rust/src/libcollections/smallintmap.rs
Kevin Butler 3faa6762c1 lib{std,core,debug,rustuv,collections,native,regex}: Fix snake_case errors.
A number of functions/methods have been moved or renamed to align
better with rust standard conventions.

std::reflect::MovePtrAdaptor => MovePtrAdaptor::new
debug::reflect::MovePtrAdaptor => MovePtrAdaptor::new
std::repr::ReprVisitor => ReprVisitor::new
debug::repr::ReprVisitor => ReprVisitor::new
rustuv::homing::HomingIO.go_to_IO_home => go_to_io_home

[breaking-change]
2014-05-30 17:55:41 +01:00

520 lines
15 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* A simple map based on a vector for small integer keys. Space requirements
* are O(highest integer key).
*/
#![allow(missing_doc)]
use std::iter::{Enumerate, FilterMap};
use std::mem::replace;
use std::{vec, slice};
#[allow(missing_doc)]
pub struct SmallIntMap<T> {
v: Vec<Option<T>>,
}
impl<V> Container for SmallIntMap<V> {
/// Return the number of elements in the map
fn len(&self) -> uint {
self.v.iter().count(|elt| elt.is_some())
}
/// Return true if there are no elements in the map
fn is_empty(&self) -> bool {
self.v.iter().all(|elt| elt.is_none())
}
}
impl<V> Mutable for SmallIntMap<V> {
/// Clear the map, removing all key-value pairs.
fn clear(&mut self) { self.v.clear() }
}
impl<V> Map<uint, V> for SmallIntMap<V> {
/// Return a reference to the value corresponding to the key
fn find<'a>(&'a self, key: &uint) -> Option<&'a V> {
if *key < self.v.len() {
match *self.v.get(*key) {
Some(ref value) => Some(value),
None => None
}
} else {
None
}
}
}
impl<V> MutableMap<uint, V> for SmallIntMap<V> {
/// Return a mutable reference to the value corresponding to the key
fn find_mut<'a>(&'a mut self, key: &uint) -> Option<&'a mut V> {
if *key < self.v.len() {
match *self.v.get_mut(*key) {
Some(ref mut value) => Some(value),
None => None
}
} else {
None
}
}
/// Insert a key-value pair into the map. An existing value for a
/// key is replaced by the new value. Return true if the key did
/// not already exist in the map.
fn insert(&mut self, key: uint, value: V) -> bool {
let exists = self.contains_key(&key);
let len = self.v.len();
if len <= key {
self.v.grow_fn(key - len + 1, |_| None);
}
*self.v.get_mut(key) = Some(value);
!exists
}
/// Remove a key-value pair from the map. Return true if the key
/// was present in the map, otherwise false.
fn remove(&mut self, key: &uint) -> bool {
self.pop(key).is_some()
}
/// Insert a key-value pair from the map. If the key already had a value
/// present in the map, that value is returned. Otherwise None is returned.
fn swap(&mut self, key: uint, value: V) -> Option<V> {
match self.find_mut(&key) {
Some(loc) => { return Some(replace(loc, value)); }
None => ()
}
self.insert(key, value);
return None;
}
/// Removes a key from the map, returning the value at the key if the key
/// was previously in the map.
fn pop(&mut self, key: &uint) -> Option<V> {
if *key >= self.v.len() {
return None;
}
self.v.get_mut(*key).take()
}
}
impl<V> SmallIntMap<V> {
/// Create an empty SmallIntMap
pub fn new() -> SmallIntMap<V> { SmallIntMap{v: vec!()} }
/// Create an empty SmallIntMap with capacity `capacity`
pub fn with_capacity(capacity: uint) -> SmallIntMap<V> {
SmallIntMap { v: Vec::with_capacity(capacity) }
}
pub fn get<'a>(&'a self, key: &uint) -> &'a V {
self.find(key).expect("key not present")
}
/// An iterator visiting all key-value pairs in ascending order by the keys.
