rust/src/comp/middle/trans_alt.rs

475 lines
15 KiB
Rust

import std::str;
import std::ivec;
import std::option;
import option::some;
import option::none;
import std::map::hashmap;
import lib::llvm::llvm;
import lib::llvm::llvm::ValueRef;
import lib::llvm::llvm::TypeRef;
import lib::llvm::llvm::BasicBlockRef;
import trans::result;
import trans::rslt;
import trans::crate_ctxt;
import trans::block_ctxt;
import trans::new_sub_block_ctxt;
import trans::new_scope_block_ctxt;
import trans::load_if_immediate;
import trans::val_ty;
import ty::pat_ty;
import syntax::ast;
import syntax::ast::def_id;
import syntax::codemap::span;
import util::common::lit_eq;
import trans_common::*;
// An option identifying a branch (either a literal or a tag variant)
tag opt {
lit(@ast::lit);
var(uint /* variant id */, tup(def_id, def_id) /* variant def ids */);
}
fn opt_eq(&opt a, &opt b) -> bool {
alt (a) {
lit(?la) {
ret alt (b) { lit(?lb) { lit_eq(la, lb) } var(_, _) { false } };
}
var(?ida, _) {
ret alt (b) { lit(_) { false } var(?idb, _) { ida == idb } };
}
}
}
fn trans_opt(&@block_ctxt bcx, &opt o) -> result {
alt (o) {
lit(?l) { ret trans::trans_lit(bcx, *l); }
var(?id, _) { ret rslt(bcx, C_int(id as int)); }
}
}
fn variant_opt(&@crate_ctxt ccx, ast::node_id pat_id) -> opt {
auto vdef = ast::variant_def_ids(ccx.tcx.def_map.get(pat_id));
auto variants = ty::tag_variants(ccx.tcx, vdef._0);
auto i = 0u;
for (ty::variant_info v in variants) {
if (vdef._1 == v.id) { ret var(i, vdef); }
i += 1u;
}
fail;
}
type bind_map = tup(ast::ident, ValueRef)[];
type match_branch = @rec((@ast::pat)[] pats,
BasicBlockRef body,
mutable bind_map bound);
type match = match_branch[];
fn matches_always(&@ast::pat p) -> bool {
ret alt p.node {
ast::pat_wild { true }
ast::pat_bind(_) { true }
ast::pat_rec(_, _) { true }
_ { false }
};
}
fn bind_for_pat(&@ast::pat p, &match_branch br, ValueRef val) {
alt p.node {
ast::pat_bind(?name) {
br.bound += ~[tup(name, val)];
}
_ {}
}
}
type enter_pat = fn(&@ast::pat) -> option::t[(@ast::pat)[]];
fn enter_match(&match m, uint col, ValueRef val, &enter_pat e) -> match {
auto result = ~[];
for (match_branch br in m) {
alt (e(br.pats.(col))) {
some(?sub) {
auto pats = ivec::slice(br.pats, 0u, col) +
sub + ivec::slice(br.pats, col + 1u, ivec::len(br.pats));
auto new_br = @rec(pats=pats with *br);
result += ~[new_br];
bind_for_pat(br.pats.(col), new_br, val);
}
none {}
}
}
ret result;
}
fn enter_default(&match m, uint col, ValueRef val) -> match {
fn e(&@ast::pat p) -> option::t[(@ast::pat)[]] {
ret if (matches_always(p)) { some(~[]) }
else { none };
}
ret enter_match(m, col, val, e);
}
fn enter_opt(&@crate_ctxt ccx, &match m, &opt opt,
uint col, uint tag_size, ValueRef val) -> match {
auto dummy = @rec(id=0, node=ast::pat_wild, span=rec(lo=0u, hi=0u));
fn e(&@crate_ctxt ccx, &@ast::pat dummy, &opt opt, uint size,
&@ast::pat p) -> option::t[(@ast::pat)[]] {
alt (p.node) {
ast::pat_tag(?ctor, ?subpats) {
ret if (opt_eq(variant_opt(ccx, p.id), opt)) { some(subpats) }
else { none };
}
ast::pat_lit(?l) {
ret if (opt_eq(lit(l), opt)) { some(~[]) }
else { none };
}
