chain[0].kinds.clone(),
value: Ty::apply_one(TypeCtor::Ref(Mutability::Mut), deref_chain[0].value.clone()),
};
if iterate_method_candidates_by_receiver(
&ref_muted,
deref_chain,
db,
env,
krate,
&traits_in_scope,
name,
&mut callback,
) {
return true;
}
false
}
fn iterate_method_candidates_by_receiver(
receiver_ty: &Canonical<Ty>,
rest_of_deref_chain: &[Canonical<Ty>],
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
// We're looking for methods with *receiver* type receiver_ty. These could
// be found in any of the derefs of receiver_ty, so we have to go through
// that.
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
if iterate_inherent_methods(self_ty, db, name, Some(receiver_ty), krate, &mut callback) {
return true;
}
}
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
if iterate_trait_method_candidates(
self_ty,
db,
env.clone(),
krate,
&traits_in_scope,
name,
Some(receiver_ty),
&mut callback,
) {
return true;
}
}
false
}
fn iterate_method_candidates_for_self_ty(
self_ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
mut callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
if iterate_inherent_methods(self_ty, db, name, None, krate, &mut callback) {
return true;
}
iterate_trait_method_candidates(self_ty, db, env, krate, traits_in_scope, name, None, callback)
}
fn iterate_trait_method_candidates(
self_ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
receiver_ty: Option<&Canonical<Ty>>,
callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
// if ty is `dyn Trait`, the trait doesn't need to be in scope
let inherent_trait =
self_ty.value.dyn_trait().into_iter().flat_map(|t| all_super_traits(db.upcast(), t));
let env_traits = if let Ty::Placeholder(_) = self_ty.value {
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
env.trait_predicates_for_self_ty(&self_ty.value)
.map(|tr| tr.trait_)
.flat_map(|t| all_super_traits(db.upcast(), t))
.collect()
} else {
Vec::new()
};
let traits =
inherent_trait.chain(env_traits.into_iter()).chain(traits_in_scope.iter().copied());
'traits: for t in traits {
let data = db.trait_data(t);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
for (_name, item) in data.items.iter() {
if !is_valid_candidate(db, name, receiver_ty, *item, self_ty) {
continue;
}
if !known_implemented {
let goal = generic_implements_goal(db, env.clone(), t, self_ty.clone());
if db.trait_solve(krate, goal).is_none() {
continue 'traits;
}
}
known_implemented = true;
if callback(&self_ty.value, *item) {
return true;
}
}
}
false
}
fn iterate_inherent_methods(
self_ty: &Canonical<Ty>,
db: &dyn HirDatabase,
name: Option<&Name>,
receiver_ty: Option<&Canonical<Ty>>,
krate: CrateId,
callback: &mut dyn FnMut(&Ty, AssocItemId) -> bool,
) -> bool {
let def_crates = match self_ty.value.def_crates(db, krate) {
Some(k) => k,
None => return false,
};
for krate in def_crates {
let impls = db.inherent_impls_in_crate(krate);
for &impl_def in impls.for_self_ty(&self_ty.value) {
for &item in db.impl_data(impl_def).items.iter() {
if !is_valid_candidate(db, name, receiver_ty, item, self_ty) {
continue;
}
// we have to check whether the self type unifies with the type
// that the impl is for. If we have a receiver type, this
// already happens in `is_valid_candidate` above; if not, we
// check it here
if receiver_ty.is_none() && inherent_impl_substs(db, impl_def, self_ty).is_none() {
test_utils::mark::hit!(impl_self_type_match_without_receiver);
continue;
}
if callback(&self_ty.value, item) {
return true;
}
}
}
}
false
}
/// Returns the self type for the index trait call.