/// Iterator element type is (uint, &'r V)
pub fn iter<'r>(&'r self) -> Entries<'r, V> {
Entries {
front: 0,
back: self.v.len(),
iter: self.v.iter()
}
}
/// An iterator visiting all key-value pairs in ascending order by the keys,
/// with mutable references to the values
/// Iterator element type is (uint, &'r mut V)
pub fn mut_iter<'r>(&'r mut self) -> MutEntries<'r, V> {
MutEntries {
front: 0,
back: self.v.len(),
iter: self.v.mut_iter()
}
}
/// Empties the hash map, moving all values into the specified closure
pub fn move_iter(&mut self)
-> FilterMap<(uint, Option<V>), (uint, V),
Enumerate<vec::MoveItems<Option<V>>>>
{
let values = replace(&mut self.v, vec!());
values.move_iter().enumerate().filter_map(|(i, v)| {
v.map(|v| (i, v))
})
}
}
impl<V:Clone> SmallIntMap<V> {
pub fn update_with_key(&mut self,
key: uint,
val: V,
ff: |uint, V, V| -> V)
-> bool {
let new_val = match self.find(&key) {
None => val,
Some(orig) => ff(key, (*orig).clone(), val)
};
self.insert(key, new_val)
}
pub fn update(&mut self, key: uint, newval: V, ff: |V, V| -> V) -> bool {
self.update_with_key(key, newval, |_k, v, v1| ff(v,v1))
}
}
macro_rules! iterator {
(impl $name:ident -> $elem:ty, $getter:ident) => {
impl<'a, T> Iterator<$elem> for $name<'a, T> {
#[inline]
fn next(&mut self) -> Option<$elem> {
while self.front < self.back {
match self.iter.next() {
Some(elem) => {
if elem.is_some() {
let index = self.front;
self.front += 1;
return Some((index, elem. $getter ()));
}
}
_ => ()
}
self.front += 1;
}
None
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(0, Some(self.back - self.front))
}
}
}
}
macro_rules! double_ended_iterator {
(impl $name:ident -> $elem:ty, $getter:ident) => {
impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<$elem> {
while self.front < self.back {
match self.iter.next_back() {
Some(elem) => {
if elem.is_some() {
self.back -= 1;
return Some((self.back, elem. $getter ()));
}
}
_ => ()
}
self.back -= 1;
}
None
}
}
}
}
pub struct Entries<'a, T> {
front: uint,
back: uint,
iter: slice::Items<'a, Option<T>>
}
iterator!(impl Entries -> (uint, &'a T), get_ref)
double_ended_iterator!(impl Entries -> (uint, &'a T), get_ref)
pub struct MutEntries<'a, T> {
front: uint,
back: uint,
iter: slice::MutItems<'a, Option<T>>
}
iterator!(impl MutEntries -> (uint, &'a mut T), get_mut_ref)
double_ended_iterator!(impl MutEntries -> (uint, &'a mut T), get_mut_ref)
#[cfg(test)]
mod test_map {
use super::SmallIntMap;
#[test]
fn test_find_mut() {
let mut m = SmallIntMap::new();
assert!(m.insert(1, 12));
assert!(m.insert(2, 8));
assert!(m.insert(5, 14));
let new = 100;
match m.find_mut(&5) {
None => fail!(), Some(x) => *x = new
}
assert_eq!(m.find(&5), Some(&new));
}
#[test]
fn test_len() {
let mut map = SmallIntMap::new();
assert_eq!(map.len(), 0);
assert!(map.is_empty());
assert!(map.insert(5, 20));
assert_eq!(map.len(), 1);
assert!(!map.is_empty());
assert!(map.insert(11, 12));
assert_eq!(map.len(), 2);
assert!(!map.is_empty());
assert!(map.insert(14, 22));
assert_eq!(map.len(), 3);
assert!(!map.is_empty());
}
#[test]
fn test_clear() {
let mut map = SmallIntMap::new();
assert!(map.insert(5, 20));
assert!(map.insert(11, 12));
assert!(map.insert(14, 22));
map.clear();
assert!(map.is_empty());
assert!(map.find(&5).is_none());
assert!(map.find(&11).is_none());
assert!(map.find(&14).is_none());
}
#[test]
fn test_insert_with_key() {
let mut map = SmallIntMap::new();
// given a new key, initialize it with this new count,
// given an existing key, add more to its count
fn add_more_to_count(_k: uint, v0: uint, v1: uint) -> uint {
v0 + v1
}
fn add_more_to_count_simple(v0: uint, v1: uint) -> uint {
v0 + v1
}
// count integers
map.update(3, 1, add_more_to_count_simple);
map.update_with_key(9, 1, add_more_to_count);
map.update(3, 7, add_more_to_count_simple);
map.update_with_key(5, 3, add_more_to_count);
map.update_with_key(3, 2, add_more_to_count);
// check the total counts
assert_eq!(map.find(&3).unwrap(), &10);
assert_eq!(map.find(&5).unwrap(), &3);
assert_eq!(map.find(&9).unwrap(), &1);
// sadly, no sevens were counted
assert!(map.find(&7).is_none());
}
#[test]
fn test_swap() {
let mut m = SmallIntMap::new();
assert_eq!(m.swap(1, 2), None);