_ { ret some(ivec::init_elt(dummy, size)); }
}
}
ret enter_match(m, col, val, bind e(ccx, dummy, opt, tag_size, _));
}
fn enter_rec(&match m, uint col, &ast::ident[] fields,
ValueRef val) -> match {
auto dummy = @rec(id=0, node=ast::pat_wild, span=rec(lo=0u, hi=0u));
fn e(&@ast::pat dummy, &ast::ident[] fields, &@ast::pat p)
-> option::t[(@ast::pat)[]] {
alt (p.node) {
ast::pat_rec(?fpats, _) {
auto pats = ~[];
for (ast::ident fname in fields) {
auto pat = dummy;
for (ast::field_pat fpat in fpats) {
if (str::eq(fpat.ident, fname)) {
pat = fpat.pat;
break;
}
}
pats += ~[pat];
}
ret some(pats);
}
_ { ret some(ivec::init_elt(dummy, ivec::len(fields))); }
}
}
ret enter_match(m, col, val, bind e(dummy, fields, _));
}
fn enter_box(&match m, uint col, ValueRef val) -> match {
auto dummy = @rec(id=0, node=ast::pat_wild, span=rec(lo=0u, hi=0u));
fn e(&@ast::pat dummy, &@ast::pat p) -> option::t[(@ast::pat)[]] {
alt (p.node) {
ast::pat_box(?sub) { ret some(~[sub]); }
_ { ret some(~[dummy]); }
}
}
ret enter_match(m, col, val, bind e(dummy, _));
}
fn get_options(&@crate_ctxt ccx, &match m, uint col) -> opt[] {
fn add_to_set(&mutable opt[] set, &opt val) {
for (opt l in set) {
if (opt_eq(l, val)) { ret; }
}
set += ~[val];
}
auto found = ~[];
for (match_branch br in m) {
alt (br.pats.(col).node) {
ast::pat_lit(?l) { add_to_set(found, lit(l)); }
ast::pat_tag(_, _) {
add_to_set(found, variant_opt(ccx, br.pats.(col).id));
}
_ {}
}
}
ret found;
}
fn extract_variant_args(@block_ctxt bcx, ast::node_id pat_id,
&tup(def_id, def_id) vdefs, ValueRef val)
-> tup(ValueRef[], @block_ctxt) {
auto ccx = bcx.fcx.lcx.ccx;
auto ty_param_substs = ty::node_id_to_type_params(ccx.tcx, pat_id);
auto blobptr = val;
auto variants = ty::tag_variants(ccx.tcx, vdefs._0);
auto args = ~[];
auto size = ivec::len(ty::tag_variant_with_id
(ccx.tcx, vdefs._0, vdefs._1).args);
if (size > 0u && ivec::len(variants) != 1u) {
auto tagptr = bcx.build.PointerCast
(val, trans_common::T_opaque_tag_ptr(ccx.tn));
blobptr = bcx.build.GEP(tagptr, ~[C_int(0), C_int(1)]);
}
auto i = 0u;
while (i < size) {
auto r = trans::GEP_tag(bcx, blobptr, vdefs._0, vdefs._1,
ty_param_substs, i as int);
bcx = r.bcx;
args += ~[r.val];
i += 1u;
}
ret tup(args, bcx);
}
fn collect_record_fields(&match m, uint col) -> ast::ident[] {
auto fields = ~[];
for (match_branch br in m) {
alt (br.pats.(col).node) {
ast::pat_rec(?fs, _) {
for (ast::field_pat f in fs) {
if (!ivec::any(bind str::eq(f.ident, _), fields)) {
fields += ~[f.ident];
}
}
}
_ {}
}
}
ret fields;
}
fn any_box_pat(&match m, uint col) -> bool {
for (match_branch br in m) {
alt (br.pats.(col).node) {
ast::pat_box(_) { ret true; }
_ {}
}
}
ret false;
}
type exit_node = rec(bind_map bound,
BasicBlockRef from,
BasicBlockRef to);
type mk_fail = fn() -> BasicBlockRef;
fn compile_submatch(@block_ctxt bcx, &match m, ValueRef[] vals, &mk_fail f,
&mutable exit_node[] exits) {
if (ivec::len(m) == 0u) {
bcx.build.Br(f());
ret;
}
if (ivec::len(m.(0).pats) == 0u) {
exits += ~[rec(bound=m.(0).bound,
from=bcx.llbb,
to=m.(0).body)];
bcx.build.Br(m.(0).body);
ret;
}
// FIXME maybe be clever about picking a column.