pub fn resolve_indexing_op(
db: &dyn HirDatabase,
ty: &Canonical<Ty>,
env: Arc<TraitEnvironment>,
krate: CrateId,
index_trait: TraitId,
) -> Option<Canonical<Ty>> {
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
let deref_chain = autoderef_method_receiver(db, krate, ty);
for ty in deref_chain {
let goal = generic_implements_goal(db, env.clone(), index_trait, ty.clone());
if db.trait_solve(krate, goal).is_some() {
return Some(ty);
}
}
None
}
fn is_valid_candidate(
db: &dyn HirDatabase,
name: Option<&Name>,
receiver_ty: Option<&Canonical<Ty>>,
item: AssocItemId,
self_ty: &Canonical<Ty>,
) -> bool {
match item {
AssocItemId::FunctionId(m) => {
let data = db.function_data(m);
if let Some(name) = name {
if &data.name != name {
return false;
}
}
if let Some(receiver_ty) = receiver_ty {
if !data.has_self_param {
return false;
}
let transformed_receiver_ty = match transform_receiver_ty(db, m, self_ty) {
Some(ty) => ty,
None => return false,
};
if transformed_receiver_ty != receiver_ty.value {
return false;
}
}
true
}
AssocItemId::ConstId(c) => {
let data = db.const_data(c);
name.map_or(true, |name| data.name.as_ref() == Some(name)) && receiver_ty.is_none()
}
_ => false,
}
}
pub(crate) fn inherent_impl_substs(
db: &dyn HirDatabase,
impl_id: ImplId,
self_ty: &Canonical<Ty>,
) -> Option<Substs> {
// we create a var for each type parameter of the impl; we need to keep in
// mind here that `self_ty` might have vars of its own
let vars = Substs::build_for_def(db, impl_id)
.fill_with_bound_vars(DebruijnIndex::INNERMOST, self_ty.kinds.len())
.build();
let self_ty_with_vars = db.impl_self_ty(impl_id).subst(&vars);
let mut kinds = self_ty.kinds.to_vec();
kinds.extend(iter::repeat(TyKind::General).take(vars.len()));
let tys = Canonical { kinds: kinds.into(), value: (self_ty_with_vars, self_ty.value.clone()) };
let substs = super::infer::unify(&tys);
// We only want the substs for the vars we added, not the ones from self_ty.
// Also, if any of the vars we added are still in there, we replace them by
// Unknown. I think this can only really happen if self_ty contained
// Unknown, and in that case we want the result to contain Unknown in those
// places again.
substs.map(|s| fallback_bound_vars(s.suffix(vars.len()), self_ty.kinds.len()))
}
/// This replaces any 'free' Bound vars in `s` (i.e. those with indices past
/// num_vars_to_keep) by `Ty::Unknown`.
fn fallback_bound_vars(s: Substs, num_vars_to_keep: usize) -> Substs {
s.fold_binders(
&mut |ty, binders| {
if let Ty::Bound(bound) = &ty {
if bound.index >= num_vars_to_keep && bound.debruijn >= binders {
Ty::Unknown
} else {
ty
}
} else {
ty
}
},
DebruijnIndex::INNERMOST,
)
}
fn transform_receiver_ty(
db: &dyn HirDatabase,
function_id: FunctionId,
self_ty: &Canonical<Ty>,
) -> Option<Ty> {
let substs = match function_id.lookup(db.upcast()).container {
AssocContainerId::TraitId(_) => Substs::build_for_def(db, function_id)
.push(self_ty.value.clone())
.fill_with_unknown()
.build(),
AssocContainerId::ImplId(impl_id) => {
let impl_substs = inherent_impl_substs(db, impl_id, &self_ty)?;
Substs::build_for_def(db, function_id)
.use_parent_substs(&impl_substs)
.fill_with_unknown()
.build()
}
AssocContainerId::ContainerId(_) => unreachable!(),
};
let sig = db.callable_item_signature(function_id.into());
Some(sig.value.params()[0].clone().subst_bound_vars(&substs))
}
pub fn implements_trait(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
trait_: TraitId,
) -> bool {
let goal = generic_implements_goal(db, env, trait_, ty.clone());
let solution = db.trait_solve(krate, goal);
solution.is_some()
}
pub fn implements_trait_unique(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
krate: CrateId,
trait_: TraitId,
) -> bool {
let goal = generic_implements_goal(db, env, trait_, ty.clone());
let solution = db.trait_solve(krate, goal);
matches!(solution, Some(crate::traits::Solution::Unique(_)))
}
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn generic_implements_goal(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
trait_: TraitId,
self_ty: Canonical<Ty>,
) -> Canonical<InEnvironment<super::Obligation>> {
let mut kinds = self_ty.kinds.to_vec();
let substs = super::Substs::build_for_def(db, trait_)
.push(self_ty.value)
.fill_with_bound_vars(DebruijnIndex::INNERMOST, kinds.len())
.build();
kinds.extend(iter::repeat(TyKind::General).take(substs.len() - 1));
let trait_ref = TraitRef { trait_, substs };
let obligation = super::Obligation::Trait(trait_ref);
Canonical { kinds: kinds.into(), value: InEnvironment::new(env, obligation) }
}
fn autoderef_method_receiver(
db: &dyn HirDatabase,
krate: CrateId,
ty: InEnvironment<Canonical<Ty>>,
) -> Vec<Canonical<Ty>> {
let mut deref_chain: Vec<_> = autoderef::autoderef(db, Some(krate), ty).collect();
// As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!)
if let Some(Ty::Apply(ApplicationTy { ctor: TypeCtor::Array, parameters })) =
deref_chain.last().map(|ty| &ty.value)
{
let kinds = deref_chain.last().unwrap().kinds.clone();
let unsized_ty = Ty::apply(TypeCtor::Slice, parameters.clone());
deref_chain.push(Canonical { value: unsized_ty, kinds })
}
deref_chain
}