assert_eq!(m.swap(1, 3), Some(2));
assert_eq!(m.swap(1, 4), Some(3));
}
#[test]
fn test_pop() {
let mut m = SmallIntMap::new();
m.insert(1, 2);
assert_eq!(m.pop(&1), Some(2));
assert_eq!(m.pop(&1), None);
}
#[test]
fn test_iterator() {
let mut m = SmallIntMap::new();
assert!(m.insert(0, 1));
assert!(m.insert(1, 2));
assert!(m.insert(3, 5));
assert!(m.insert(6, 10));
assert!(m.insert(10, 11));
let mut it = m.iter();
assert_eq!(it.size_hint(), (0, Some(11)));
assert_eq!(it.next().unwrap(), (0, &1));
assert_eq!(it.size_hint(), (0, Some(10)));
assert_eq!(it.next().unwrap(), (1, &2));
assert_eq!(it.size_hint(), (0, Some(9)));
assert_eq!(it.next().unwrap(), (3, &5));
assert_eq!(it.size_hint(), (0, Some(7)));
assert_eq!(it.next().unwrap(), (6, &10));
assert_eq!(it.size_hint(), (0, Some(4)));
assert_eq!(it.next().unwrap(), (10, &11));
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_iterator_size_hints() {
let mut m = SmallIntMap::new();
assert!(m.insert(0, 1));
assert!(m.insert(1, 2));
assert!(m.insert(3, 5));
assert!(m.insert(6, 10));
assert!(m.insert(10, 11));
assert_eq!(m.iter().size_hint(), (0, Some(11)));
assert_eq!(m.iter().rev().size_hint(), (0, Some(11)));
assert_eq!(m.mut_iter().size_hint(), (0, Some(11)));
assert_eq!(m.mut_iter().rev().size_hint(), (0, Some(11)));
}
#[test]
fn test_mut_iterator() {
let mut m = SmallIntMap::new();
assert!(m.insert(0, 1));
assert!(m.insert(1, 2));
assert!(m.insert(3, 5));
assert!(m.insert(6, 10));
assert!(m.insert(10, 11));
for (k, v) in m.mut_iter() {
*v += k as int;
}
let mut it = m.iter();
assert_eq!(it.next().unwrap(), (0, &1));
assert_eq!(it.next().unwrap(), (1, &3));
assert_eq!(it.next().unwrap(), (3, &8));
assert_eq!(it.next().unwrap(), (6, &16));
assert_eq!(it.next().unwrap(), (10, &21));
assert!(it.next().is_none());
}
#[test]
fn test_rev_iterator() {
let mut m = SmallIntMap::new();
assert!(m.insert(0, 1));
assert!(m.insert(1, 2));
assert!(m.insert(3, 5));
assert!(m.insert(6, 10));
assert!(m.insert(10, 11));
let mut it = m.iter().rev();
assert_eq!(it.next().unwrap(), (10, &11));
assert_eq!(it.next().unwrap(), (6, &10));
assert_eq!(it.next().unwrap(), (3, &5));
assert_eq!(it.next().unwrap(), (1, &2));
assert_eq!(it.next().unwrap(), (0, &1));
assert!(it.next().is_none());
}
#[test]
fn test_mut_rev_iterator() {
let mut m = SmallIntMap::new();
assert!(m.insert(0, 1));
assert!(m.insert(1, 2));
assert!(m.insert(3, 5));
assert!(m.insert(6, 10));
assert!(m.insert(10, 11));
for (k, v) in m.mut_iter().rev() {
*v += k as int;
}
let mut it = m.iter();
assert_eq!(it.next().unwrap(), (0, &1));
assert_eq!(it.next().unwrap(), (1, &3));
assert_eq!(it.next().unwrap(), (3, &8));
assert_eq!(it.next().unwrap(), (6, &16));
assert_eq!(it.next().unwrap(), (10, &21));
assert!(it.next().is_none());
}
#[test]
fn test_move_iter() {
let mut m = SmallIntMap::new();
m.insert(1, box 2);
let mut called = false;
for (k, v) in m.move_iter() {
assert!(!called);
called = true;
assert_eq!(k, 1);
assert_eq!(v, box 2);
}
assert!(called);
m.insert(2, box 1);
}
}
#[cfg(test)]
mod bench {
extern crate test;
use self::test::Bencher;
use super::SmallIntMap;
use deque::bench::{insert_rand_n, insert_seq_n, find_rand_n, find_seq_n};
// Find seq
#[bench]
pub fn insert_rand_100(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
insert_rand_n(100, &mut m, b);
}
#[bench]
pub fn insert_rand_10_000(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
insert_rand_n(10_000, &mut m, b);
}
// Insert seq
#[bench]
pub fn insert_seq_100(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
insert_seq_n(100, &mut m, b);
}
#[bench]
pub fn insert_seq_10_000(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
insert_seq_n(10_000, &mut m, b);
}
// Find rand
#[bench]
pub fn find_rand_100(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
find_rand_n(100, &mut m, b);
}
#[bench]
pub fn find_rand_10_000(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
find_rand_n(10_000, &mut m, b);
}
// Find seq
#[bench]
pub fn find_seq_100(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
find_seq_n(100, &mut m, b);
}
#[bench]
pub fn find_seq_10_000(b: &mut Bencher) {
let mut m : SmallIntMap<uint> = SmallIntMap::new();
find_seq_n(10_000, &mut m, b);
}
}