auto col = 0u;
auto val = vals.(col);
auto vals_left = ivec::slice(vals, 1u, ivec::len(vals));
auto ccx = bcx.fcx.lcx.ccx;
auto pat_id = 0;
for (match_branch br in m) {
// Find a real id (we're adding placeholder wildcard patterns, but
// each column is guaranteed to have at least one real pattern)
if (pat_id == 0) { pat_id = br.pats.(col).id; }
}
auto rec_fields = collect_record_fields(m, col);
// Separate path for extracting and binding record fields
if (ivec::len(rec_fields) > 0u) {
auto rec_ty = ty::node_id_to_monotype(ccx.tcx, pat_id);
auto fields = alt (ty::struct(ccx.tcx, rec_ty)) {
ty::ty_rec(?fields) { fields }
};
auto rec_vals = ~[];
for (ast::ident field_name in rec_fields) {
let uint ix = ty::field_idx(ccx.sess, rec(lo=0u, hi=0u),
field_name, fields);
auto r = trans::GEP_tup_like(bcx, rec_ty, val, ~[0, ix as int]);
rec_vals += ~[r.val];
bcx = r.bcx;
}
compile_submatch(bcx, enter_rec(m, col, rec_fields, val),
rec_vals + vals_left, f, exits);
ret;
}
// Unbox in case of a box field
if (any_box_pat(m, col)) {
auto box = bcx.build.Load(val);
auto unboxed = bcx.build.InBoundsGEP
(box, ~[C_int(0), C_int(back::abi::box_rc_field_body)]);
compile_submatch(bcx, enter_box(m, col, val),
~[unboxed] + vals_left, f, exits);
ret;
}
// Decide what kind of branch we need
auto opts = get_options(ccx, m, col);
tag branch_kind { no_branch; single; switch; compare; }
auto kind = no_branch;
auto test_val = val;
if (ivec::len(opts) > 0u) {
alt (opts.(0)) {
var(_, ?vdef) {
if (ivec::len(ty::tag_variants(ccx.tcx, vdef._0)) == 1u) {
kind = single;
} else {
auto tagptr = bcx.build.PointerCast
(val, trans_common::T_opaque_tag_ptr(ccx.tn));
auto discrimptr = bcx.build.GEP
(tagptr, ~[C_int(0), C_int(0)]);
test_val = bcx.build.Load(discrimptr);
kind = switch;
}
}
lit(?l) {
test_val = bcx.build.Load(val);
kind = alt (l.node) {
ast::lit_str(_, _) { compare }
_ { switch }
};
}
}
}
auto else_cx = alt (kind) {
no_branch | single { bcx }
_ { new_sub_block_ctxt(bcx, "match_else") }
};
auto sw = if (kind == switch) {
bcx.build.Switch(test_val, else_cx.llbb, ivec::len(opts))
} else { C_int(0) }; // Placeholder for when not using a switch
// Compile subtrees for each option
for (opt opt in opts) {
auto opt_cx = new_sub_block_ctxt(bcx, "match_case");
alt (kind) {
single { bcx.build.Br(opt_cx.llbb); }
switch {
auto r = trans_opt(bcx, opt);
bcx = r.bcx;
llvm::LLVMAddCase(sw, r.val, opt_cx.llbb);
}
compare {
auto r = trans_opt(bcx, opt);
bcx = r.bcx;
auto t = ty::node_id_to_type(ccx.tcx, pat_id);
auto eq = trans::trans_compare(bcx, ast::eq, t, test_val,
r.val);
bcx = new_sub_block_ctxt(bcx, "next");
eq.bcx.build.CondBr(eq.val, opt_cx.llbb, bcx.llbb);
}
_ {}
}
auto size = 0u;
auto unpacked = ~[];
alt opt {
var(_, ?vdef) {
auto args = extract_variant_args(opt_cx, pat_id, vdef, val);
size = ivec::len(args._0);
unpacked = args._0;
opt_cx = args._1;
}
lit(_) { }
}
compile_submatch(opt_cx, enter_opt(ccx, m, opt, col, size, val),
unpacked + vals_left, f, exits);
}
// Compile the fall-through case
if (kind == compare) { bcx.build.Br(else_cx.llbb); }
if (kind != single) {
compile_submatch(else_cx, enter_default(m, col, val), vals_left,
f, exits);
}
}
// Returns false for unreachable blocks
fn make_phi_bindings(&@block_ctxt bcx, &exit_node[] map,
&ast::pat_id_map ids) -> bool {
fn assoc(str key, &tup(str, ValueRef)[] list) -> option::t[ValueRef] {
for (tup(str, ValueRef) elt in list) {
if (str::eq(elt._0, key)) { ret some(elt._1); }
}
ret none;
}
auto our_block = bcx.llbb as uint;
auto success = true;
for each (@tup(ast::ident, ast::node_id) item in ids.items()) {
auto llbbs = ~[];
auto vals = ~[];
for (exit_node ex in map) {
if (ex.to as uint == our_block) {
alt (assoc(item._0, ex.bound)) {
some(?val) {
llbbs += ~[ex.from];
vals += ~[val];
}
none {}
}
}
}
if (ivec::len(vals) > 0u) {
auto phi = bcx.build.Phi(val_ty(vals.(0)), vals, llbbs);
bcx.fcx.lllocals.insert(item._1, phi);
} else { success = false; }
}
ret success;
}
fn trans_alt(&@block_ctxt cx, &@ast::expr expr, &ast::arm[] arms,
ast::node_id id, &trans::out_method output) -> result {
auto bodies = ~[];
let match match = ~[];
for (ast::arm a in arms) {
auto body = new_scope_block_ctxt(cx, "case_body");
bodies += ~[body];
for (@ast::pat p in a.pats) {
match += ~[@rec(pats=~[p], body=body.llbb, mutable bound=~[])];
}
}
// Cached fail-on-fallthrough block
auto fail_cx = @mutable none;
fn mk_fail(&@block_ctxt cx, &span sp,
@mutable option::t[BasicBlockRef] done) -> BasicBlockRef {
alt (*done) {
some(?bb) { ret bb; }
_ {}
}
auto fail_cx = new_sub_block_ctxt(cx, "case_fallthrough");
trans::trans_fail(fail_cx, some(sp), "non-exhaustive match failure");
*done = some(fail_cx.llbb);
ret fail_cx.llbb;
}
auto exit_map = ~[];
auto er = trans::trans_expr(cx, expr);
auto t = trans::node_id_type(cx.fcx.lcx.ccx, expr.id);
auto v = trans::spill_if_immediate(er.bcx, er.val, t);
compile_submatch(er.bcx, match, ~[v],
bind mk_fail(cx, expr.span, fail_cx), exit_map);
auto i = 0u;
auto arm_results = ~[];
for (ast::arm a in arms) {
auto body_cx = bodies.(i);
if (make_phi_bindings(body_cx, exit_map,
ast::pat_id_map(a.pats.(0)))) {
auto block_res = trans::trans_block(body_cx, a.block, output);
arm_results += ~[block_res];
} else { // Unreachable
arm_results += ~[rslt(body_cx, C_nil())];
}
i += 1u;
}
ret rslt(trans::join_branches(cx, arm_results), C_nil());
}
// Local Variables:
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End: